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Abstract

Computational representations of knowledge graphs are critical for
several tasks in bioinformatics, including large-scale graph analysis
and gene function characterization. In this study, we introduce gGN,
an unsupervised neural network for learning node representations as
Gaussian distributions. Unlike prior efforts, where the covariance
matrices of these distributions are simplified to diagonal, we propose
representing them with a low-rank approximation. This representa-
tion not only maintains manageable learning complexity, allowing for
scaling to large graphs, but is also more effective for modeling the
structural features of knowledge graphs, such as their hierarchical and
directional relationships between nodes. To learn the low-rank Gaus-
sian distributions, we introduce a semantic-based loss function that
effectively preserves these structural features. Systematic experiments
reveal that gGN preserves structural features more effectively than
existing approaches and scales efficiently on large knowledge graphs.
Furthermore, applying gGN to represent the Gene Ontology, a widely
used knowledge graph in bioinformatics, outperformed multiple base-
line methods in ubiquitous gene characterization tasks. Altogether, the
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proposed low-rank Gaussian distributions not only effectively represent
knowledge graphs but also open new avenues for enhancing bioinfor-
matics tasks. gGN is publicly available as an easily installable package
at https://github.com/aedera/ggn.

1 Introduction

Representing facts about the world as knowledge graphs, specifically di-
rected acyclic graphs (DAGs), enables the computational manipulation of
this information, accelerating automation across diverse fields [1, 2, 3, 4]. A
notable instance is the Gene Ontology (GO), a widely-used knowledge graph
in bioinformatics that has significantly accelerated our understanding of cell
biology [5, 6, 7, 8]. Recently, the use of neural networks has advanced further
manipulation of graphs [9, 10, 11, 12] by representing nodes as point vectors,
effectively encoding node relationships through vector positions [13, 14, 15].
However, investigations into the representation potential of point vectors have
highlighted limitations in adequately expressing typical structural features
present in knowledge graphs such as hierarchical relationships [16, 17, 18, 19]
and directional relationships between nodes [20, 21, 22, 23].

An effective alternative to address these limitations involves representing
nodes as Gaussian distributions [24]. In this approach, nodes are represented
by the distribution means, while relationships between nodes are encoded by
intersection patterns between the ellipsoidal regions defined by the covariance
matrices of the distributions [23]. This alternative representation has shown
to be effective to encode graphs accurately, as illustrated by Graph2Gauss [25].
However, to reduce learning time and data requirements, the covariance ma-
trices employed by these Gaussian representations are generally defined as
simple diagonal matrices [24] at the cost of overly limiting the representational
power of the Gaussian distributions [26]. For example, Graph2Gauss and
analogous methods employ diagonal matrices to handle large-scale graphs
efficiently [27, 28]. However, the representational cost of using this covariance
simplification remains unclear. Some studies suggest that modeling intricate
node dependencies with Gaussian distributions may require covariance matri-
ces with greater representational power than diagonal ones can provide [29, 30].
Despite their representational benefits, the use of non-diagonal covariance
matrices are underexplored in knowledge graph representation, likely due
to the challenges associated with scaling these matrices to the size of large
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graphs.
We hypothesize that utilizing Gaussian distributions with enhanced repre-

sentation power can yield more accurate representations of knowledge graphs.
To investigate this, we propose gGN, a neural network designed to repre-
sent graphs using low-rank factorized Gaussian distributions. This approach
employs low-rank factorization to represent covariance matrices, offering
greater representation power than the diagonal approximation, while substan-
tially reducing the number of parameters compared to arbitrary covariance
matrices, thus allowing for scaling to large graphs. Additionally, we drew
inspiration from seminal works on semantic similarity analysis [31, 32] to
design a loss function to train gGN. Experiments on synthetic and real-world
knowledge graphs demonstrate that, compared to their diagonal and point
vector counterparts, the low-rank Gaussian distributions are more effective
representations, better preserving hierarchical and directional relationships
between nodes. Furthermore, applying gGN to multiple gene characterization
tasks using the Gene Ontology outperformed diverse methods commonly used
for those tasks. gGN is publicly available as an easily installable package at
https://github.com/aedera/ggn.

2 Material and methods

2.1 Low-rank Gaussian distributions

A graph can be represented as a set of Gaussian distributions [24]. Each
node i = 1, . . . , n is modeled by a d-dimensional Gaussian distribution Ni =
N (µi,Σi), where µi ∈ Rd is the mean and Σi ∈ Rd×d is the covariance
matrix. Commonly, Σi = Di ∈ Rd is assumed, where Di is a diagonal matrix.
This diagonal approximation reduces space complexity (Rd×d to Rd) and
consequently learning time and training data volume. Instead, we propose to
represent Σi using a low-rank factorization

Σi = Di + PiP
T
i , (1)

where Pi is a covariance factor represented by a real-valued matrix with
dimensions Rd×r, where r is known as the matrix rank, and r ≪ d.

Our proposal balances the simplicity of a diagonal matrix with the ex-
pressiveness of a full matrix. The low-rank factorization is much sparser
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than a full square matrix (d+ r × d ≪ d× d), promoting efficient learning,
while it incorporates more parameters compared to the diagonal counterpart
(d+ r × d > d), enhancing representation power. The rank r can be adjusted
to trade off between learning complexity and representation power. When
r = 0, the low-rank factorization reduces to a diagonal matrix. As the rank
increases, the number of parameters grows, yielding richer representations at
the cost of increasing learning complexity. We will empirically demonstrate
that a rank slightly greater than zero substantially outperforms the diagonal
approximation in representing knowledge graphs, while maintaining affordable
learning complexity.

We propose to use a neural network named gGN to model the low-rank
Gaussian distributions. This network, denoted f(·), projects a given node i
into the space Rd(r+2). That is,

f(i) = (µi, Di, Pi), (2)

thus defining the parameters of a low-rank Gaussian distribution Ni =
N (f(i)), where Di and Pi determines Σi as shown in Eq. 1.

2.2 Learning low-rank Gaussian distributions

To represent nodes as low-rank Gaussian distributions, we propose the work-
flow depicted in Figure 1. Starting with a given graph, a batch B of nodes is
randomly selected and given as input to gGN to obtain low-rank Gaussian
distributions. The parameters of gGN are learned in an unsupervised manner
by minimizing a loss function L, which is introduced in the following section,
that preserves the shortest path lengths (S) of the input graph. Recall that a
path from node i to j is a sequence of nodes, such that consecutive nodes in
this sequence are linked by (directed) edges and the first and last elements in
the sequence correspond to i and j, respectively. The number of edges in the
sequence is the length of the path.

We employed the Floyd-Warshall algorithm to calculate the shortest path
lengths, which are represented by a sparse matrix S ∈ Rn×n

+ , where Sij denotes
the shortest path length from node i to node j, or ∞ if nodes are unreachable.
The Floyd-Warshall algorithm is performed only once per graph resulting in
a manageable time complexity of O(n3), which can be further reduced with
GPU implementations [33, 34] and diverse approximations [35, 36].
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Figure 1: The gGN model workflow for representing nodes as low-rank
Gaussian distributions, along with a schematic illustration of a low-rank
Gaussian distribution and the loss function.

2.3 Loss function

To learn the low-rank Gaussian distributions, we defined the following loss
function

L(f, S, E) =
∑
i∈B

Le
i (f, S, E) + L≺

i (f, S, E) + L≻
i (f, S, E), (3)

where f is the neural network gGN, S is the sparse matrix representing the
input graph and E is an energy function.

The loss function L comprises three loss components, each of which mea-
suring how accurately the Gaussian distribution Ni generated by f represents
the node i ∈ B as described by S. To evaluate the accuracy of the repre-
sentation, each component uses the energy function E to assess whether Ni

encodes specific hierarchical and directional relationships between i and the
rest of the nodes. In the first component, Le

i , the relationships between node i
and its immediate neighbors are analyzed. In contrast, the second component,
L≺

i , evaluates the relationships between node i and its ancestors. Conversely,
the final component, L≻

i , measures the relationships between node i and its
descendants. More details of each component are provided in A.4.
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2.4 Energy funcion: Kullback-Leibler divergence

The energy function E is used to measure how similar two Gaussian rep-
resentations are (the lower, the more similar). The idea is that if nodes i
and j are connected, their Gaussian representations Ni and Nj should have
a relatively lower energy, Eij = E(Ni,Nj), than the energy between the
Gaussian representations of unconnected nodes. We propose to define Eij as
the Kullback-Leibler (KL) divergence: Eij = KL(Nj∥Ni) (details in A).

The choice of the KL divergence as the energy function offers a number of
benefits for representing knowledge graphs. The KL divergence generalizes
the Pythagoras’ theorem for square distances [37], allowing asymmetric en-
ergies (i.e., Eij ̸= Eji). This generalization is relevant for modeling directed
edges [23], as edge directionality can be interpreted as an asymmetric dis-
tance/energy between two nodes [38]. Additionally, the KL divergence can
be calculated analytically, avoiding computationally intensive Monte Carlo
approximations [39]. Although the cost of this analytical calculation is not
negligible due to the involvement of determinant and matrix inversion oper-
ations, it can be substantially reduced by applying the matrix determinant
lemma [40] and the Woodbury matrix identity [41]. As demonstrated in A,
the cost of the determinant and matrix inversion operations boil down to
O(d+ r3) and O(r3), respectively. In addition, further computational savings
can be obtained by leveraging redundant computations (details in A).

2.5 Knowledge graphs

We used the GO (release 2020-10-06) as a case study due to its instrumental
role in bioinformatics [19]. This ontology is composed of three DAGs [19],
each describing different areas of cell biology: BP (Biological Process), CC
(Cellular Component) and MF (Molecular Function). Table 4 shows key
structural features of each DAG in the GO. Following common practices,
we constructed the DAGs using the is-a relationship. Additionally, we also
used synthetic DAGs generated by the random-dag-generator-go package
(https://github.com/laser/random-dag-generator-go).

2.6 Predicting protein-protein interactions

To assess the capacity of our proposed representation to predict protein-protein
interactions (PPIs), we employed the best-match average approach [42] on a
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previously published dataset [14] containing interacting and non-interacting
pairs of proteins annotated with GO terms. Given two proteins, A and B,
the best-match average was used as a predictive indicator of their interaction:

BMA(A,B) =
1

2|A|
∑
a∈A

max
b∈B

sim(a, b)+ (4)

1

2|B|
∑
b∈B

max
a∈A

sim(a, b), (5)

where a ∈ A and b ∈ B denote GO terms annotating each protein, respectively,
and sim is a similarity measure. For Gaussian representations, we used the
KL divergence as the similarity measure, while the cosine similarity was used
for point-vector representations. The best-match average takes values from
zero to one, indicating non-interaction and interaction, respectively.

To evaluate the predictive performance, we used the receiver operating
characteristic (ROC) curve, in which the true positive rate is compared against
the false positive rate at various thresholds. To compare the performance
between different predictive methods, we calculated the areas under their
ROC curves (AUCs).

3 Results

3.1 A case study on synthetic graphs

To clearly illustrate the benefits of using low-rank Gaussian distributions, we
employed them to represent four synthetic DAGs as 2-dimensional (d = 2)
Gaussian distributions with rank 2 (r = 2), using diagonal counterparts (r = 0)
as controls. In Figure 2, the resulting node representations are depicted as
ellipses showing points within one standard deviation from their corresponding
means. The ellipses of the low-rank distributions show encapsulation patterns
that capture the hierarchical and directional relationships between nodes.
For example, the encapsulation patterns in Figures 2A and B show that
ellipses associated with parent nodes are within those corresponding to their
children, which is not clearly observed when using diagonal covariance matrices.
Moreover, Figures 2C and D illustrates how this encapsulation pattern relies
on edge directionality, as the encapsulation of the root inside the leaves
(Figure 2C) is disrupted when the directionality of edges is flipped (Figure 2D).
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Figure 2: Gaussian representations. The nodes of four synthetic graphs (A-D)
are represented by low-rank or diagonal Gaussian distributions. Ellipses
depict points within one standard deviation from their corresponding means.
The encapsulation patterns between ellipses represent the hierarchical and
directional relationships between their associated nodes. Bar plots (bottom)
depict the entropy associated with each node representation. Entropy reflects
the expected information content of a Gaussian distribution.

These results illustrate the benefits of using low-rank covariance matrices for
representing knowledge graphs.

To quantify the observed encapsulation patterns, we calculated the en-
tropies of the distributions, as entropy reflects the expected information
content of a random variable [43]. As shown in the bar plots in Figure 2,
the entropy of child nodes tends to be higher than those of their parents.
Since leaf nodes are associated with concrete concepts while those close to
the root with abstract concepts in knowledge graphs [5], this finding indi-
cates that Gaussian distributions are representing the information content of
nodes similarly to well-known semantic similarity measures [44]. Specifically,
concrete concepts (i.e., leaves) are associated with representation with high
information content while abstract concepts (i.e., roots) display the opposite
pattern [45, 46, 31, 32]. This is exemplified in Figure 2, particularly in panel
D where all the roots have associated lower entropy compared to the leaf.
This codification of the nodes’ information content is due to the use of the
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Figure 3: Loss curves from learning Gaussian representations with different
types of covariance matrices. The shaded regions indicate dispersion across
different seeds.

reverse KL divergence in the loss function, as using the forward version leads
to codifying the information content in the opposite manner [24, 25, 23].

3.2 Stably learning of low-rank node representations
on large-scale knowledge graphs

To understand whether the low-rank representations can be applied on large-
scale knowledge graphs, we analyzed the stability of learning 10-dimensional,
low-rank representations by monitoring the loss values yielded on the GO
(B). As controls, we also included 10-dimensional Gaussian distributions
parameterized by either diagonal covariance matrices and spherical ones
(identical values on the main diagonal).

The results revealed that learning was stable even when the rank r varied
from 1 to 4 (Figure 3). Compared to the spherical and diagonal approxima-
tions (green), the low-rank representations (blue) achieved better (lower) loss,
indicating that the underlying structure of the data is better approximated
by low-rank covariance matrices. Low ranks displayed almost similar loss
values compared to high ones while maintaining relatively reduced learning
complexity (Figure 4A). A similar trend was observed with synthetic random
graphs (Figure 4B), where lower rank representations also required less GPU
memory (Figure 9). This suggests that low ranks offer sufficient representa-
tional power at relatively low computational cost for representing large-scale
knowledge graphs, such as those included in the GO.
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Figure 4: Time complexity from learning Gaussian representations with
different types of covariance matrices. A) Time complexity for the BP, CC
and MF. B) Time complexity for two-dimensional representations learned
from synthetic random DAGs with increasing number of nodes.

To understand the impact of node dimensionality d on learning stability, we
additionally learned rank-1 node representation for dimensionalities ranging
from 10 to 50. This revealed that the learning process was still stable and
scaled for higher dimensions (Figure 5). Increasing dimensionality (d >
10) just resulted in representations yielding relatively marginal loss gains,
indicating that the GO structure can be accurately represented with 10
dimensions. Together, these results indicate that gGN can stably learn node
representations, and its low-rank approximation scales in large knowledge
graphs.

3.3 Low-rank approximation better preserves direc-
tional and hierarchical information

To evaluate the ability of the low-rank Gaussian distributions to represent
knowledge graphs, we used them to visualize the BP sub-ontology, the largest
and most structurally complex knowledge graph evaluated (Table 4). Com-
pared to their spherical and diagonal counterparts, the low-rank representa-
tions exhibited a more complex spatial arrangement (Figure 6A). To determine
whether this spatial arrangement was associated with the directional infor-
mation of BP, we first assessed how effectively the low-rank representations
preserved the shortest path lengths between nodes, an important feature gov-
erned by edge directions that reflects the underlying geometry of graphs [47].
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Figure 5: Loss curves from learning representations with increasing dimension
d. The shaded regions indicate dispersion across different seeds.

By comparing the correlation between the similarities of the Gaussian dis-
tributions and the shortest path lengths of the corresponding nodes (C), we
found that the low-rank representations exhibited a stronger positive corre-
lation compared to the spherical and diagonal representations (Figure 6B).
Additionally, we evaluated Graph2Gauss, which is analogous to our diagonal
representations but uses a different loss function [25]. The results indicated
that the low-rank distributions outperformed Graph2Gauss, highlighting the
representational benefits of gGN. Since the calculation of shortest path lengths
depend on edge directions, we found that, unlike spherical and diagonal dis-
tributions, the low-rank representations strongly correlated not only with the
path lengths derived from the original edge directions (≻) but also with the
lengths obtained when flipping the edge directions (≺) (Figure 6C). This is
a remarkable result demonstrating the ability of our approach to preserve
directional information.

By performing a similar analysis on the other two sub-ontologies (CC and
MF), we found that the low-rank representations consistently outperformed
both spherical and diagonal counterparts in preserving shortest path lengths in
both directions (Table 1). We also observed that the Gaussian representations
were more effective than diverse point-vector representations (E). Although
previous research has shown that these representations are able to capture
shortest path lengths [48], a suitable training using semi-supervised approaches
is required. The spherical representations outperformed the diagonal Gaussian
distributions in preserving shortest path lengths in the case of direction ≻ in

11

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
si

nc
.u

nl
.e

du
.a

r)
A

. E
de

ra
, G

. S
te

gm
ay

er
 &

 D
. H

. M
ilo

ne
; "

gG
N

: R
ep

re
se

nt
in

g 
th

e 
G

en
e 

O
nt

ol
og

y 
as

 lo
w

-r
an

k 
G

au
ss

ia
n 

di
st

ri
bu

tio
ns

"
C

om
pu

te
rs

 in
 B

io
lo

gy
 a

nd
 M

ed
ic

in
e,

 V
ol

. 1
83

, p
p.

 1
09

23
4,

 2
02

4.



Spherical

Diagonal

Rank 1

A B

Entropy

Low High

C D

Figure 6: Correlations between KL divergence and structural features captured
by Gaussian representations on biological processes (BP). A) Visualization
of BP using two-dimensional Gaussian representations obtained by three
different methods: spherical, diagonal and low rank. B-D) Violins depict KL
divergences (or entropy), y-axis, calculated between 10-dimensional represen-
tations of nodes at a given short path length (or node depth), x-axis.

BP. Further experiments indicated that, unlike the spherical and low-rank
representations, the diagonal Gaussian distributions are more sensitive to the
number of parent nodes (F).

The visualization of BP also showed that Gaussian distributions with
low entropy were clusterized on the center and encapsulated by distributions
with higher entropy (Figure 6A). To determine whether this encapsulation
pattern was associated with the hierarchical information of BP, we analyzed
whether the entropy of Gaussian distributions correlated with the depths
of their corresponding nodes (C). The results revealed that, unlike all the
alternative Gaussian representations evaluated, the low-rank representations
showed the highest positive correlations with node depth in BP (Figure 6D).
The correlations were also larger than those obtained by Graph2Gauss, in-
dicating that low-rank covariances are better suited than diagonal ones for
representing hierarchical information. Additionally, the entropies of our di-

12

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
si

nc
.u

nl
.e

du
.a

r)
A

. E
de

ra
, G

. S
te

gm
ay

er
 &

 D
. H

. M
ilo

ne
; "

gG
N

: R
ep

re
se

nt
in

g 
th

e 
G

en
e 

O
nt

ol
og

y 
as

 lo
w

-r
an

k 
G

au
ss

ia
n 

di
st

ri
bu

tio
ns

"
C

om
pu

te
rs

 in
 B

io
lo

gy
 a

nd
 M

ed
ic

in
e,

 V
ol

. 1
83

, p
p.

 1
09

23
4,

 2
02

4.



Table 1: Preserving graph features using representations with d = 10. The
best correlation is boldfaced and the second best is underlined.

Pearson correlation (↑)

Shortest path length ≻ Shortest path length ≺ Node depth

Model BP CC MF BP CC MF BP CC MF

P
o
in
t
v
e
c
to

r

AROPE -0.09±0.00 -0.08±0.00 -0.09±0.00 -0.31±0.00 -0.36±0.00 -0.33±0.00 0.00±0.00 -0.04±0.01 0.00±0.00
GraRep -0.01±0.00 -0.03±0.00 -0.01±0.00 -0.01±0.01 0.05±0.01 -0.05±0.00 0.00±0.01 -0.02±0.00 0.00±0.00
SVD anc -0.07±0.00 -0.07±0.00 -0.01±0.00 -0.24±0.00 -0.13±0.00 -0.35±0.00 0.00±0.01 0.00±0.01 -0.01±0.00
SVD des -0.05±0.00 -0.02±0.01 -0.02±0.00 -0.20±0.00 -0.11±0.00 -0.12±0.00 0.00±0.00 0.00±0.02 -0.01±0.01
DeepWalk 0.00±0.00 -0.01±0.00 0.00±0.00 0.00±0.00 0.05±0.00 -0.02±0.00 0.00±0.00 0.00±0.02 0.00±0.00
LINE -0.01±0.00 -0.04±0.00 -0.05±0.00 -0.05±0.01 0.02±0.01 -0.23±0.00 0.00±0.00 0.01±0.02 0.01±0.01
node2vec -0.04±0.00 -0.03±0.00 -0.02±0.00 -0.22±0.00 -0.13±0.00 -0.13±0.01 0.00±0.00 0.01±0.02 0.01±0.01
VERSE -0.04±0.00 -0.03±0.00 -0.03±0.00 -0.24±0.00 -0.12±0.00 -0.24±0.00 0.00±0.00 0.00±0.01 0.00±0.01
onto2vec -0.05±0.00 -0.04±0.01 -0.04±0.00 -0.22±0.00 -0.09±0.00 -0.22±0.01 0.00±0.01 -0.01±0.01 -0.01±0.01
anc2vec -0.04±0.00 -0.04±0.00 -0.05±0.00 -0.21±0.00 -0.07±0.00 -0.33±0.00 0.00±0.00 0.00±0.01 0.00±0.01
neig2vec -0.03±0.00 -0.02±0.01 -0.02±0.01 -0.30±0.00 -0.11±0.00 -0.24±0.00 0.00±0.01 0.01±0.03 0.01±0.01

G
a
u
ss
ia
n

Spherical 0.77±0.00 0.77±0.10 0.68±0.01 0.83±0.06 0.72±0.08 0.84±0.08 0.48±0.06 0.07±0.08 -0.2±0.06
Diagonal 0.34±0.09 0.73±0.06 0.85±0.01 0.81±0.03 0.65±0.19 0.83±0.01 0.66±0.01 0.58±0.01 0.58±0.03
Rank 1 0.80±0.02 0.71±0.05 0.87±0.01 0.91±0.00 0.90±0.00 0.95±0.00 0.74±0.01 0.72±0.00 0.68±0.01
Rank 2 0.84±0.01 0.78±0.01 0.88±0.01 0.92±0.00 0.92±0.00 0.94±0.00 0.76±0.01 0.76±0.01 0.72±0.01
Rank 3 0.87±0.01 0.81±0.01 0.91±0.01 0.93±0.00 0.93±0.00 0.95±0.00 0.76±0.01 0.76±0.01 0.69±0.01
Rank 4 0.87±0.01 0.80±0.01 0.91±0.00 0.94±0.00 0.94±0.00 0.96±0.00 0.75±0.01 0.78±0.02 0.66±0.02
G2G 0.71±0.01 0.69±0.00 0.75±0.02 0.73±0.01 0.72±0.01 0.79±0.01 0.43±0.03 0.27±0.07 0.42±0.06

agonal representations were more correlated with node depth compared to
those of Graph2Gauss, suggesting that the proposed loss function is more
effective in capturing hierarchical information. Similar results were observed
on the other two knowledge graphs (Table 1), highlighting the benefits of
using low-rank covariances for representing the hierarchical information of
knowledge graphs.

To investigate whether the superior representational power of low-rank
Gaussian distributions was independent of the number of parameters used for
representing nodes, we devised the following experiment. We compared the
performance of rank-1 representations against higher-dimensional diagonal
ones, ensuring both types used the same number of parameters for represent-
ing nodes. For instance, both 30-dimensional diagonal representations and
15-dimensional rank-1 representations result in 30 parameters per node. The
results showed that, although both representations performed similarly on
preserving directional information, the low-rank approximation consistently
outperformed the diagonal one in preserving node depths (Table 2), even
when the diagonal representations used the double of parameters for repre-
senting nodes. We confirmed that this trend persists with higher-order rank
representations (Table 5), highlighting that the superior performance is driven
by the use of ranks greater than zero. Altogether, these findings indicate
that the superior representational power of low-rank Gaussian distributions
is independent of the number of parameters, supporting that its greater
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representation power comes from its capacity to better model knowledge
graphs.

Table 2: Diagonal and rank-1 representations using the same number of
parameters per node. Significant correlations are boldfaced.

Pearson correlation (↑)

30 params per node 40 params per node 50 params per node

Feature Graph Diag (d=30) Rank1 (d=15) Diag (d=40) Rank1 (d=20) Diag (d=50) Rank1 (d=25)

Path length ≻ BP 0.90±0.01 0.88±0.01 0.91±0.01 0.90±0.01 0.91±0.01 0.90±0.01
CC 0.85±0.01 0.79±0.02 0.87±0.01 0.81±0.02 0.86±0.02 0.81±0.03
MF 0.88±0.01 0.87±0.01 0.88±0.01 0.87±0.01 0.89±0.01 0.86±0.01

Path length ≺ BP 0.93±0.01 0.93±0.01 0.93±0.01 0.93±0.01 0.93±0.01 0.94±0.01
CC 0.90±0.01 0.90±0.02 0.89±0.01 0.91±0.02 0.91±0.02 0.91±0.02
MF 0.93±0.01 0.96±0.01 0.93±0.01 0.96±0.01 0.93±0.01 0.96±0.01

Node depth BP 0.66±0.02 0.73±0.03 0.63±0.02 0.71±0.01 0.59±0.02 0.70±0.02
CC 0.63±0.02 0.70±0.02 0.64±0.01 0.69±0.01 0.62±0.02 0.69±0.03
MF 0.62±0.05 0.67±0.05 0.58±0.02 0.68±0.01 0.63±0.02 0.68±0.02

3.4 Ablation study on the loss function

To understand the contribution of each loss component (Eq. 3) in preserving
the hierarchical and directional relationships between nodes, we conducted
an analysis by learning low-rank representations after ablating each loss
component at a time. These “ablated” representations were then compared to
those obtained without ablation. If a loss component significantly contributes
to the preservation of one graph feature, the unablated representations should
outperform their ablated equivalents in preserving that feature.

The results of this ablation analysis are shown in Figure 7. Here, the
dots depict the Pearson correlation coefficients that indicate how well the
unablated (x-axis) and ablated (y-axis) representations preserved the shortest
paths (A-F) or the node depths (G-I). Dots falling below the main diagonal
indicate cases where the unablated representations performed better (higher
correlation) than the ablated ones. These results show that the ablation of
loss components yielded node representations unable to properly preserve the
graph features. When the loss component L≺ was ablated (Figure 7A-C),
the resulting node representations showed worse correlations compared to
their unablated counterparts (Figure 7C). This indicates that the ablation
impaired the proper preservation of the shortest path length for the original
(≺) edge directions. Similarly, ablation of L≻ (Figure 7D-F) led to worse
correlations for the shortest path length for the reverse (≻) edge directions

14

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
si

nc
.u

nl
.e

du
.a

r)
A

. E
de

ra
, G

. S
te

gm
ay

er
 &

 D
. H

. M
ilo

ne
; "

gG
N

: R
ep

re
se

nt
in

g 
th

e 
G

en
e 

O
nt

ol
og

y 
as

 lo
w

-r
an

k 
G

au
ss

ia
n 

di
st

ri
bu

tio
ns

"
C

om
pu

te
rs

 in
 B

io
lo

gy
 a

nd
 M

ed
ic

in
e,

 V
ol

. 1
83

, p
p.

 1
09

23
4,

 2
02

4.



(panel E). Thus, this result indicates that the component L≻ is essential for
properly preserving the shortest path lengths in the ≻ direction. Likewise, the
ablation of the loss component Le resulted in lower correlations (Figure 7G-I),
particularly producing node representations with weaker correlations against
node depth information compared to their unablated counterparts (Figure 7G).
This shows that node depth information is not well preserved when the loss
component Le is ablated. The loss component Le impacted the three evaluated
features, suggesting that the preservation of immediate node relationships is
essential to preserve higher-order relationships, such as those defined by the
shortest path lengths between nodes. Overall, this ablation analysis highlights
the efficacy of the proposed loss function in preserving the shortest path
lengths and node depths of knowledge graphs.

3.5 Node classification

Functional profiling of genes relies on semantic similarity computations based
on structural features extracted from the GO [49, 50, 51, 52, 53, 54]. To
evaluate whether the node representations learned by gGN are effective in
representing the GO, we used them for node classification (D), using as
controls 17 representative baseline methods typically used for extracting
features from graphs (E).

The results showed that the best classifications were obtained by the low-
rank representations, displaying the lowest Davies-Bouldin indexes compared
to those obtained by the other methods (Table 3). This indicates that the
low-rank representations are better for representing the complex structure of
the Gene Ontology.

3.6 Predicting protein-protein interactions

The semantic information of the GO has been demonstrated to be effective
in predicting protein-protein interactions (PPIs) [13], which is a fundamen-
tal task for gene characterization [55]. This effectiveness arises from the
fact that interacting proteins are more likely to be found in similar cellular
compartments or biological processes. Consequently, GO terms annotat-
ing these proteins exhibit higher similarity compared to those annotating
non-interacting proteins, providing a predictive indicator of their potential
interactions. Therefore, we used the task of predicting PPIs from GO terms
as a valuable setting to evaluate the benefits of our low-rank representation.
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Figure 7: Ablation study. Each dot represents the Pearson correlation between
unablated and ablated representations learned from a specific GO graph using
a particular type of covariance matrix. Pearson correlations were calculated
for three different structural features.16
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Table 3: Node classification performance (lower Davies-Bouldin index/better
performance). Infinite Davies-Bouldin indices indicate inability of classifying
nodes correctly.

Davies–Bouldin index (↓)

Method BP CC MF

Lin ∞ ∞ ∞
Resnik ∞ ∞ ∞

AIC ∞ ∞ ∞
Wang 452.0 11.8 12.6

GOGO 225.5 8.8 12.6

GraRep 172.5 6.7 12.4
AROPE 394.2 27.3 21.8
SVD-anc 69.2 11.5 15.5
SVD-des 290.3 23.2 37.6

DeepWalk 1465.8 6.8 12.9
LINE 39.3 8.4 19.3

node2vec 505.1 21.1 35.1
VERSE 301.9 8.4 14.3

onto2vec 282.6 8.2 13.0
anc2vec 46.5 10.0 21.3
neig2vec 66.3 11.4 37.8

Graph2Gauss 5.0 3.6 39.7
Spherical 2.7 13.2 2.2
Diagonal 1.6 1.9 1.7
Rank 1 1.0 0.9 0.8
Rank 2 0.9 0.8 0.7
Rank 3 0.8 0.7 0.7
Rank 4 0.8 0.7 0.7

Specifically, we represented the GO terms annotating pairs of proteins, labeled
as interacting and non-interacting, as low-rank Gaussian distributions, and
then we evaluated their performance in predicting interactions using the
best-match average approach [42]. As baseline methods, we included ten
different point-vector representations.

As shown in Figure 8, the low-rank representations consistently outper-
forms the evaluated point-vector representations across the three evaluated
graphs, achieving the highest AUC values: 0.77 (BP), 0.69 (CC) and 0.66
(MF). This superior performance indicates that the use of Gaussian dis-
tributions to represent GO terms better capture their relationships than
using point-vector representations, highlighting the benefits of our proposed
representations on gene characterization tasks that rely on the Gene Ontology.

4 Conclusions

Gaussian distributions have demonstrated to be an effective approach to
represent graphs. However, its parameterization typically relies on diagonal

17

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
si

nc
.u

nl
.e

du
.a

r)
A

. E
de

ra
, G

. S
te

gm
ay

er
 &

 D
. H

. M
ilo

ne
; "

gG
N

: R
ep

re
se

nt
in

g 
th

e 
G

en
e 

O
nt

ol
og

y 
as

 lo
w

-r
an

k 
G

au
ss

ia
n 

di
st

ri
bu

tio
ns

"
C

om
pu

te
rs

 in
 B

io
lo

gy
 a

nd
 M

ed
ic

in
e,

 V
ol

. 1
83

, p
p.

 1
09

23
4,

 2
02

4.



Figure 8: Comparing gGN (KL divergence) and cosine similarity measures
on predicting PPIs.

covariance matrices to reduce computational complexity at the cost of de-
grading representation power. To address this limitation, we have proposed
gGN, a neural network that uses a low-rank factorization to enhance the
representation power of covariance matrices while keeping computational
complexity low. Our theoretical analysis and empirical experiments demon-
strated that our proposal leads to better representation of knowledge graphs.
This superior performance lies in the ability of low-rank representations to
express correlations between embedding dimensions, which is critical for
modeling directional and hierarchical relationships between nodes. To learn
these correlations between embedding dimensions from data, we designed
a loss function that employs the reverse KL divergence. Unlike previous
approaches, the reverse KL divergence leads to encode nodes’ information
content similarly as proposed by foundational studies on semantic similarity
calculation. Experiments on the Gene Ontology, a representative knowledge
graph in bioinformatics, showed that our approach achieves higher predictive
performance compared to traditional methods used on gene characterization
tasks. The results highlight the benefits of using the low-rank approximation
on representing knowledge graphs.

Data availability

The data and source code used in the experiments are available in a Github
repository at https://github.com/aedera/ggn.
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A KL divergence and loss components

Let Ni and Nj be two multivariate Gaussian distributions with covariance
matrices following Eq. 1 in the main text. The energy Eij = E(Ni,Nj) is
defined as the (reverse) KL divergence:

Eij = KL(Nj|Ni) =
1

2

(
log

|Σi|
|Σj|︸ ︷︷ ︸

Term 1

+ tr(Σ−1
i Σj)︸ ︷︷ ︸

Term 2

+ (µi − µj)
TΣ−1

i (µi − µj)︸ ︷︷ ︸
Term 3

−d

)
, (6)

where |·| is the determinant, with Eij being non-negative and equals zero
when both distributions are equal.

The KL divergence between Gaussian distributions has a closed-form
expression [39], and algebraic manipulations can be applied to its terms to
substantially reduce the computational cost, as described below.

A.1 Calculating KL Term 1

This term involves calculating the determinant of two covariance matrices

log
|Σi|
|Σj|

= log|Σi| − log|Σj|,

where the matrix determinant lemma can be used to calculate the determinant
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log|Σ| = log|D + PP T |
= log

(
|D||I + P TD−1P |

)
= log|D|+ log| I + P TD−1P︸ ︷︷ ︸

capacitance matrix C

|

= log|D|+ log|C|.

Here, log|D| = log
∏

k Dkk =
∑

k logDkk. On the other hand, by using the
Cholesky decomposition, the determinant of the capacitance matrix C ∈ Rr×r

is

log|C| = log|LLT |,

where L ∈ Rr×r is a lower triangular matrix. Here, calculating the Cholesky
decomposition takes O(r3) time, where r ≪ d. Thus, the determinant can be
calculated as follows

log|LLT | = log|L|2

= 2 log|L|

= 2 log
∏
k

Lkk

= 2
∑
k

logLkk.

Taken together, Term 1 can be expressed as

log
|Σi|
|Σj|

= log|Σi| − log|Σj|

= log|Di|+ log|Ci| − (log|Dj|+ log|Cj|)
= log|Di|+ 2 log|Li| − (log|Dj|+ 2 log|Lj|) ,

where computing the determinant of a covariance matrix boils down to
computing the determinants of a diagonal and a triangular matrices, which
only involves the product of their diagonal values.
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A.2 Calculating KL Term 2

Using the low-rank form, the second term is

tr(Σ−1
i Σj) = tr[(Di + PiP

T
i )

−1(Dj + PjP
T
j )]

= tr[(Di + PiIP
T
i )

−1(Dj + PjP
T
j )],

and using the Woodbury matrix identity, the first factor can be re-written
as

= tr[(D−1
i −D−1

i Pi(I + P T
i D

−1
i Pi︸ ︷︷ ︸

Ci

)−1P T
i D

−1
i )(Dj + PjP

T
j )]

= tr[(D−1
i −D−1

i PiC
−1
i P T

i D
−1
i )(Dj + PjP

T
j )],

now, we can re-used the Cholesky decomposition of Ci

= tr[(D−1
i −D−1

i Pi(LiL
T
i )

−1P T
i D

−1
i )(Dj + PjP

T
j )]

by algebraically manipulating the factorization of Ci, a symmetric structure
(A) can be exposed

= tr[(D−1
i −D−1

i PiL
−T
i︸ ︷︷ ︸

AT

L−1
i P T

i D
−1
i︸ ︷︷ ︸

A

)(Dj + PjP
T
j )]

= tr[(D−1
i − ATA)(Dj + PjP

T
j )]

= tr[(D−1
i Dj +D−1

i PjP
T
j − ATADj − ATAPjP

T
j )].

Due to the linearity of the trace operator, the latter equation is equivalent
to

= tr(D−1
i Dj) + tr(D−1

i PjP
T
j )− tr(ATADj)− tr(ATAPjP

T
j ),

to further simplify this expression, we can use the Cholesky decomposition
of some diagonal matrices
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= tr(D−1
i Dj) + tr(D

− 1
2

i D
− 1

2
i PjP

T
j )− tr(ATAD

1
2
j D

1
2
j )

− tr(ATAPjP
T
j ).

By using the cyclic property of the trace operator

= tr(D−1
i Dj) + tr(D

− 1
2

i PjP
T
j D

− 1
2

i )− tr(D
1
2
j A

TAD
1
2
j )

− tr(APjP
T
j A

T )

= tr(D−1
i Dj) + tr(D

− 1
2

i Pj︸ ︷︷ ︸
E

(D
− 1

2
i Pj)

T︸ ︷︷ ︸
ET

)−

tr(D
1
2
j A

T︸ ︷︷ ︸
Z

(D
1
2
j A

T )T︸ ︷︷ ︸
ZT

)− tr(APj︸︷︷︸
K

(APj)
T︸ ︷︷ ︸

KT

)

= tr(D−1
i Dj) + tr(EET )− tr(ZZT )− tr(KKT ).

Since the matrix multiplications in the traces involve transposed matrices,
these multiplications be further reduced: tr(XXT ) =

∑
kℓX

2
kℓ.

A.3 Calculating KL Term 3

The third term can be expressed as

(µi − µp)
TΣ−1

i (µi − µp) = ∆TΣ−1
i ∆

= ∆T (Di + PiP
T
i )

−1∆

= ∆T (Di + PiIP
T
i )

−1∆,

where ∆ = (µi − µp).
The intermediate factor can be re-expressed using the Woodbury matrix

identity
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∆T (Di + PiIP
T
i )

−1∆

= ∆T (D−1
i −D−1

i Pi(I + P T
i D

−1
i Pi)

−1P T
i D

−1
i )∆

= ∆T (D−1
i −D−1

i PiC
−1
i P T

i D
−1
i )∆

= ∆T (D−1
i −D−1

i PiL
−T
i L−1

i P T
i D

−1
i )∆

= ∆T (D−1
i − ATA)∆

= ∆TD−1
i ∆−∆TATA∆

= ∆TD
− 1

2
i D

− 1
2

i ∆−∆TATA∆

= (D
− 1

2
i ∆)TD

− 1
2

i ∆− (A∆)TA∆.

This last line is cheap to compute as it involves diagonal matrices and the
matrix A, which was previously computed in the Term 2.

A.4 The three components of the loss function

In Eq. 3, the component Le
i measures how well f(i) represents the relationships

between node i and its immediate neighbors, that is

Le
i (f, S, E) =

∑
j∈Pi

E2
ij +

∑
j∈D+

i

e−Eij , (7)

where Pi = {j ≠ i |Sij = 1} is the set of parent nodes of i, and D+
i =

{j ̸= i |Sji = 1 or Sji = ∞} denotes the set of immediate descendants of
i (Sji = 1) along with unreachable nodes (Sji = ∞). The energy function
Eij ≡ E(f(i), f(j)) measures the similarity between Ni and Nj (the lower
the more similar) by using the KL divergence. During optimization, Le

i is
minimized, thereby increasing the similarity between Ni and Nj when j ∈ Pi

while reducing it when j ∈ D+
i .

In contrast, the component L≺
i in Eq. refeq:loss measures how well f(i)

represents the relationships between node i and its ancestors. It is defined as

L≺
i (f, S, E) =

∑
j∈A≺

i

(
Sij

Sia

− Eij

Eia

)2

, (8)
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Table 4: Structural features of each graph composing the Gene Ontology.
GO graphs

Statistic BP CC MF

Number of nodes 28,888 4,196 11,177
Number of edges 67,238 6,904 13,604
Avg number of parents 2± 1 2± 1 1± 1
Max number of parents 9 5 6
Avg shortest path length 4± 2 3± 2 3± 2
Network diameter 13 10 11
Avg number of ancestors 24± 17 11± 6 7± 3
Max number of ancestors 146 40 32
Avg clustering coefficient 4.01e−10 2.64e−02 7.00e−04

where A≺
i = {j |Sij > 0, Sij ̸= ∞} denotes the ancestors of i, and a =

argmaxj Sij. This component computes the degree of matching between
the shortest path length Sij and the energy Eij for each node j ∈ A≺

i . To
mitigate scale heterogeneity, the maximum values Sia and Eia are used for
normalization. The minimization of L≺

i yields similarities between Ni and
the Gaussian distributions representing the ancestors of i that are ranked
according to how far the ancestors are from i. For instance, Ni would be more
similar to Nj than to Nk when j and k are the parent and the grandfather of
i, respectively.

Similarly, the final component, L≻
i , in Eq. refeq:loss measures how well

f(i) represents the relationships between node i and its descendants

L≻
i (f, S, E) =

∑
j∈A≻

i

(
Sji

Sai

− Eji

Eai

)2

, (9)

where A≻
i = {j |Sji > 0, Sji ≠ ∞} is the set of descendants of i, and

a = argmaxj Sji. Therefore, during optimization, the minimization of L≺
i

yields similarities between Ni and the Gaussian distributions representing the
descendants of i that are ranked according to the shortest path lengths of the
descendants.
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Figure 9: Maximum GPU usage when learning synthetic random DAGs
(d = 10, epochs=500).

B Learning node representations with gGN

(resource requirements)

In our experiments, node representations were obtained by training gGN
during 500 epochs using batches of 128 random nodes with three different
seeds. The training set contained all the nodes of a given graph, in line with
previous studies [56, 13]. The Adam optimizer [57] with default parameters
was used for training. All the experiments conducted on this study were
run on an i7-5960X processor equipped with eight 3-GHz dual cores in a
server with 64GB of RAM, an Nvidia Titan X GPU and a 3-TB NVMe
disk. The parameters µi and Pi were initialized randomly using a standard
normal distribution, while Di was initialized with 1s, following previous
recommendations [23]. During the learning process, Di was constrained to be
positive definite by clipping it to lie within the hypercube [0.01,∞]d.
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Table 5: Diagonal and low-rank representations using the same number of
parameters per node. Significant correlations are boldfaced.

Pearson correlation (↑)

Params d Model Short path length ≻ Short path length ≺ Node depth

BP CC MF BP CC MF BP CC MF

30 30 Diagonal 0.90±0.01 0.85±0.01 0.88±0.01 0.93±0.01 0.90±0.01 0.93±0.01 0.66±0.02 0.63±0.02 0.62±0.05
15 Rank1 0.88±0.01 0.79±0.02 0.87±0.01 0.93±0.01 0.90±0.02 0.96±0.01 0.73±0.03 0.70±0.02 0.67±0.05
10 Rank2 0.85±0.02 0.76±0.02 0.88±0.03 0.92±0.03 0.92±0.02 0.94±0.01 0.77±0.01 0.77±0.02 0.73±0.03
6 Rank3 0.73±0.01 0.68±0.01 0.85±0.02 0.88±0.01 0.86±0.02 0.90±0.01 0.64±0.01 0.66±0.01 0.56±0.01

40 40 Diagonal 0.91±0.01 0.87±0.01 0.88±0.01 0.93±0.01 0.89±0.01 0.93±0.01 0.63±0.02 0.64±0.01 0.58±0.02
20 Rank1 0.90±0.01 0.81±0.02 0.87±0.01 0.93±0.01 0.91±0.02 0.96±0.01 0.71±0.01 0.69±0.01 0.68±0.01
10 Rank3 0.87±0.01 0.82±0.02 0.91±0.01 0.93±0.02 0.93±0.01 0.95±0.01 0.77±0.02 0.76±0.03 0.68±0.01

50 50 Diagonal 0.91±0.01 0.86±0.02 0.89±0.01 0.93±0.01 0.91±0.02 0.93±0.01 0.59±0.02 0.62±0.02 0.63±0.02
25 Rank1 0.90±0.01 0.81±0.03 0.86±0.01 0.94±0.01 0.91±0.02 0.96±0.01 0.70±0.02 0.69±0.03 0.68±0.02
10 Rank4 0.87±0.01 0.81±0.03 0.91±0.02 0.94±0.01 0.94±0.03 0.95±0.02 0.76±0.01 0.77±0.02 0.65±0.01

C Shortest path length and node depth

To determine whether Gaussian distributions can capture the directional
structure of a knowledge graph, we evaluated their capacity to encode the
shortest path lengths within the graph. This property is relevant in knowledge
graphs, as these lengths are determined by the directionality of the edges.
Given that asymmetric distance/energy between two nodes can be used to
encode edge directionality [38], we evaluated whether Gaussian distributions
could encode the shortest path lengths for both the original directionality of
edges (≺) and the reverse directions (≻).

For a pair of nodes, i and j, we compared the shortest path length between
them, Sij, with the distance/energy between their corresponding Gaussian
representations, KL(Ni∥Nj). We summarized the comparisons for all node
pairs by calculating the Pearson correlation coefficient r = cov(X, Y )/(σXσY ),
where cov is the covariance, X = (KL(Ni∥Nj) | Sij ̸= ∞), Y = (Sij|Sij ̸= ∞),
and σ is the standard deviation. To assess edge directionality, we performed
this correlation considering the original directionality of edges (≺) and the
reverse directions (≻).

For nodes represented as point vectors, we used X = (scos(vi, vj) | Sij ̸=
∞), where

scos(vi, vj) =
⟨vi, vj⟩
|vi||vj|

. (10)

Here, vi ∈ Rd and vj ∈ Rd are point vector representations for nodes i and j,
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Ancestors
Descendents
Rest

Root

Figure 10: Given any node (black), the remaining nodes can be classified into
three disjoint sets.

respectively, and |·| is the Euclidean norm.
To determine whether Gaussian distribution can capture the hierarchical

information of a knowledge graph, we evaluated their ability to preserve
the depth of the nodes. To this aim, we compared the depth of a given
node i with the entropy of its corresponding Gaussian representation, H(Ni).
We summarized the comparisons for all nodes by calculating the Pearson
correlation using X = (H(Ni) | i = 0, . . . , n − 1) and Y = (|A≺

i | | i =
0, . . . , n− 1). The entropy is defined as

H(Ni) =
d

2
(1 + log(2π)) +

1

2
log|Σi| (11)

In the case of nodes represented by point vectors, we usedX = (scos(vi, vroot) | i =
0, . . . , n− 1), where vroot is the point vector representing the root node.

D Node classification

Given a knowledge graph as shown in Figure 10, any node i (black) can
be used to classify the remaining nodes into three disjoint sets: ancestors
(orange), descendants (blue) or neither of them (green). We investigated
whether node representations were able to discriminate between the ancestors
and descendants of a node. To this aim, we calculated the similarity between
the representation of node i and the representations of the other nodes. Then
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we assessed whether these similarities could effectively discriminate between
the ancestors and descendants of a node. For this assessment, we used the
Davies-Bouldin (DB) index [58] to measure the degree of overlap between
similarities calculated from ancestors and those from descendant nodes. Given
CA≺ =

⋃n−1
i=0 {s(i, j) : j ∈ A≺} and CA≻ =

⋃n−1
i=0 {s(i, j) : j ∈ A≻} be two

sets of similarities calculated by a function s(·, ·), the DB index is defined as
DB = (sA≺ + sA≻)/d, where sA≺ is the average over {|c− C̄A≺ |}c∈CA≺ , sA≻

is similarly defined using CA≻ , and d = |C̄A≺ − C̄A≻ |, with C̄ indicating the
mean value. The lower the DB index is, the more separated the two sets are,
with zero being the lowest possible DB index.

For Gaussian representations, the KL divergence (Eq. 6) was used as the
similarity function s(·, ·), while we used the standard cosine similarity when
nodes were represented as point vectors [13, 59], as shown in Eq. 10. We also
included well-known methods for calculating the semantic similarity between
nodes: Lin [31], Resnik [32] and AIC [60] that used the intrinsic information
content [50]. The intrinsic information content (IC) of a node i is

IC(i) = 1− log(Di + 1)

log n
, (12)

where Di is the set of descendants of i and n is the total number of nodes in
the graph.

E Baseline methods for node classification

Table 6 shows the methods selected as baselines for node classification. They
are categorized in five groups: classic methods, based on matrix factorization
(MF), random walks (RW), neural networks (NN) and Gaussian distributions.
For all classic methods, we used default parameters as proposed by their
authors. All methods that learned representations used 200 dimensions. For
GrapRep, 20 orders were used, each of them with 10 dimensions. For AROPE,
default parameters were used and 49 dimensions for each order. For SVD-anc
(and SVD-desc), an r-dimensional representation was obtained for each node
by truncating the left singular matrix U at dimension r, and multiplying it
by the truncated diagonal matrix D: U1:rD1:k,1:k. The matrices D and U
were obtained by computing the SVD decomposition [41] M = UDV T ; here,
M is the matrix of ancestors (SVD-anc) or descendants (SVD-desc), which
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Table 6: Baseline methods.
Method Category Repository

Lin [31] Classic -
Resnik [32] Classic -
AIC [60] Classic -
Wang [51] Classic https://github.com/tanghaibao/goatools

GOGO [53] Classic https://github.com/zwang-bioinformatics/GOGO

GraRep [61] MF https://github.com/benedekrozemberczki/GraRep

AROPE [62] MF https://github.com/ZW-ZHANG/AROPE

SVD-anc MF -
SVD-des MF -

DeepWalk [63] RW https://github.com/phanein/deepwalk

LINE [64] RW https://github.com/tangjianpku/LINE

node2vec [65] RW https://github.com/aditya-grover/node2vec

VERSE [66] RW https://github.com/xgfs/verse.git

onto2vec [13] NN https://github.com/bio-ontology-research-group/onto2vec

anc2vec [14] NN https://github.com/sinc-lab/anc2vec

neigh2vec [14] NN https://github.com/sinc-lab/anc2vec

Graph2Gauss [25] Gaussian https://github.com/abojchevski/graph2gauss

were built from BP, CC and MF, respectively. For DeepWalk, 80 random
walks per node with a maximum length of 40 were extracted. To construct
representations, the extracted walks were treated as sentences, and nodes
were treated as words, to be used as input to word2vec (https://github.
com/tmikolov/word2vec) using the skip-gram objective with parameters:
window=5, min-count=0 and iter=200. For LINE, we used 2 orders, 5
negatives, 100 samples and ρ = 0.025. In node2vec, p = 1 and q = 1 were
used. We used VERSE with α = 0.85 and 3 samples. From the axioms
extracted by onto2vec, it was given as input to word2vec using the skip-gram
objective with parameters: window=5, min-count=0 and iter=200. The node
representations of anc2vec and neigh2vec were downloaded from their public
repositories. For Graph2Gauss, we used as input an adjacency matrix built
for each graph to learn node representations with default parameters. It is
worth noting that the capacity of the representations learned by Graph2Gauss
is theoretically equivalent to those obtained by gGN when using covariance
matrices with rank zero (diagonal representations). However, both methods
differ in the loss function employed for learning node representations.
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F Number of parent nodes impacts the per-

formance of diagonal representations

Figure 6A showed that spherical representations outperformed the diagonal
ones in preserving the shortest path lengths ≻ in BP, the largest and most
structurally complex graph evaluated (Table 4). Unlike the other two knowl-
edge graphs evaluated (CC and MF), BP has a more complex hierarchical
structure. The highest average number of parents per node is 2.32 in BP
(CC=1.64 and MF=1.21), with some nodes having up to nine parents (CC=5,
MF=6). To investigate whether the number of parent nodes affects the perfor-
mance of diagonal representations, we analyzed how well these representations
preserved the shortest path lengths ≻ when varying the number of parent
nodes in BP. Specifically, the maximum number of parents (K) for each
node was randomly selected. This analysis showed that the performance of
diagonal representations deteriorated as the number of parent nodes increased
(Figure 11), a trend not clearly observed with spherical and low-rank repre-
sentations. Additionally, this performance degradation when increasing the
number of parent nodes was specific for the shortest path lengths ≻, showing
no substantial effects on the other two features evaluated: the shortest path
lengths ≺ and node depths. In these two features, the performance of diagonal
representations was roughly equivalent to or better than that of the spherical
representations independently of the number of parent nodes. Altogether,
these results suggest that the spherical constraint on Gaussian distributions
acts as a regularizing factor, facilitating the preservation of the shortest path
lengths ≻ while limiting their ability to preserve other features, particularly
node depth.
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