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 A B S T R A C T

Monitoring feeding behaviour is a relevant task for efficient herd management and the effective use of available 
resources in grazing cattle. The ability to automatically recognise animals’ feeding activities through the 
identification of specific jaw movements allows for the improvement of diet formulation, as well as early 
detection of metabolic problems and symptoms of animal discomfort, among other benefits. The use of sensors 
to obtain signals for such monitoring has become popular in the last two decades. The most frequently 
employed sensors include accelerometers, microphones, and cameras, each with its own set of advantages 
and drawbacks. An unexplored aspect is the simultaneous use of multiple sensors with the aim of combining 
signals in order to enhance the precision of the estimations. In this direction, this work introduces a deep 
neural network based on the fusion of acoustic and inertial signals, composed of convolutional, recurrent, 
and dense layers. The main advantage of this model is the combination of signals through the automatic 
extraction of features independently from each of them. The model has emerged from an exploration and 
comparison of different neural network architectures proposed in this work, which carry out information 
fusion at different levels. Feature-level fusion has outperformed data and decision-level fusion by at least a 
0.14 based on the F1-score metric. Moreover, a comparison with state-of-the-art machine learning methods is 
presented, including traditional and deep learning approaches. The proposed model yielded an F1-score value 
of 0.802, representing a 14% increase compared to previous methods. Finally, results from an ablation study 
and post-training quantisation evaluation are also reported.
1. Introduction

The intensification of livestock production systems requires innova-
tive tools to improve efficiency while mitigating environmental nega-
tive impacts. Traditional methods of livestock management, often based 
on herd-level observations, may overlook individual behavioural pat-
terns, leading to suboptimal resource use and increased environmental 
footprints.

Individualised livestock monitoring offers significant economic ben-
efits, including improved feed efficiency, reduced effluents, and en-
hanced animal health management (Laca, 2009). For instance, by 

∗ Corresponding author at: Department of Computer and Electrical Engineering, Mid Sweden University, Sundsvall, Sweden.
E-mail address: luciano.martinezrau@miun.se (L.S. Martinez-Rau).

accurately detecting foraging events, farmers can fine-tune feed dis-
tribution, ensuring that animals receive adequate nutrition without 
overfeeding. This precision not only reduces feed costs – a major ex-
pense in livestock systems – but also minimises competition for limited 
resources. Furthermore, early detection of irregular behaviours through 
individual monitoring can aid in identifying health issues (Morgan-
Davies et al., 2024), reducing veterinary costs and potential production 
losses.

From an environmental perspective, individualised monitoring con-
tributes to sustainability by promoting optimal grazing practices. Over-
grazing, a common issue in unmanaged systems, can lead to soil 
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degradation, loss of biodiversity, and decreased carbon sequestration. 
By accurately identifying and managing foraging behaviour, producers 
can implement rotational grazing strategies that enhance pasture re-
silience and soil health. Additionally, better feed management reduces 
greenhouse gas emissions per unit of production, aligning with global 
goals to mitigate climate change.

With regard to the traditional monitoring of feeding behaviour, two 
principal activities are considered: grazing and rumination. Despite 
this, a more fine-grained classification might be possible including 
drinking, chewing, foraging, and walking, among others (Kilgour, 2012; 
da Silva Santos et al., 2023). Including these activities might contribute 
to provide a comprehensive analysis of feeding patterns, nutritional 
intake, and overall well-being. By accounting for these behaviours, a 
more complete understanding of the animal’s feeding dynamics can be 
achieved.

Each period of the key activities mentioned before (grazing and 
rumination) may last from minutes to hours and consists of sequences 
of specific jaw movement (JM) events that allow their accurate identi-
fication and tracking.

These events are classified as bite, chew, and chew-bite (a combina-
tion of the two previous events) (Laca and WallisDeVries, 2000; Ungar 
et al., 2006). Monitoring the occurrence of these events and activity 
periods allows for the estimation of dry matter intake (Chelotti et al., 
2024), the detection of the presence of a disease or condition (Cala-
mari et al., 2014; Paudyal et al., 2018), the prediction of states of 
stress (Herskin et al., 2004) or anxiety (Bristow and Holmes, 2007), 
and approximating the calving moment (Büchel and Sundrum, 2014; 
Clark et al., 2015), to name a few examples.

Continuous direct observation of cattle behaviours represents a chal-
lenge, especially when dealing with a significant number of animals dis-
tributed across extensive areas. This challenge has driven research into 
the use of sensors for monitoring relevant livestock behaviours. Vari-
ous types of sensors have been proposed, allowing for differentiation 
between those which are positioned on the animal (commonly referred 
to as ‘‘wearables’’) and those situated externally. The former has been 
the predominant choice in the literature, with motion sensors being the 
preferred option, followed by acoustic sensors (Andriamandroso et al., 
2016; Chelotti et al., 2024).

Acoustic sensors are able to capture signals with high discriminative 
power, although the disadvantage is the difficulty in processing them 
due to the volume of generated information. On the other hand, the 
processing of IMU signals is simpler due to the smaller number of sam-
ples per second. Although these signals record important information 
about position, turns and other head movements, the discrimination of 
different JM events might be challenging (da Silva Santos et al., 2023).

While the use of a single sensor has been the most extensively 
studied approach, the combination of signals from multiple sensors has 
yet to be fully explored. This represents an advantage in this problem 
due to the ability to have complementary information to reduce envi-
ronmental noise, make the system more robust to failures, and improve 
detection capabilities, among others. This promising approach can be 
addressed through the use of data fusion strategies combining the most 
used signals in the state-of-the-art: motion and audio signals.

In the context of information fusion, three main levels of abstraction 
are frequently employed in situations where data comes from multiple 
sensors. These are data fusion, feature fusion, and decision fusion (Hall 
and Llinas, 1997; Qiu et al., 2022). Data fusion level refers to the pre-
mature combination of acquired signals from sensors to create a unique 
signal with several channels, regardless of whether pre-processing is 
performed or not. In this context, a common approach consists of 
the creation of multimodal signals by stacking raw signals. On the 
other hand, the feature-fusion level involves extracting representative 
values of each signal (usually using fixed-size windows) and then 
constructing a vector of fixed-dimension elements. The main idea is 
to combine information from all available signals in this single repre-
sentation, generating some independence between specific properties 
2 
of each signal (Spinsante et al., 2016). Feature generation can be 
manual (i.e. following a feature engineering approach) or automatic 
(i.e. self-learned features in a deep learning approach). Finally, the 
decision-level fusion builds a system that combines predictions from 
underlying systems, each of which analyses information from a single 
sensor (Garcia-Ceja et al., 2018). Consequently, the system endeavours 
to optimise the output by combining or selecting hypotheses generated 
by simpler systems, in accordance with a comparable methodology 
to ensemble methods (Dietterich, 2000). To create a final decision, 
traditional approaches could be employed (such as majority voting) 
in addition to machine learning models (for instance decision trees or 
logistic regression).

This paper presents a multi-head convolutional neural network 
(CNN) - recurrent neural network (RNN) approach for the recogni-
tion of JM events in grazing cattle. The approach fuses information 
from acoustic and inertial measurement units (IMU) signals at the 
feature-level without any prior preprocessing or feature extraction. 
The proposed model is capable of detecting and classifying JM events 
simultaneously, distinguishing between five different classes. An inves-
tigation into the efficacy of different information fusion architectures 
has been conducted to identify the optimal configuration for enhancing 
recognition results in this context. Furthermore, the proposed method 
has been subjected to empirical evaluation and benchmarked against 
a range of state-of-the-art alternatives. Experiments were performed to 
show the superiority of multimodal approaches over unimodal solutions 
and to illustrate the advantages of deep architectures over traditional 
machine learning approaches.

An in-depth exploration of the technical details and implications 
involved in implementing the proposed model is beyond the scope of 
this study.

The main contributions of this publication are the following:
(a) It presents a multi-head CNN-RNN model that performs infor-

mation fusion at the feature-level.
(b) It proposes and evaluates different architectures of deep neural 

networks that perform data fusion at different levels.
(c) It examines the effectiveness and accuracy of the proposed 

solution by comparing the obtained results with those obtained by 
state-of-the-art methods.

(d) It presents an ablation study to analyse the benefits of each part 
of the proposed model.

Our proposed multi-head deep fusion model, leveraging sound and 
movement signals, provides a novel approach to detecting cattle for-
aging events with high precision. By integrating these modalities, our 
work addresses the gap in individualised livestock monitoring tech-
nologies and supports sustainable and economically viable livestock 
production systems.

The structure of the remaining parts of the article is as follows: 
Section 2 introduces a short overview of the state-of-the-art regard-
ing automatic monitoring of ruminant feeding behaviour. Section 3 
describes the proposed feature-level fusion model as well as other 
fusion level architectures proposed and analysed. Section 4 is dedi-
cated to the experimentation including a description of the adopted 
methodology. Several comparisons are also presented in this section. 
Finally, conclusions, limitations, and future research lines are discussed 
in Section 5.

2. Related work

In the last few decades, ruminant feeding monitoring has attracted 
scientific attention due to the existing challenges and potential benefits 
from a practical point of view. Machine learning algorithms are pro-
posed as a means of creating systems capable of working in this context. 
This section describes the recent developments in ruminant feeding 
monitoring analysing the most common sensing principles adopted.
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2.1. Sensors

Motion sensors allow for the identification of specific ruminant 
behaviours based on changes in body posture. The principle of motion 
sensing and its location on the animal determines which movements 
can be monitored. Accelerometers have been the most studied sen-
sor (Aquilani et al., 2022), due to their low cost, compact size, and 
low power consumption. Another advantage of the signals captured by 
this sensor is the low computational cost required for processing them, 
as they operate at sampling frequencies below 100 Hz. In the context 
of ruminant feeding monitoring, the use of motion sensors has been 
primarily focused on detecting activities such as rumination, grazing, 
and drinking (Aquilani et al., 2022). However, their use for specifically 
detecting JM events poses challenges due to the limited discriminatory 
power of the signals captured for this purpose (Chelotti et al., 2024). 
A variety of approaches have been explored, including the use of 
accelerometers (Tani et al., 2013; Oudshoorn et al., 2013; Bloch et al., 
2023), accelerometers and gyroscopes (referred to as IMUs) (Andria-
mandroso et al., 2015; Li et al., 2022), and accelerometers, gyroscopes, 
and magnetometers (referred to as inertial and magnetic measurement 
units) (Liu et al., 2023).

In free-grazing conditions, acoustic sensors have been demonstrated 
to be a valuable tool for monitoring feeding behaviour (Ungar et al., 
2006). Microphones positioned on the animal’s forehead are able to 
capture sounds produced by the teeth, transmitted through the bones, 
cavities, and soft tissues of the head (Laca et al., 1992; Chelotti et al., 
2024). The information captured in these signals allows for the precise 
recognition of JM events, as well as grazing and rumination activi-
ties (Navon et al., 2013; Chelotti et al., 2018). However, the challenge 
in exploiting these signals lies in the presence of environmental noise 
and the computational requirements to process them. Furthermore, the 
volume of information generated in a given time period is greater than 
that produced by motion sensors.

2.2. Machine learning approaches

With regard to the development of an automated system capa-
ble of classifying JM events and feeding activities, machine learning 
techniques have been extensively studied (Chelotti et al., 2024). The 
most commonly used approaches follow a classic pattern recognition 
pipeline: pre-processing, feature extraction, and classification (Bishop, 
2006). Nevertheless, certain limitations have been observed in the 
classification of JM events (Martiskainen et al., 2009; Greenwood et al., 
2017) and feeding activities (Giovanetti et al., 2017). One of the 
principal limitations of these approaches is the necessity to manually 
specify the input features of the machine learning models. This aspect 
introduces a challenge in this problem because there is no consensus 
on which features should be employed (Chelotti et al., 2024).

As an attempt to address this issue, within the field of deep learning, 
the use of CNNs has emerged. These architectures are capable of auto-
matically learning features by adapting the filters or weights contained 
in the network. Li et al. (2021) evaluated the use of CNNs on time-
frequency representations of acoustic signals to classify JM events in 
dairy cows. The reported results are comparable or superior to those 
obtained through traditional schemes. Wang et al. (2021) explored the 
use of different deep neural network architectures to classify JM events 
in sheep from audio files. The proposed approach detects JM events 
using a heuristic method and subsequently performs classification using 
deep neural networks. Specifically, the use of fully-connected neural 
networks (FNNs), CNN, and RNN is evaluated. The input to the CNN 
and RNN is obtained by calculating Mel-frequency cepstral coefficients. 
In the case of the FNN, the input data consists of the raw signal 
corresponding to the previously detected event. Ferrero et al. (2023) 
proposed a full end-to-end approach which combines FNN, CNN, and 
RNN to recognise JM events from acoustic signals. The model input 
constitutes signal chunks extracted using fixed-length time windows. 
3 
The comparison with other state-of-the-art methods demonstrated a 
clear improvement over traditional approaches. Nunes et al. (2021) 
presented a similar approach using RNN to classify JM events in horses 
from acoustic signals with promising results. The use of deep neural 
networks has also been applied to inertial signals in the context of 
recognising feeding activities (Peng et al., 2019; Pavlovic et al., 2021; 
Wu et al., 2022; Bloch et al., 2023), with promising results.

Architectures that have yielded very good results in related prob-
lems such as attention mechanisms (Topaloglu et al., 2023; Aydogmus 
et al., 2023), have not been applied in this context. One explanation 
for this may be due to the scarcity of labelled data, which may be an 
impediment to train models with these characteristics.

2.3. Multimodal learning outside JM events recognition

The utilisation of independent sensing principles for the monitoring 
of feeding behaviour has been extensively addressed. However, the 
integration of diverse complementary information sources to achieve 
more robust and scalable performance in dynamic real-world environ-
ments is a promising and underexplored area of study (Chelotti et al., 
2024). The use of multimodal systems has been demonstrated to be 
beneficial in other areas, including speech recognition (Mroueh et al., 
2015), emotional state recognition (Tzirakis et al., 2017), and human 
activity recognition (Nweke et al., 2019).

Arablouei et al. (2023) proposed a method that combines an ac-
celerometer with global navigation satellite system (GNSS) data to 
classify feeding activities in cows. The solution involves first extracting 
a set of features from inertial signals and another set from GNSS 
signals. Subsequently, information fusion is explored at the feature 
and decision level. A FNN was used to construct the classification 
model. The reported results demonstrate that information fusion leads 
to superior outcomes compared to unimodal systems.

The evidence presented in this section indicates the existence of 
an untapped potential for enhancing JM events recognition. This po-
tential is based on the utilisation of multimodal signals, which allows 
the exploitation of the advantages offered by each sensing principle. 
Furthermore, another aspect that has not been studied thus far is the 
generation of deep learning architectures capable of merging these 
signals and autonomously learning features, subsequently enabling the 
recognition of the JM events present in them. Results reported in 
the literature Ferrero et al. (2023) suggest that the combination of 
convolutional and recurrent architectures emerges as a promising line 
of research on this problem.

3. Methodology

This section describes a multimodal deep learning architecture 
based on the combination of three types of neural networks: CNN (Le-
cun et al., 1998), RNN (Rumelhart et al., 1986) and FNN (Bishop, 
2006). In the following, a brief introduction to these architectures 
is provided. Then, a detailed description of the proposed method is 
presented with other proposed architectures which perform fusion at 
different levels are also introduced. Lastly, the dataset used in the 
experimentation is described.

3.1. CNN, RNN and FNN

FNN refers to a traditional neural network architecture in which 
each node belonging to a layer is connected with all nodes of the 
previous layer. This architecture has been used in classification and 
regression problems (Bishop, 2006). There are usually three types of 
layers including input, hidden, and output layers. While the neurons of 
the input layer represent the features provided to the network (input 
data or outputs from other networks), each neuron of the hidden and 
output layers represents a processing element that combines the output 
of incoming connected neurons using a non-linear activation function. 
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The overall formal representation for a single hidden layer network is 
expressed in Eq. (1). 

𝑦𝑘(𝑥,𝑤) = 𝜎

( 𝑀
∑

𝑗=1
𝑤(2)

𝑗𝑖
ℎ

( 𝐷
∑

𝑖=1
𝑤(1)

𝑗𝑖
𝑥𝑖 +𝑤(1)

𝑗0

)

+𝑤(2)
𝑘0

)

(1)

Herein, 𝑦𝑘 denotes the output of the neuron 𝑘 based on the input 
vector 𝑥 of size 𝐷 and a set of weights 𝑤, ℎ denotes the activation 
function of 𝑀 neurons in the hidden layer, whereas 𝜎 represents the ac-
tivation function of the output neuron. The strength of the connections 
between neurons in FNNs (𝑤 in Eq. (1)) is controlled using weights, 
which are optimised during the training process to adapt the model 
outputs to a set of desired values (Bishop, 2006).

CNNs (Lecun et al., 1998) are one of the most widely used archi-
tectures in recent decades. These networks usually consist of several 
convolutional layers, and each layer contains one or more filters (a 
set of arbitrary decimal numbers) to produce an output feature map 
of its inputs. In the learning stage, the weights of the filters (used in 
traditional convolutional mathematical operations) are adjusted to ap-
proximate the outputs using optimisation strategies as described above 
for FNNs. By doing this, the layers are capable of learning different 
high- and low-level patterns without explicit domain knowledge. In 
the field of information fusion, several sub-models (usually referred to 
as heads) could be independently applied to input signals to extract 
relevant features from them. In the case of a one-dimensional (1D) CNN 
with 𝑛 heads, the expression of the output value 𝑧 at position 𝑖 in feature 
map 𝑚 at layer 𝑙 of head 𝑐 can be denoted by Eq.  (2). 

𝑧𝑐𝑙𝑚𝑖 = ℎ

(𝐹−1
∑

𝑗=0
𝑥 ×𝑤𝑐𝑙𝑚

𝑗

)

(2)

Here, ℎ indicates the activation function for the kernel of size 𝐹  and 
weights 𝑤𝑗 , and 𝑥 represents the signal affected by the kernel.

In CNNs, convolutional layers are complemented by other types 
of layers, such as pooling, batch normalisation, and dense layers. 
Pooling layers perform simple mathematical operations on patches of 
the feature maps, such as extracting the maximum value, to reduce the 
dimensionality of the input. Batch normalisation layers, on the other 
hand, perform input standardisation to speed up the network training 
process. Dense layers are equivalent to hidden layers in FNNs and allow 
the network to adapt the intermediate representations learned by the 
convolutions to effectively influence the final output. The connection 
between convolutional and dense layers is established by a flattening 
operation to convert the output of the convolutional layers into a 1D 
vector.

Although FNNs can be used in problems with sequential or time se-
ries data, they present certain challenges that make them inappropriate 
in these scenarios. To address this limitation, RNNs emerged (Rumel-
hart et al., 1986). In this architecture, layer outputs are connected as 
inputs to the same layer. A variation of an RNN known as Bidirectional 
RNN (Schuster and Paliwal, 1997) adds a copy of the proposed network 
trained on the reverse data sequence. Both independently trained RNNs 
are then connected to the next layer of the network.

Early RNN architectures have certain drawbacks related to the 
ability to learn efficiently from long sequences and new alternatives 
have been proposed. Gated recurrent units (GRUs) are a type of RNN 
in which each neuron has two different gates: reset and update (Cho 
et al., 2014). These gates control how much information from previous 
and current states is used. A GRU architecture, in contrast with simple 
RNNs, effectively captures long-term dependencies in sequences by 
addressing the vanishing gradient problem. Additionally, GRUs are 
computationally more efficient and require fewer parameters than 
Long Short-Term Memory (Hochreiter and Schmidhuber, 1997), an-
other RNN type which includes three gates, making them faster to 
train while still providing improved performance over simple RNNs, 
especially in tasks requiring memory of long-term dependencies.
4 
A representation of a GRU cell is shown in Fig.  1, and the associated 
mathematical expression is given in Eqs. (3) to (6). 
𝑟𝑡 = 𝜎

(

𝑊𝑟𝑥𝑡 +𝑊𝑟ℎ𝑡−1 + 𝑏𝑟
)

(3)

𝑧𝑡 = 𝜎
(

𝑊𝑧𝑥𝑡 +𝑊𝑧ℎ𝑡−1 + 𝑏𝑧
)

(4)

𝑛𝑡 = 𝜙
(

𝑊𝑛 + 𝑟𝑡 ⊙
(

𝑊𝑛ℎ(𝑡−1)
)

+ 𝑏𝑛
)

(5)

ℎ𝑡 = (1 − ℎ𝑧)⊙ 𝑛𝑡 + 𝑧𝑡 ⊙ ℎ(𝑡−1) (6)

Herein, 𝑥𝑡 represents the input vector, ℎ𝑡 the output vector, and 𝑧𝑡, 
𝑛𝑡 and 𝑟𝑡 are the update, new and reset gate vectors, respectively at 
time 𝑡. 𝜎 and 𝜙 represent the activation functions, whereas 𝑊  and 𝑏 are 
the parameters matrices and the bias vector of each gate, respectively. 
Bidirectional GRUs (BGRUs) have shown promising results in sound 
events detection (Yihan et al., 2021) and classification (Zhu et al., 
2020).

Stochastic gradient descent and backpropagation (Rumelhart et al., 
1986) are very common algorithms to perform parameter optimisation 
in neural networks. In this context, artificial neural networks tend 
to overfit training data. To reduce the possibility of this, a dropout 
operation is used. This regularisation technique introduces random cuts 
between layer connections during training (Hinton et al., 2012).

3.2. Proposed model architecture

Several deep neural network architectures could be proposed to 
merge the available acoustic and motion signals in this problem. Here, 
an architecture has been chosen that is capable of extracting features 
from each signal independently and combining them into a common 
feature space (feature-level fusion) by using CNNs. The rationale behind 
this choice lies in the fact that architectures performing feature fusion 
have proven beneficial in related problems where combining data from 
different types of sensors is required (Son and Kang, 2023; Islam et al., 
2023; Tan et al., 2024). Furthermore, since each signal captures partic-
ular properties of the phenomenon of interest using a different sensing 
principle (sounds of the JM events, and displacement and rotation of 
the animal head), it is expected that extracting specific features from 
each of them will be advantageous compared to generating a single 
signal with multiple channels.

To solve the problem of JM events recognition (which implies 
detection and classification), a hybrid multimodal network architecture 
is presented, composed of multi-head 1D-CNN, RNN, and FNN. To the 
best of our knowledge, this study represents one of the first multimodal 
approaches to the problem of JM events recognition using acoustic 
and IMU signals. The input to the network is represented by frames, 
which are extracted from the raw signals using fixed sliding time 
windows without any prior preprocessing or feature extraction. The 
model classifies each window into one of five possible classes: bite, 
chew-bite, grazing-chew, rumination-chew, and no-event (to represent 
the absence of any particular JM event). Hence, the proposed method 
addresses the challenges of both detecting and classifying JM events 
simultaneously.

An overall graphical representation of the proposed model com-
posed of three blocks is presented in Fig.  2. The model processes 
chunks of input signals computed using a time window duration of 
300 ms, with a 50% overlap between consecutive windows. The first 
block introduces a multi-head CNN combining three independent 1D 
CNNs. This block extracts low- and high-level features from acoustic 
and movement signals independently and performs dimensionality re-
duction at the same time. Each head of the CNN is composed of a 
normalisation layer (or re-scaling in the audio head), a sequence of 
1D convolutional layers, followed by a max pooling layer. A flatten 
operation is also used in each head, and those values are finally 
concatenated to create a unique 1D feature vector representation. The 
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Fig. 1. GRU cell diagram including the different gates and their connections.
Fig. 2. Proposed method architecture: input signals correspond to audio and movement chunks extracted using fixed length time windows. Each convolution layer shows the 
number of kernels and kernel size (ReLU was used as activation function), whereas max pooling layers specify the filter size. Dense layers indicate the number of neurons and 
activation function. At each step the feature dimensions are given, L being the number of windows in the sequence.
second block introduces an RNN, consisting of a BGRU layer of 256 
cells, giving the model the ability to capture temporal dependencies 
present in data. The last block of the model introduces an FNN, which 
combines information in dense layers and predicts class probabilities 
for each input window. The first and third blocks are enclosed within 
time-distributed wrappers so that the same layers and parameters are 
applied to each window of the input sequences. The rectified linear 
unit (ReLU) was used for all convolutional layers, whilst the cells of the 
BGRU use hyperbolic tangent and sigmoid. All dense layers of the FNN 
use ReLU as well, except for the last dense layer, which uses the softmax 
5 
function for the final classification. The total number of parameters of 
the model is 11,704,478.

3.3. Different information fusion strategies

As mentioned in Section 1, there are three main levels at which 
data fusion can take place: data, features, and decisions. While the 
proposed model performs feature-level fusion using a multi-head CNN, 
other architectures that perform fusion at data and decision levels have 
been proposed and explored as well.
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Fig. 3. Illustration of the architectures for different fusion levels, where each level represents the configuration that reached the best results. (a) data-level fusion; (b) feature 
fusion with two independent CNN and feature concatenation; (c) feature fusion with three independent CNN and feature concatenation (proposed model); (d) decision fusion using 
an FNN for the final decision model. In all cases, the best results were obtained with a window size of 0.3 s.
For comparison purposes, the best-performing model architectures 
for the different levels of signal fusion were determined in each case 
(Fig.  3). In particular, for the feature-fusion level, a variation of the 
proposed model with 2-heads CNN is included. Several models were 
evaluated for all fusion levels by varying the number of layers, the size 
and quantity of filters, and the inclusion of intermediate layers and 
operations, such as max pooling or dropout (for example, the use of 
dropout operations has been evaluated in all architectures but it only 
improves at data-level fusion). Different sizes of the window used to 
extract data from input signals were also studied. Based on previous 
studies, durations of 0.3, 0.5, and 1 s were selected for comparison (Al-
varenga et al., 2020; Ferrero et al., 2023). Different combinations of 
input signals were also evaluated, using: (a) all available raw signals; 
(b) raw audio, accelerometer, and gyroscope signals; (c) raw audio 
signal, and accelerometer and gyroscope vector’s magnitude calculated 
using Eq. (7)

𝑠 =
√

𝑠2𝑥 + 𝑠2𝑦 + 𝑠2𝑧 (7)

In the data-level fusion architecture (Fig.  3a), signals from sound, 
accelerometer, and gyroscope are concatenated at the initial stage 
creating a single input to the classifier. Due to differences in the number 
of samples in each signal, the data from the IMU has been resampled 
in order to match the sampling frequency of the audio signal.

Feature-level fusion has been evaluated using a multi-head CNN 
on two main approaches: (i) a 2-head CNN (Fig.  3b), which uses one 
CNN for all data from an IMU sensor; and (ii) a 3-head CNN (Fig. 
3c), which represents the proposed model presented in Section 3.2. In 
both cases, an intermediate representation is constructed by doing a 
concatenation of automatically extracted features from convolutional 
6 
layers. This combination approach was selected to deal with the dif-
ference of feature space size between heads’ outputs, and to provide 
to the following layers all the available information. Other methods for 
IMU heads (which share the same input size) were tested – in particular 
average, maximun, and multiplication – with no improvements.

Decision-level fusion was explored by implementing two base mod-
els which process input signals from each sensor independently
(Fig.  3d). Audio signals were processed using the architecture proposed 
by Ferrero et al. (2023), whereas the proposed architecture by Bloch 
et al. (2023) was used to process inertial signals. The output probabil-
ities of these models are then introduced to a meta-classifier to make 
a final output decision. Combinations of different base models were 
also evaluated, including the former two base models, and those pro-
posed by Chelotti et al. (2018) (called Chew-Bite Intelligent Algorithm 
(CBIA)) and by Alvarenga et al. (2020). Decision trees and multilayer 
perceptrons were explored as meta-classifiers, as well as traditional 
methods such as majority voting. In all cases, model weights have been 
initialised randomly.

3.4. Dataset

The fieldwork to collect the dataset occurred on 1st August 2022 at 
the Campo Experimental J.F. Villarino, Facultad de Ciencias Agrarias, 
Universidad Nacional de Rosario (UNR) located in the city of Zavalla, 
Argentina. The area of 450 hectares is made up of several research and 
productive subsystems, which are representative of the activities in the 
area of influence (pork, dairy, beef, and crops). In particular, the dairy 
subsystem can be characterised as a medium-sized, intensified pastoral-
based dairy farm with 140–165 milking cows, with an individual daily 
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Fig. 4. Satellite image of the dairy facilities detailing experimental paddock area, water source, surveillance camera position, and milking parlour.
production of 24–27 l of milk. The protocol used to conduct the 
experiment has been evaluated and approved by the Committee on 
Ethical Use of Animals for Research of the UNR.

The paddock area was approximately 1.200 m2 (20 × 60 m) and 
was fully enclosed with fences. This place was covered with naturalised 
perennial grasses (with dominance of Lolium sp, Festuca sp and Cynodon 
sp). The experimental cows were free to graze within the paddock, and 
they had permanent access to a watering trough.

This area was permanently monitored by an outdoor dome video 
camera positioned at a lateral distance of 30 m from the paddock to 
assist during the labelling process. Fig.  4 introduces a satellite view of 
the dairy facilities with references to the most important places for the 
experiment. In addition, two observers with knowledge of animal be-
haviour manually logged the main behaviours and significant activities 
on spreadsheets throughout the experiment. Data have been obtained 
from three 4-year-old lactating Holstein cows weighing 570–600 kg. All 
cows were tamed and trained in the experimental routine before the 
final recordings. Each animal was equipped with an acquisition data 
device consisting of an external microphone (IP57 100 mm, −42 ± 3 dB, 
SNR 57 dB) plugged via a 3.5 mm jack to a Moto G6 smartphone.1 Each 
device was fixed inside a plastic box and secured to prevent internal 
movements. This same instrumentation has been used in another simi-
lar study (Andriamandroso et al., 2017). Microphones were located on 
the cow’s forehead and covered with rubber foam to isolate them from 
wind-induced noise and protect them from other frictions. Boxes were 
mounted to the top side of a halter neck strap (Fig.  5).

Data signals were recorded and synchronised using a specifically 
developed and tested Android application running in the Moto G6 
smartphones, using the internal IMU and the external microphones. 
Three-dimensional IMU signals were recorded using a sampling rate of 
100 Hz. Audio recordings were stored using high-efficiency advanced 
audio coding (Bosi et al., 1997) with a sampling rate of 44.1 kHz and 
a bit rate of 128 kbps, single channel (mono). The experiment lasted 
approximately 6 h (from 09:11:22 to 15:10:20) thus a total of 18 h were 
generated in total. For this study, all audio signals were resampled to 
6 kHz. Although the experiments were conducted in a confined area, 
animals were exposed to environmental noise conditions such as bird 

1 Moto G6 smartphone specifications.
7 
chirps, wind gusts, and movements that are not directly related to JM 
events.

From the collected signals, a total of 29 segments were carefully 
chosen for annotation with a duration of 9 min and 31 s on average and 
a standard deviation (SD) of 1 min and 57 s. Because of the high time 
demand for the labelling process, a representative subset of signals was 
selected. A total of 4 h, 36 min and 1.4 s have been annotated. The size 
of the generated dataset represents a significant increase compared to 
other datasets used in previous studies (Vanrell et al., 2020; Martinez-
Rau et al., 2023). Each segment corresponds to a particular feeding 
activity (grazing or rumination) and is composed of a sequence of 
quasi-periodic JM events.

To create event labels, two experts in ruminant foraging behaviour 
independently delimited the JM events (including event label, start, 
and end time) by watching and listening to the acoustic signal. The 
agreement result was 97.63% on average. Both experts worked together 
to achieve a final decision in case of disagreement.

Based on previous studies (Martinez-Rau et al., 2022), four mutually 
exclusive labels were treated: bite, grazing-chew, rumination-chew, 
and chew-bite (a compound movement which is composed of a chew 
followed by a bite when the animal closes its jaw). Rumination-chew 
and grazing-chew are events that differ primarily in the feeding activity 
in which they occur. In the case of rumination, the animal is generally 
in a state of rest (standing or lying down) and only chew events are 
present. During grazing, the cow is typically foraging for food (walking, 
searching, tearing off plants) so the movement of its body and head 
is recurrent. Chews alternate with bites, or they are even combined 
(chew-bite). Another difference between rumination-chew and grazing-
chew events is the energy of the signal recorded by the acoustic sensor, 
being higher in the case of grazing (Martinez-Rau et al., 2022). A 
visual representation of a typical waveform of each JM events from the 
acoustic signals is presented in Fig.  6. The number of labelled samples 
for each JM event in the dataset and duration statistical values are 
presented in Table  1.

4. Experiments, results and discussions

In this section, the methodology selected to drive the experimenta-
tion is explained, and the results and discussions of performed experi-
ments are presented as well.

https://www.gsmarena.com/motorola_moto_g6-9000.php
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Fig. 5. Experimentation setup description. (A) Cow in the paddock during a rumination period with external microphone (1), halter (2), and plastic box (3). (B) Moto G6 placed 
in a plastic box; (C) axis from IMU sensors orientation: 𝑥-axis is aligned with a tail-to-head vector of the animal, 𝑦-axis describes sideway movements, whereas 𝑧-axis captures up 
and down movements.
Fig. 6. Characteristic waveform of the 4 different JMs events classes considered in the study.
Source: Adapted from Martinez-Rau et al. (2023).
Table 1
Number and duration of annotated jaw movements (JM) events from acoustic signals 
before windows extraction.
 JM Number Duration [s]
 Mean Min Max  
 Bite 2234 0.33 ± 0.084 0.115 0.926 
 Chew-bite 6605 0.436 ± 0.087 0.187 0.961 
 Grazing-chew 6905 0.323 ± 0.066 0.144 0.665 
 Rumination-chew 2751 0.341 ± 0.051 0.167 0.806 
 Overall 18,495 0.362 ± 0.092 0.115 0.961 

4.1. Experimental settings

From the total of 29 signal segments, 24 were used for model se-
lection purposes. All models were trained and evaluated using a 5-fold 
cross-validation (CV) scheme with each fold containing 4 or 5 segments. 
8 
Each fold contains 1 segment from a rumination period and the rest 
from grazing intervals. This relation between grazing and rumination 
was proposed to balance the number of JM events. While grazing 
includes grazing-chews, bites and chew-bites, rumination only contains 
ruminating-chews. The remaining 5 segments were separated for test 
purposes, meaning the evaluation of the generalisation capability of 
the model performing the best on validation sets. The separation of 
data into different sets was conducted before the experimentation stage, 
and these sets remained constant throughout this stage. In order to 
solve class imbalance, the weights of training samples were adapted 
according to Eq. (8). 

𝑊𝑖𝑐 =
𝑁𝑚𝑎𝑥
𝑁𝑐

(8)

where 𝑊𝑖𝑐 is the weight of instance 𝑖 associated with class 𝑐; 𝑁𝑚𝑎𝑥 is 
the number of instances of the majority class and 𝑁𝑐 is the number of 
instances of class 𝑐. Experiments using a data augmentation approach 
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Table 2
Information fusion architectures (Fig.  3) results based on F1-score, precision, recall, and error rate by class 
and overall results. In all cases, the average and the SD across validation sets during the 5-fold CV phase 
are reported.
 Data level Feature level Feature level Decision level  
 (2-heads CNN) (3-heads CNN)  
 F1-score

 Bite 0.403 ± 0.066 0.581 ± 0.096 0.662 ± 0.006 0.469 ± 0.274 
 Chew-bite 0.624 ± 0.035 0.797 ± 0.005 0.811 ± 0.027 0.733 ± 0.145 
 Grazing-chew 0.389 ± 0.041 0.809 ± 0.026 0.805 ± 0.038 0.562 ± 0.334 
 Rumination-chew 0.013 ± 0.022 0.870 ± 0.049 0.827 ± 0.146 0.670 ± 0.195 
 Overall 0.450 ± 0.036 0.793 ± 0.040 0.802 ± 0.033 0.656 ± 0.207 
 Precision

 Bite 0.357 ± 0.134 0.758 ± 0.051 0.717 ± 0.039 0.587 ± 0.147 
 Chew-bite 0.517 ± 0.033 0.717 ± 0.084 0.747 ± 0.052 0.663 ± 0.183 
 Grazing-chew 0.386 ± 0.052 0.728 ± 0.025 0.719 ± 0.050 0.656 ± 0.186 
 Rumination-chew 0.062 ± 0.085 0.856 ± 0.026 0.866 ± 0.029 0.676 ± 0.192 
 Overall 0.430 ± 0.045 0.742 ± 0.046 0.749 ± 0.038 0.660 ± 0.176 
 Recall

 Bite 0.528 ± 0.090 0.488 ± 0.130 0.618 ± 0.081 0.445 ± 0.297 
 Chew-bite 0.788 ± 0.058 0.908 ± 0.022 0.890 ± 0.010 0.839 ± 0.074 
 Grazing-chew 0.397 ± 0.046 0.910 ± 0.028 0.917 ± 0.018 0.559 ± 0.377 
 Rumination-chew 0.007 ± 0.013 0.887 ± 0.081 0.822 ± 0.216 0.674 ± 0.202 
 Overall 0.474 ± 0.033 0.852 ± 0.031 0.864 ± 0.029 0.658 ± 0.238 
 Error rate
 Bite 1.643 ± 0.504 0.674 ± 0.084 0.624 ± 0.090 0.786 ± 0.221 
 Chew-bite 0.950 ± 0.094 0.471 ± 0.149 0.418 ± 0.077 0.669 ± 0.437 
 Grazing-chew 1.248 ± 0.133 0.431 ± 0.058 0.447 ± 0.101 0.625 ± 0.340 
 Rumination-chew 1.053 ± 0.045 0.262 ± 0.086 0.302 ± 0.197 0.662 ± 0.401 
 Overall 1.015 ± 0.107 0.337 ± 0.064 0.327 ± 0.050 0.513 ± 0.31  
were evaluated as an alternative to sample weighting to solve the class 
imbalance, with inferior results.

For unification process during training, all windows extracted from 
each signal were converted into smaller sequences of a fix number of 
windows. Based on this, each example provided to the model consists 
of a sequence of L windows. Different values have been evaluated for 
this parameter and L = 46 emerged as the one that obtained the best 
results in preliminary experiments. The length of the original signal 
included in each sequence varies according to the window size, being 
for example 6.9 s for a window size of 300 ms with 50% overlap. A 
padding operation was used to complete the missing windows in those 
shorter sequences if necessary.

All the necessary code was developed using Python version 3.10.12 
and it is available in the project repository.2 Several utilities from 
Python library scikit-learn 1.2.2 have been used, in particular label en-
coders, k-fold extraction, grid search, and the implementation of tradi-
tional machine learning algorithms (such as decision trees). Tensorflow 
2.12.0 was used to define and train the neural network architectures. 
Experiments were performed using an Intel Core™ i7-8700 3.20 GHz 
CPU, 64 GB RAM and a dual NVIDIA GPU configuration composed of 
24 GB GeForce RTX 3090 and 24 GB RTX A5000.

For training, the Adam optimiser (Kingma and Ba, 2014) was cho-
sen, utilising a total of 1400 epochs with an early stopping tolerance of 
50 epochs. The batch size was set to 5, and categorical cross-entropy 
was employed as the loss function. Default values were retained for the 
remaining parameters.

4.2. Evaluation metrics

The process of JM events recognition involves initially detecting the 
event, i.e., recognising the onset and offset, and subsequently, assigning 
a class to the event. In this scenario, detection errors directly impact the 
classification task. Based on this, the problem addressed in this work 

2 Project repository link: https://github.com/sinc-lab/chewbite-deep-
fusion.
9 
requires the use of an evaluation methodology that takes into account 
both aspects.

The sed_eval toolbox (Mesaros et al., 2016, 2021) has been se-
lected to calculate the performance during experimentation. This tool 
has been used in numerous studies related to event recognition in 
sounds (Serizel et al., 2020; Venkatesh et al., 2022). Furthermore, it is a 
comprehensive open-source toolbox that implements a range of metrics 
suitable for the objectives set in this work.

Given a reference event, the criterion used by the tool to classify a 
prediction generated by a system as correct includes three conditions:
(a) the onset of the predicted event must fall within the interval defined 
by the onset of the reference event ± tolerance value (300 ms); (b) the 
offset of the predicted event must fall within the interval defined by the 
offset of the reference event ± tolerance value (300 ms); (c) the class 
of both events must be equivalent. Fig.  7 introduces examples where 
different situations for conditions (a) and (b) can be observed.

Regarding classification results, the metrics expressed in Eq. (9) to 
(12) have been used: 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(9)

𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(10)

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2 ⋅ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

(11)

𝐸𝑟𝑟𝑜𝑟 − 𝑟𝑎𝑡𝑒 = 𝑆 +𝐷 + 𝐼
𝑁

(12)

where 𝑇𝑃  denotes true positive, 𝐹𝑃  false positive, 𝐹𝑁 false nega-
tive, 𝑆 substitutions (correct detected JM events in system output but 
incorrectly labelled), 𝐼 insertions (detected JM events for the system 
output that do not exist in the ground truth) and 𝐷 deletions (ground 
truth JM events that are not detected). Metrics were computed for each 
class individually as well as for the overall multi-class. The overall 
metrics handle the multi-class imbalanced condition by computing 
micro (class) averages (Sokolova and Lapalme, 2009). Micro average 
computation implies that 𝑇𝑃 , 𝐹𝑃 , and 𝐹𝑁 are obtained by summing 
up samples through all classes. For instance, the term 𝑇𝑃  is ultimately 

https://github.com/sinc-lab/chewbite-deep-fusion
https://github.com/sinc-lab/chewbite-deep-fusion
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Fig. 7. Illustration of evaluation procedure implemented by the sed_eval toolbox used in this article. Two pairs of JM events (one pair correct and one pair incorrect) with respect 
to a reference JM event.
Source: Adapted from Mesaros et al. (2016, 2021).
Table 3
Performance of the proposed model with 0.3, 0.5, and 1 s time windows, each with a 
50% overlap.
 F1-score Precision Recall Error rate  
 0.3 s 0.802 ± 0.033 0.749 ± 0.038 0.864 ± 0.029 0.327 ± 0.05  
 0.5 s 0.507 ± 0.254 0.496 ± 0.238 0.524 ± 0.263 0.769 ± 0.245 
 1 s 0.297 ± 0.229 0.314 ± 0.207 0.295 ± 0.233 1.006 ± 0.119 

represented as 𝑇𝑃𝑔𝑐 + 𝑇𝑃𝑟𝑐 + 𝑇𝑃𝑐𝑏 + 𝑇𝑃𝑏, denoting the number of true 
positives for grazing-chews, rumination-chews, chew-bites, and bites, 
respectively. With the exception of the error rate, for all other metrics 
between Eqs. (9) and (12) higher values are indicative of a better 
model.

4.3. Fusion level comparison

An evaluation of the classification performance of the considered 
level fusion architectures from Fig.  3 is presented in Table  2. The in-
formation fusion scheme that achieved the best results was the feature-
level in all analysed metrics. In particular, the proposed model with 
3-heads CNN scored the best based on the overall F1-score. In addition, 
the decision-level model outperformed the data-level architecture. For 
all metrics, data-level fusion presented the lowest performance. Par-
ticularly remarkable is the incapacity of this architecture to recognise 
associated rumination-chews events.

One possible interpretation of this comparison might be that feature-
level fusion is more suitable for this task compared to data-level and 
decision-level fusion because it leverages the strengths of both sensor 
modalities (acoustic and inertial signals) by integrating informative 
features that are automatically extracted from each sensor domain. 
This might be interpreted as a specific characteristic of the presented 
approach, due to different conclusions reported in other studies with 
other model specifications (Nweke et al., 2019; Arablouei et al., 2023). 
In data-level fusion, raw sensor data from different modalities are 
directly combined, which can lead to issues due to the heterogeneity 
of the data types (e.g., sampling rates, signal formats), making it 
difficult for the model to effectively exploit the complementary nature 
of each sensor. On the other hand, decision-level fusion combines 
predictions from separate models trained on individual sensor types. 
While this approach might capture some modality-specific insights, it 
10 
does not capitalise on the synergistic relationships between features 
from different sensors during the learning process.

Although the structures of both feature-fusion level architectures are 
similar, the 2-head CNN architecture obtained slightly inferior results. 
Apart from that, the use of magnetometer signals does not appear 
to provide benefits over using only the accelerometer and gyroscope 
signals. This is probably related to the fact that the execution of JM 
events does not have a relation with changes to any particular location, 
something that is measured by this sensor. In fact, the performance of 
the model drops when using this signal, due to the need to process data 
that apparently does not contain discriminative power in this context.

When comparing the recognition performance for individual JM 
event classes, worse results were obtained with the minority class 
(bite), even with the use of different weights per class to counter-
act the data imbalance. These results are consistent with previous 
studies (Martinez-Rau et al., 2022; Ferrero et al., 2023).

Overall, there is a reduced variability in the metrics (F1-score, preci-
sion, and recall) obtained across the first three fusion levels, indicating 
stability in the performance of the models (Fig.  8). The decision-level 
model is an exception because the SD between the folds is significant.

4.4. Effect of time window size and quantisation

The performance of the proposed model has been evaluated for 
different sliding input window sizes. Table  3 introduces the results 
using three different sizes of sliding windows: 0.3 s, 0.5 s, and 1 s. 
The overlap between two consecutive windows was 50%. The reported 
results include the average values per metric for the different validation 
folds, as well as the SD.

A window size of 0.3 s exhibited the best metrics, while the use of 
1 s windows performed the worst. Based on these results, it would be 
useful to use short time windows, similar to the average duration of JM 
events (Table  1).

Conversely, the use of longer time windows seems to worsen the 
performance. There are two likely causes for this: firstly, when ex-
tracting 1 s fragments, two consecutive JM events could be partially 
included, generating chunks with valuable information that are cate-
gorised as the absence of JM events — ‘‘no-event’’ class (Fig.  9). Lastly, 
the detection of JM events represents a challenge for the tolerance 
value selected for evaluation purposes, since JM events generally have 
a duration shorter than the window size.
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Fig. 8. Comparison of the results obtained by different fusion levels based on the overall F1-score, precision, and recall.
Fig. 9. An example representation for a time window length of 1000 ms = 1-s with two reference events and three extracted windows.
Table 4
Comparison of presented model results using quantisation.
 Weights precision F1-score Precision Recall Error rate  
 float 32 0.802 ± 0.033 0.749 ± 0.038 0.864 ± 0.029 0.327 ± 0.05  
 float 16 0.791 ± 0.05 0.742 ± 0.054 0.848 ± 0.045 0.335 ± 0.069 
11 
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Fig. 10. Different architectures proposed in the ablation study. (a) proposed model with only sound head; (b) proposed model with only IMU head; (c) proposed model with no 
recurrent block; (d) proposed model with only one dense layer in the last block.
Quantisation is employed to optimise the model by lowering the 
precision of weights, which reduces memory usage and computational 
requirements, making the model more suitable for deployment on 
resource-constrained devices. Results from the exploration of post-
training quantisation are presented in Table  4, which helps to analyse 
their effects on key metrics such as F1-score, precision, recall, and 
error rate. Those results demonstrate that quantisation using a float 16 
precision (instead of the default float 32) achieves significant efficiency 
gains while maintaining acceptable performance levels.

4.5. Comparison between the proposed model and state-of-the-art methods

The performance of the proposed model (Fig.  3c) was compared 
against different state-of-the-art methods. Four unimodal models were 
selected to encompass four combinations, integrating audio and move-
ment signals using both traditional and deep neural network methods:

1. The CBIA is a pattern recognition method that processes acous-
tic signals to perform event detection using thresholds, feature 
extraction over the detected event, and then classification using 
an FNN (Chelotti et al., 2018).

2. The Deep Sound architecture combines convolutional, recurrent, 
and fully connected layers to recognise (detect and classify) JM 
events using sliding windows (Ferrero et al., 2023).

3. The traditional approach proposed by Alvarenga et al. (2020) 
processes motion signals using sliding windows, and a specific 
feature engineering process is proposed for the classification of 
short-duration activities in ruminants for each window.

4. The deep architecture proposed by Bloch et al. (2023) consists of 
CNN and FNN to recognise feeding activities in ruminants using 
motion input signals.

All selected methods have been trained and validated using the 
same dataset partitions that were used for the exploration of the fusion 
level architectures.

The average and SD values for the different validation partitions 
during the 5-fold CV process are shown in Table  5. It can be seen 
that for all analysed metrics, the proposed model outperforms all 
unimodal methods, while the Deep Sound and CBIA models are in 
12 
second and third performance rank, respectively. Regarding the uni-
modal approaches, there is a remarkable improvement in acoustic 
methods (CBIA and Deep Sound) compared to movement-based meth-
ods (Alvarenga and Bloch). This acknowledges the previous statement 
regarding the advantages of sound over inertial signals to recognise JM 
events. On the other hand, even though the use of deep architectures 
offers better results in sound processing, the opposite occurs in the case 
of signals extracted from the IMU.

Different input signal alternatives were evaluated for the model 
proposed by Bloch et al. (2023), including the use of raw signals, the 
calculation of magnitude vectors from each signal, and the use of band-
pass filters (as described by the authors) as well as their omission. The 
results obtained in all cases were worse than those reported in Table  5 
(where the Hamming filter proposed by the authors was included and 
all the raw signals were used as input).

As previously mentioned, for movement-signals-based options is it 
noteworthy that the deep learning models underperform the classic 
models. This suggests, in conjunction with the results reported by Al-
varenga et al. (2020), that a more exhaustive exploration of deep 
architectures that allow automatically obtaining more representative 
variables from data could be beneficial.

On the other hand, the results from motion methods are observed 
to be significantly lower. This seems to indicate a clear difficulty 
in recognising short-duration events (such as JM events) using these 
signals, which is aligned with what was previously mentioned in the 
related work section. It can be established that this type of signal offers 
an advantage when used in conjunction with audio signals, but their 
independent use in this problem is insufficient.

4.6. Ablation study and test performance

In order to evaluate the capabilities of each component in the 
proposed model, four different ablation experiments have been con-
ducted. The architectures explored in those experiments are introduced 
in Fig.  10 highlighting the differences with the proposed model. Two of 
them were focused on the input blocks: Fig.  10(a) the proposed model 
without IMU heads and Fig.  10(b) the proposed model without the 
sound head. These experiments are important from a practical point 



M. Ferrero et al. Engineering Applications of Artiϧcial Intelligence 157 (2025) 111372 

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
si

nc
.u

nl
.e

du
.a

r)
M

. F
er

re
ro

, J
. O

. C
he

lo
tti

, L
. D

. V
ig

no
lo

, M
. P

ir
es

, J
. G

al
li,

 L
. G

io
va

ni
ni

 &
 H

. L
. R

uf
in

er
; "

A
 m

ul
ti-

he
ad

 d
ee

p 
fu

si
on

 m
od

el
 f

or
 r

ec
og

ni
tio

n 
of

 c
at

tle
 f

or
ag

in
g 

ev
en

ts
 u

si
ng

 s
ou

nd
 a

nd
 m

ov
em

en
t s

ig
na

ls
"

E
ng

in
ee

ri
ng

 A
pp

lic
at

io
ns

 o
f 

A
rt

if
ic

ia
l I

nt
el

lig
en

ce
, V

ol
. 1

57
, 2

02
5.
Table 5
Overall results obtained for the multi-head CNN-RNN fusion proposed model and selected state-of-the-art 
algorithms.
 F1-score Precision Recall Error rate  
 Alvarenga et al. (2020) 0.251 ± 0.015 0.188 ± 0.015 0.381 ± 0.008 1.977 ± 0.129 
 Bloch et al. (2023) 0.125 ± 0.009 0.123 ± 0.012 0.127 ± 0.007 1.615 ± 0.067 
 CBIA 0.606 ± 0.066 0.627 ± 0.063 0.587 ± 0.072 0.499 ± 0.074 
 Deep Sound 0.704 ± 0.025 0.650 ± 0.030 0.767 ± 0.020 0.453 ± 0.052 
 Proposed model 0.802 ± 0.033 0.749 ± 0.038 0.864 ± 0.029 0.327 ± 0.05  
Table 6
Performance of the ablation study including four architectures and the proposed model for cross-validation folds and test set. 
Inference time refers to calculations to process 1 min of signal. V: Validation. T: Test. PM: Proposed model. b.1 and b.2 reflect 
the extraction of gyroscope and accelerometer head from the architecture proposed in (b).
 F1-score Precision Recall Error rate Parameters FLOPs Inference time (s) 
 a V 0.576 0.542 0.615 0.536 11,678,470 9.3 × 1010 0.215 ± 0.031  
 T 0.686 0.660 0.713 0.388  
 b V 0.155 0.182 0.156 1.144 11,605,214 8.6 × 109 0.211 ± 0.014  
 T 0.001 0.087 0.001 1.004  
 b.1 V 0.011 0.068 0.006 1.044 11,605,214 8.5 × 109 0.208 ± 0.008  
 T 0.001 0.026 0.001 1.016  
 b.2 V 0.165 0.185 0.167 1.150 11,605,214 8.5 × 109 0.208 ± 0.008  
 T 0.002 0.033 0.001 1.023  
 c V 0.607 0.473 0.851 1.008 298,142 3.7 × 107 0.133 ± 0.008  
 T 0.574 0.437 0.838 1.146  
 d V 0.738 0.690 0.795 0.427 11,531,998 1.59 × 1011 0.209 ± 0.009  
 T 0.743 0.697 0.795 0.444  
 PM V 0.802 0.749 0.861 0.325 11,704,478 1.59 × 1011 0.217 ± 0.034  
 T 0.813 0.771 0.859 0.306  
of view. During the execution of a multimodal system, if one of the 
inputs is lost or has strong interference, the performance could be 
severely affected. In this situation, it is often convenient to discard 
one of the inputs. In the context of this application specifically, this 
is commonly seen in environments where animals are confined (barn). 
In these cases, the signal-to-noise ratio of the sound is low due to the 
noise and reverberations and it is often convenient to discard this data 
and use only motion data. The execution of experiments with controlled 
noise in future studies will allow an evaluation of which signal is most 
convenient to be used in these scenarios, noisy sound or IMU signals.

The remaining two experiments were focused on specific blocks of 
the original model: Fig.  10(c) the proposed model without recurrent 
layers (block 2) and Fig.  10(d) the proposed model with only the 
last dense layer in block 3. These experiments seek to simplify the 
structure of the proposed model without greatly affecting performance. 
Simplifying the model can reduce the risk of overfitting and the amount 
of data needed for the model to achieve good performance.

The results of the ablation study in terms of performance metrics, 
number of model parameters, floating point operations (FLOPs), and 
inference time are presented in Table  6, including the average perfor-
mance on validation folds as well as on the test set. It can be observed 
that in all cases, the elimination of a specific part from the proposed 
model worsens the performance, pointing out that all parts play an 
important role and have an impact on the final architecture.

The worst results were exhibited by option (b), that is, using only 
motion data. These results were expected because, in the particular 
case of JM events recognition, sound signals offer more discrimina-
tive power than motion signals (Chelotti et al., 2024). This option 
also shows convergence issues when trying to predict the test set. 
Furthermore, the concept of option (a) (considering only the sound 
input) achieves similar results in the test set to those indicated in the 
CNN-RNN acoustic method (Ferrero et al., 2023). When using only 
motion data, the gyroscope head (b.2) performs better in general than 
accelerometer head (b.1) both on validation and test data.

The final dense layers of the FNN are responsible for generating 
the final output of the model by combining the features obtained in 
the previous layers. Removing this set of layers reduces the overall 
13 
performance of the model, as can be seen in results achieved by option 
(d). This option achieved the best performance of the four ablated 
models (except for recall where option (c) reported the higher values), 
but still underperformed the proposed model. Moreover, given the 
large number of parameters of the proposed model, the removal of 
all recurrent layers simplifies the model and considerably reduces the 
risk of overfitting. When removing these layers – option (d) –, the 
model performance was also highly damaged, thus confirming the 
importance of the temporal component in this problem. To the best of 
our knowledge, no specific study confirms the temporal dependence of 
this phenomenon.

Regarding the difference between the values obtained in valida-
tion and test, except for options (b) and (c), some improvements are 
observed in the test performances. This may be caused because the 
amount of data with which the models are trained varies substantially, 
being 25% larger in the test set. It is important to highlight that the 
test data set includes signals extracted from the same fieldwork, where 
the animals, equipment and experimental conditions were the same. If 
any of these conditions vary, the performance of the models may not 
be the same. This aspect is of special interest and should be studied in 
the future.

With respect to the inference times in Table  6, ten executions per 
method were run on the same hardware, and the average and the SD 
of times to predict 1 min of signal are reported.

In addition, the sum of FLOPs required to process one chunk from 
input signal (300 ms) is presented in this table. The same methodology 
reported in Ferrero et al. (2023) was used to calculate these costs. From 
this comparison, it can be concluded that recurrent layers represent the 
biggest impact in terms of the processing time and operations of the 
proposed model, directly affected by the total number of parameters 
included in the block with RNNs layers. Inference times remained at 
similar levels without considerable differences between the proposed 
model and the rest of the options.

5. Conclusions

In this study, a multi-head CNN-RNN was introduced for JM event 
detection and recognition in grazing cattle. The model includes acoustic 



M. Ferrero et al. Engineering Applications of Artiϧcial Intelligence 157 (2025) 111372 

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
si

nc
.u

nl
.e

du
.a

r)
M

. F
er

re
ro

, J
. O

. C
he

lo
tti

, L
. D

. V
ig

no
lo

, M
. P

ir
es

, J
. G

al
li,

 L
. G

io
va

ni
ni

 &
 H

. L
. R

uf
in

er
; "

A
 m

ul
ti-

he
ad

 d
ee

p 
fu

si
on

 m
od

el
 f

or
 r

ec
og

ni
tio

n 
of

 c
at

tle
 f

or
ag

in
g 

ev
en

ts
 u

si
ng

 s
ou

nd
 a

nd
 m

ov
em

en
t s

ig
na

ls
"

E
ng

in
ee

ri
ng

 A
pp

lic
at

io
ns

 o
f 

A
rt

if
ic

ia
l I

nt
el

lig
en

ce
, V

ol
. 1

57
, 2

02
5.
and IMU signals as inputs. The proposed architecture was compared 
with several different proposals among the three main data-level fusion 
strategies: data-level, feature-level, and decision-level. Variations in the 
number of layers, kernels, CNN heads, and kernel sizes were evaluated 
during the exploration. Additionally, different combinations of input 
signals were tested.

The results suggest that the proposed model for feature-level fusion 
is the more appropriate strategy in this context, using an independent 
CNN head for each input signal, achieving an average micro F1-score 
of 0.802. The contribution of each part of the model was also assessed 
and presented in an ablation study. Additionally, the effect of different 
window sizes was analysed, showing a clear advantage when using a 
size close to the average duration of the JM events (or even smaller). 
The proposed model clearly outperformed the state-of-the-art methods 
by at least 10% (micro F1-score).

This study pioneers research into the effectiveness of information 
fusion strategies for the detection and recognition of JM events in 
grazing cattle. The results demonstrate that the use of both sound and 
motion signals provides a clear advantage over unimodal solutions.

Despite the set of model architectures explored during experimen-
tation, there are other potential changes that could be beneficial. 
The use of different fusion methods other than those used during 
experimentation, such as attention layers, will be evaluated in future 
works.

It is important to note several limitations of the presented model. 
From a practical point of view, its ability to generalise should be tested 
across different scenarios, including variations in recording devices, en-
vironmental conditions, sensor placement, different herd management, 
and even its applicability to other ruminants. Additionally, external 
noises can independently affect both signals, which may affect the 
model’s performance. Future studies should investigate the robustness 
of the model and explore potential improvements in this aspect. Eth-
ical considerations related to sensor intrusiveness and animal welfare 
should be carefully evaluated before large-scale adoption. Future re-
search should focus on overcoming these limitations to ensure the 
feasibility and scalability of AI-driven event detection in grazing cattle.

Regarding technical limitations, the difficulty of obtaining high-
quality labelled data sets with a larger amount of data – which is a 
critical aspect in this context – represents a challenge. The exploration 
of techniques to help overcome this problem, such as transfer learning 
or the use of semi-supervised approaches, will be evaluated in future 
research.

Finally, technical analysis and likely implications of the presented 
model are not covered in this study. However, one might notice that the 
information fusion imposes the need for both signals synchronisation 
since mismatches can degrade the performance of the model. Another 
aspect related to the use of BGRU layers is the need of a buffer and, 
consequently, a potential problem for real-time applications. The model 
structure might increase resource demands in comparison with other 
approaches, which may limit implementation on edge devices. The use 
of knowledge distillation or model pruning while retaining performance 
might be an interesting line of research in this direction.
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