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ABSTRACT

Regular monitoring of body condition score (BCS) changes during lactation is an essential

management  tool  in  dairy  cattle;  however,  the  current  BCS  measurements  are  often

discontinuous and unevenly spaced in time. The imputation of BCS values is useful for two

main reasons: i) achieving completeness of data is necessary to be able to relate BCS to other

traits (e.g. milk yield and milk composition) that have been routinely recorded at different

times  and  with  a  different  frequency,  and  ii)  having  expected  BCS  values  provides  the

possibility  to  trigger  early  warnings  for  animals  with  certain  unexpected  conditions.  The

contribution of this study was to propose and evaluate potential methods useful to smooth and

impute device-based BCS values recorded during lactation in dairy cattle. In total,  26,207

BCS records  were  collected  from 3,038  cows  (9,199  and  14,462  BCS records  on  1,546

Holstein  and  1,211  Montbéliarde  cows  respectively,  and  the  rest  corresponded  to  other

minority cattle breeds). Six methods were evaluated to predict  BCS values: the traditional

methods of test interval method (TIM), and multiple-trait procedure (MTP), and the machine

learning (ML)  methods of  multi-layer  perceptron (MLP),  Elman network (Elman),  long-

short term memories (LSTM) and bi-directional LSTM (BiLSTM). The performance of each

method was evaluated  by a hold-out validation approach  using statistics of the root mean

squared error  (RMSE)  and Pearson correlation  (r).  TIM, MTP, MLP, and BiLSTM were

assessed for the imputation of intermediate missing values, while MTP, Elman, and LSTM

were evaluated for the forecasting of future BCS values.  Regarding the machine learning

methods, BiLSTM demonstrated the best performance for the intermediate value imputation

task (RMSE=0.295, r=0.845), while LSTM demonstrated the best performance for the future

value forecasting task (RMSE=0.356, r=0.751). Among the methods evaluated, MTP showed

the best performance for imputation of intermediate missing values in terms of RMSE (0.288)

and r (0.856). MTP also achieved the best performance for forecasting of future BCS values
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in terms of RMSE (0.348) and r (0.760). This study demonstrates the ability of MTP and

machine learning methods to impute missing BCS data and provides a cost-effective solution

for the application area.

Key words: body condition score, data imputation, machine learning, dairy cows
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1. INTRODUCTION

Smoothing  and imputing  records  throughout  the  lactation  is  an  issue that  is  often

required in dairy cattle to allow  optimal  use of non-continuously recorded traits.  The fat

reserves and changes in fat reserves over time are indicators of the cow’s energy balance (EB)

(Edmonson et al., 1989, Beam and Butler, 1999, Collard et al., 2000, Bernabucci et al., 2005).

Therefore, it is important to know the energy reserve status (in the form of body fat) and its

changes during lactation (Schröder and Staufenbiel, 2006, Roche et al., 2009). Although a

negative  energy  balance  (NEB)  is  common  in  the  early  lactation  of  dairy  cows,  abrupt

changes are associated with health and welfare problems in the mid- and late-lactation (Beam

and Butler, 1999, Collard et al., 2000, Bernabucci et al., 2005). Recording of body condition

through body condition score (BCS) is a useful management tool to assess body fat stores of

dairy cows (Pryce et al., 2001, Roche et al., 2009) compared to expected status. Regardless of

the scale used for the BCS, low BCS values reflect emaciation and high BCS values indicate

obesity (Edmonson et al., 1989, Bastin et al., 2007). 

The usual procedure to measure BCS value in dairy cows is based on the visualization

and touching of the animal by expert technicians visiting the farm and following a scoring

protocol (Edmonson et al., 1989, Ferguson et al., 1994). There are various non-continuous

scales to assign BCS in dairy cows (Roche et al., 2004, Roche et al., 2009). Two commonly

used scales are a five-point scale, with 0.50 or 0.25-point intervals (Wildman et al., 1982) and

a nine-point  scale  system with  unit  increments,  used  in  the  Walloon  Region of  Belgium

(Bastin et al., 2007, Bastin and Gengler, 2013), which is based on and promoted by the ICAR

guidelines for the linear type traits (ICAR, 2022). Traditional BCS measurements have been

considered  subjective  and  have  shown considerable  intra-  and  inter-technician  variability

(Kristensen et al., 2006). Therefore, new automatic and potentially more objective methods

have  been  proposed  to  measure  BCS.  Methods  and  devices  using  3D cameras  for  body
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measurements  have  gained  great  popularity  due  to  improvements  in  image  quality  and

processing in recent years (Kuzuhara et al., 2015, Spoliansky et al., 2016, Du et al., 2022, Luo

et al., 2023, Zhang et al., 2023). Several studies have used machine learning (ML) techniques

to assess the BCS from 3D images, achieving high performance rates (Alvarez et al., 2019;

Song et al., 2019)Furthermore, there are few commercial devices available to measure BCS.

These  devices  can  help  experts  perform  their  appraisal,  such  as  the  BodyMat  system

(Ingenera SA, Cureglia, Switzerland) or be installed on the farm to do a continuous automatic

recording, such as the DeLaval system (DeLaval International,  Tumba, Sweden). The first

type of device facilitates recording, but generates records that stay relatively sparse, and still

needs a large human investment for BCS scoring. The second type of device provides nearly

continuous  measurements,  but  some  measurements  may  fail  (i.e.,  cows  may  not  present

themselves correctly to the device). 

Device-based  scoring  data  behaves  like  most  real-world  data  generating  datasets

containing missing values. A basic strategy to use incomplete datasets  is to discard entire

rows or samples containing missing values (Rubin, 1976, Meng and Shi, 2012). However, this

comes at the price of losing data which, although incomplete, may be valuable (Lobato et al.,

2015, Van Buuren, 2018). A better strategy is to impute the missing values, i.e., to infer them

from the  known part  of  the  data  (Graham,  2009,  Lobato  et  al.,  2015),  using appropriate

methods, e.g., based on multiple trait models. Another issue that affects human scores, but

also  partially  device-based  scores,  is  that  they  are  inherently  uncertain  and  potentially

erroneous. An important reason for increased random errors was identified in the variation in

the presentation of the animal to the device (Coffey et al., 2002). For this reason, strategies of

smoothing this type of data may be useful (Coffey et al., 2002). 

Smoothed and continuously available BCS measurements would be of major priority for dairy

herd management,  but also for studies requiring BCS data aligned with other longitudinal

traits recorded during the lactation by dairy herd improvement (DHI) organizations which are
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running programs to collect  and analyze data related to milk production,  cow health,  and

reproductive performances.  Different procedures may be used to smooth and impute BCS

records throughout  the lactation.  In this  study, we only used for this  purpose endogenous

information based on observed BCS data on an individual and lactation level. As a primary

objective, successful data imputation would allow missing information to be completed and

thus improve conditions for the development of new models to add exogenous information

that can also be obtained in routine by DHI. In this context, imputed BCS data can be used,

directly or indirectly, for the development of models that predict BCS also from milk yield,

milk  composition  and  especially  milk  mid-infrared  (MIR)-based  fine  milk  composition

( Gengler et al., 2016). A few studies have addressed the regression of BCS values from the

MIR spectra  using  techniques  such  as  partial  least  squares,  random forests  and  gradient

boosting machines (McParland et al., 2011; Mota et al., 2021). However, accurate alignment

of smoothed and imputed BCS data and MIR spectra are needed for any MIR prediction

equation  calibration  process  which  underlines  the  interest  of  this  research.  An  important

second objective is the forecasting of future BCS values as knowing these expected values

can help trigger alerts at critical moments during the whole lactation. The contribution of this

study is therefore the evaluation and proposal of traditional and ML methods to smooth and

impute device-based BCS throughout the lactation in dairy cows allowing its use through the

comparison of observed and expected BCS values. 

2. MATERIALS AND METHODS
2.1 Data Sources

Two databases (DB) were provided by French DHI organizations. The first DB was

created in the Alsace region (DBA) and provided by the DHI organization Chambre Conseil

Contrôle Elevage (3CE) active in this region. The other DB was created in the Bourgogne-

Franche-Comté region (DBB) and provided by the regional DHI organization Conseil Elevage

25-90.  For  both  databases,  automatic  BCS  measurements  were  recorded  by  trained

6

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120
121

122

123

124

125

126

6

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
si

nc
.u

nl
.e

du
.a

r)
J.

 O
. C

he
lo

tti
, H

. A
ta

sh
i, 

M
. F

er
re

ro
, C

. G
re

le
t, 

H
. S

oy
eu

rt
, L

. G
io

va
ni

ni
, H

. L
. R

uf
in

er
 &

 N
. G

en
gl

er
; "

A
ss

es
si

ng
 tr

ad
iti

on
al

 a
nd

 m
ac

hi
ne

 le
ar

ni
ng

 m
et

ho
ds

 to
 s

m
oo

th
 a

nd
 im

pu
te

 d
ev

ic
e-

ba
se

d 
bo

dy
 c

on
di

tio
n 

sc
or

e 
th

ro
ug

ho
ut

 th
e 

la
ct

at
io

n 
in

da
ir

y 
co

w
s"

C
om

pu
te

rs
 a

nd
 E

le
ct

ro
ni

cs
 in

 A
gr

ic
ul

tu
re

, V
ol

. 2
27

, 2
02

4.



technicians  using  the  same  BodyMat  system  (Ingenera  SA,  Cureglia,  Switzerland)  and

following the same experimental protocols. The BodyMat is an automated body condition

scoring system using a 3D sensor to estimate BCS (Mullins et al., 2019; Leary et al., 2020).

The system is based on a stick with a tactile control box in the base and a sensor with an

infrared camera, infrared generator and a laser in the extreme. At the time of measurement,

the laser pointer must be positioned at the level of the 2nd or 3rd transverse apophysis of the

spine  of  the cow. The device  senses  and processes  a  3D model  of  the  back of  the  cow,

reporting a BCS value in the range of 0 to 5. Details on the collected datasets recorded using

this device are given in Table 1. Figure 1 shows the distribution of the data, with BCS data

showing a near Gaussian distribution within databases.

2.2 Data Preparation and Distribution

To use homogeneous data on a breed x database level, only data recorded on Holstein

cows for DBA, and on Montbéliarde and Holstein cows for DBB were used. Records from

given days in milk (DIM) greater than 365 d were eliminated. In order to check for and to

detect atypical BCS curves, the variance of the residuals between the observed curve for a

given cow-lactation and expected curves  for each specific  population  were computed and

used as an indicator of the deviation from the expected curves. The threshold of one BCS unit

SD in variation of the average residuals was considered to distinguish typical from atypical

BCS curves. This was done in order to assess to what extent the available BCS curves showed

atypical  behavior  but  not  to filter  them out as  in  a real-life  situation,  except  for obvious

outliers, no BCS records would be a priori deleted.

2.3 Data Imputation Methods

There are different strategies to impute missing data from known data (Sainani, 2015;

Van Buuren, 2018). In this study, six strategies were evaluated to impute missing BCS values.
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The first two methods were based on the traditional strategies used in DHI to deal with non-

continuous milk yield and component test-day records. These two methods, which are still

currently used, were the test interval method (TIM) and the multiple-trait procedure (MTP).

TIM, as a simple linear interpolation, was used as one of the simplest approaches in the area

for  interpolation  purposes,  while  MTP  was  included  as  an  enhancement  incorporating

population information. Additionally, four  ML based methods were evaluated starting from

simple approaches using Multilayer Perceptron (MLP) and continuing with recurrent neural

networks that incorporate information from the temporal evolution of the data, which is useful

in  the  case  of  BCS.  MLPs  can  capture  complex  relationships  between  input  and  output

features and they can learn a mapping from features derived from the existing data to the

target BCS values. They are suitable networks with well-defined features but do not consider

time-sequential patterns. The dynamic networks evaluated ranged from basic structures using

Elman  networks  (Elman)  to  more  complex  structures  using  long-short  term  memories

(LSTM) and bi-directional LSTM (BiLSTM). Elman networks handle sequence data better

than MLP. However it may struggle with longer-term dependencies. LSTM is included as an

advanced recurrent neural network and excellent for capturing long-term dependencies and

temporal  patterns  in  sequential  data.  Finally,  we  tried  Bi-LSTM,  which  is  suitable  for

capturing both past and future context, providing a more global view for imputation tasks.

Implicitly  all  strategies,  except  for  TIM  which  needs  by  definition  adjacent

observations  (i.e., 45 days maximum), had a more or less direct smoothing effect finding a

compromise  across  observed  records  to  estimate  missing  ones.  Moreover,  a  common

validation strategy was developed to test all these methods in this precise context. As a part of

the training stage, selected hyperparameters such as the number of hidden layers, the number

of neurons and the learning rate were optimized for MLP and BiLSTM methods prior to their

validations.
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To the best of our knowledge, there is no other work or study that evaluates, compares

and  proposes  traditional  and  machine  learning  methods  for  BCS  imputation  using  only

existing time sequences of BCS. The methods evaluated are described in detail below.

2.3.1 Traditional methods

The approach called test interval method and abbreviated TIM in this document is still used in

many countries and DHI systems and has been for many years (Everett  and Carter, 1968,

Sargent et al., 1968). ICAR (2020) considers TIM as one of the reference methods to calculate

accumulated lactation yield, especially in the context of regular approximately 30-d interval

testing schemes through the lactation. With special adjustments for the first and last test day

records, TIM can be considered as an unbiased measure of actual 305-d milk yield (Schaeffer

and Jamrozik,  1996). This method also can estimate missing data points in the process to

compute lactation records, a feature that was used in this study. This consists of simple linear

interpolation, where boundary points are necessary to predict a point in-between. The TIM

approach  needs  limited  distance  between  records.  Therefore,  in  this  work,  a  separation

between two existing points of maximum 45 days was required. Data out of this range were

excluded from this research.

The approach called multiple-trait procedure by ICAR (2020),  and hereafter abbreviated as

MTP, was originally proposed for predicting jointly lactation yields for milk, fat, and protein

(Schaeffer and Jamrozik, 1996). This procedure uses a Bayesian estimation for lactation curve

parameters  of  each  cow  and  lactation  based  on  their  conditional  distribution.  The  MTP

method has the advantage over the use of full random regression models (Mayeres et al.,

2004) that it can be used lactation by lactation and that the modeling of the whole population

is not necessary. Missing values at a given DIM are then obtained using these lactation curve

parameters. Therefore,  values between samples can be predicted with long intervals apart or

even if there is just one sample during the complete lactation (Schaeffer and Jamrozik, 1996).
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Moreover,  this  method is  based on standard lactation curve models  (Wilmink,  1987), and

covariances  between  parameters.  Here,  MTP  was  adapted  to  work  with  BCS  values

throughout the lactation. MTP can be seen as a combination of the observed BCS values at a

given DIM during lactation (y) for a given cow in a given lactation, the characteristics of the

population  to  which  an  animal  belongs  (c0)  and  other  parameters  (p)  i.e.,  related  to  the

covariances among elements of c0 and among residuals (Figure 2). A priori knowledge of the

height and the shape of the BCS curves  over the course of the lactation will be used when

defining c0. Thus, the estimated lactation curve parameters ĉ of a given cow and lactation can

be expressed as:

ĉ=f ( y (DIM ) , c0 , p ) (1)

More specifically, this equation as formulated by Henderson (1984) was solved to predict ĉ:

(X ' R− 1X+G−1 )ĉ=X ' R− 1 y+G− 1❑c0 (2)

where X is the incidence matrix linking BCS records for a given cow in a given lactation, R

represents the residual covariance matrix among BCS records for a given cow in a lactation,

G is the covariance matrix among ĉ parameters, y is, as already explained, the BCS value at a

given  DIM,  and  c0 represents  the  parameters  computed  from  all  cows  with  similar

characteristics such as breed and region. Figure 2, using a real case, illustrates how MTP

works using the slightly modified Wilmink function (Wilmink, 1987) as explained above. As

illustrated  in Figure 2,  MTP has a  second feature that  smooths directly  observed records

towards population values. The relative importance of population values decreases with the

increasing  number  of  direct  BCS records  which  would  decrease  the  importance  of  G-1c0

relative to X’R-1y.

We  computed  the  main  parameters  with  complete  data  according  to  the  strategy

outlined in the original study (Schaeffer and Jamrozik, 1996). First, based on the exploratory
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computations we decided to use a slightly modified Wilmink function  (Wilmink, 1987) to

predict a given element of y here defined as a scalar as:

y=α+δ x+β e−( γ DIM ) (3)

where, x = 2(DIM-1)/(365-1) – 1, which varies in the range [-1, 1], and α, β, and δ are the

adjustable parameters elements of the vector c. The parameter γ which was also estimated in

this process, was however kept fixed throughout the rest of the study as the Bayesian linear

model  used  in  (2)  was  not  able  to  update  its  value  for  each  lactation.  These  different

parameters are related with the evolution of the lactation curve (Macciotta et al., 2005). Thus,

α can be seen as an intermediate value, giving an offset to the complete evolution; and β and γ

are factors explaining the drop in the early lactation stage; and δ is the general slope after the

nadir stage, strongly related with the recovery of the BCS in late lactation. We used the NLIN

procedure in SAS (SAS Institute Inc.,  Cary, NC, USA) to estimate  co for each population

based on the average BCS per DIM defined as y in (3) using the Gauss-Newton method by

default. A minimum number of BCS records by DIM was necessary to meet the convergence

criteria.  Therefore,  the  stratification  of  the  population  could  not  be  very  detailed.  The

parameter γ was obtained a priori and considered fixed throughout the rest of the study. In the

next step curve parameters were estimated for each cow by solving a simplified version of

equation (2) for ĉ :

(X ' R− 1X )ĉ=X ' R− 1 y (4)

where (4) produced the ordinary least-square estimator and not the Bayesian linear regression

estimator obtained by solving (2). For this purpose, only a group of cows with good records

describing their BCS lactation curves was used (i.e., with a minimum of three test day records

through the lactation, at least one record before 50 DIM and at least one record after 250

DIM).  We estimated  R,  which  was considered  a  diagonal  residual  matrix  expressing  the
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variances of the differences between the expected and the observed values. Expected BCS

were predicted by fitting the BCS curve through the lactation using ĉ. The residual variance

was kept constant because no significant variations were observed throughout the lactation.

Simple  variances  and  covariances  of  elements  across  cows were  computed  to  obtain  the

covariance matrix G among the model parameters. 

2.3.2  Machine Learning Methods.  As a  type  of  longitudinal  data,  this  study consists  of

repeated BCS observations at different DIM in the lactation period for each cow. Thus, given

a BCS observation that could be considered as the present, it is straightforward to refer to the

past (previous) and the future (following) observations in that specific lactation period. In this

study, the performance of ML techniques including MLP, Elman,  LSTM and BiLSTM to

impute  BCS  values  were  evaluated  (Figure  3).  We  addressed  two  imputation  tasks:  (I)

imputation of intermediate BCS values (i.e. an unknown BCS value that lies between two

known BCS values in time) and, also (II) forecasting of BCS values. As input features for the

first task, we used DIM (past, present and future) and BCS values (past and future) in order to

estimate the BCS at a given DIM in the lactation. For the forecasting task, we only used DIM

(past and future) and past BCS values as input to forecast BCS values in the future. 

The  MLP approach  was  assessed  as  one  of  the  simplest  ML techniques  used  for

classification and regression problems (Bishop and Nasrabadi, 2006). MLPs consist of several

layers of neurons. Each neuron in one layer is connected with all nodes from the previous

layer (Figure 3-a).  There are three types of layers including the input,  hidden and output.

Whereas  neurons  in  the  input  layer  represent  the  features  provided to  the  network,  each

neuron in the hidden and output layers is a processing element which combines the output of

incoming  connected  neurons  using  a  nonlinear  activation  function.  The  strength  of  these

connections  is  controlled  using  weights,  which  are  optimized  during  the  training  process

(Bishop and Nasrabadi, 2006). 
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Elman,  LSTM and bidirectional  LSTM networks (BiLSTM) are types of recurrent

neural networks (RNN) (Rumelhart et al., 1985). A key factor in a RNN is that connections

between neurons can create a cycle, making it possible that the outputs of some neurons can

affect the subsequent inputs of the same neurons. This recurrence gives RNN certain memory

capabilities and makes them more efficient where the data follow temporal sequences as in

the case of longitudinal data. RNNs have the ability to learn the evolution of a trait when they

are trained with individual evolutions for that trait, even corresponding to several subjects.

Moreover,  Elman networks are  one of  the simplest  RNN structures.  They include  hidden

neurons and incorporate  context  (or memory) neurons, which are connected to allow past

inputs  to  influence  future  computations  during  the  training  stage.  In  these  networks  the

dynamics of the data is learned from the context layer (Figure 3-b) (Elman, 1990). 

In practice, classical RNNs such as Elman networks have some limitations in learning

complex sequences. To overcome this restriction, LSTM networks use 3 gates in each neuron

in order to control how much information should be used from inputs to update the internal

state (input gate), how much information should be forgotten from the previous state (forget

gate), and how much information should be used directly from inputs to generate the output

(output gate) (Figure 3-c). Like classical RNNs, LSTMs are made up of multiple neurons

(Hochreiter and Schmidhuber, 1997). Although Elman and LSTM are suitable for forecasting

tasks, in some scenarios the goal is to predict an intermediate point of the sequence. In these

cases, an alternative method called bidirectional LSTM (BiLSTM) allows combining past and

future information to generate a prediction in-between (Graves and Schmidhuber, 2005). This

network introduces two identical LSTM, one trained with time sequences forwards and the

other with the same sequences backwards (Figure 3-d). 

In this work, the hyper-parameters of each method were optimized using a grid search

strategy. These hyper-parameters varied with the method but, in general, the common search
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was considering  the  number  of  layers  and  the  number  of  neurons  per  layer.  We used  a

standard validation split for each epoch (80/20). The convergence criterion was an early stop

based on the RMSE, thus avoiding overfitting during the training phase. An optimized MLP

model with 3 hidden layers, with 16, 8 and 16 neurons from shallow to deep layers, and a

rectified linear unit (ReLU) as the activation function was used. The use of ReLU has shown

to  improve  the  network  performance  significantly  because  it  avoids  gradient  vanishing

problems (Bishop and Nasrabadi, 2006). A linear function was used in the output layer to

generate the final prediction. Features were normalized to be included into the model. In the

case of Elman, the optimal number of neurons in the hidden layer was 32. In the case of

LSTM, the number of hidden layers and the number of neurons per layer were optimized,

resulting in 3 hidden layers of 16, 16 and 8 neurons from shallow to deep layers, and using the

default parameters as defined in Keras v2.10.0 (Chollet, 2015) and in particular the default

activation function (hyperbolic tangent). Finally, a BiLSTM network with a single recurrent

layer of 5 neurons and hyperbolic tangent as the activation function was used. The outputs of

the BiLSTM were fed and combined into a fully connected dense layer of 10 neurons and a

hyperbolic tangent activation function. The output layer was composed of a single neuron

with a linear activation function.

2.4 Validation Strategy

To evaluate the performance of each method, the combined dataset (Holstein data of DBA +

Holstein data of DBB + Montbéliarde data of DBB) was split into calibration and validation

sets, often called training and test sets in the field of machine learning, respectively. The same

calibration and validation datasets were kept for the different methods. As we tested in this

context essentially the capacity to fill in gaps, the validation data was a subset of the original

data based on test-days within a given cow. Then, we compared predicted values against the

real  observed  values  in  the  validation  set.  According  to  the  objectives  of  this  work,  the
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methods were divided and evaluated for two tasks: (I) imputation of intermediate BCS values

and (II) forecasting the future BCS values.Using the configuration proposed for each method,

only  MTP  is  suitable  for  both  types  of  tasks  (Schaeffer  and  Jamrozik,  1996).  TIM  is

straightforward, easy to implement and computationally efficient method for imputation of

values in-between. However, it does not capture complex patterns or dependencies beyond a

simple linear trend, making it unsuitable for predicting future values where such complexity is

often present. MLPs can capture non-linear relationships between inputs and missing values.

When combined with other features or lagged values, MLPs can effectively impute missing

values by learning patterns in the data. However, they may not model sequential dependencies

as  well  as  recurrent  networks,  which  are  more  suited  for  time-series  forecasting.  Bi-

directional LSTMs are capable of utilizing context from both past and future states, making

them effective for imputation in temporal sequences where knowing future context (within the

sequence) can help better estimate missing values. While powerful, bi-directional LSTMs are

typically not used for forecasting because they consider data in both directions, which is not

available  in  a  forecasting  context.  LSTMs  are  specifically  designed  to  handle  long-term

dependencies in sequential data. They are highly effective and primarily designed to predict

future values  in  a time series based on learned patterns.  Elman networks are suitable  for

forecasting because they can model sequential dependencies over time. They are not robust

for  imputation  tasks  where  bidirectional  context  or  more  advanced  memory  handling  is

required.

Thus, two different settings were proposed in terms of the selection of records for the

calibration and validation sets (Figure 4). For both tasks, we kept only one point per each

cow-lactation curve for the validation set, which implied 8-10% of the total points. Points

were reserved for the validation set only when there were at least three points for that cow-

lactation.  For  the  data  imputation  task,  the  selection  of  points  for  the  validation  set  was

random (orange points in Figure 4-a) in each execution,  while the rest of the points were
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included  in  the  calibration  set  (green  points  in  Figure  4-a).  Due  to  the  random  process

involved, we decided to train and validate each method during 10 executions to finally obtain

stable average values. Thus, in each execution each method was calibrated and validated with

the  same set  of  points,  allowing  a  direct  comparison  among  the  methods.  For  this  task,

extremes  in  time (i.e. first  or  last  record)  were never  selected  because  could  represent  a

drawback for some of the techniques. For example, TIM cannot perform linear interpolation

without  extreme  values.  Following  these  rules,  we  kept  around  20,000  records  for  the

calibration set and around 2,000 records for the validation set. The number of records in each

set  varied slightly  across each random execution.  Finally,  we reported  the macro-average

across executions of the root mean squared error (RMSE) and the Pearson correlation (r) for

each method using the observed BodyMat values present in the validation set as the reference.

RMSE is defined as:

RMSE=√∑i=1

n ( ŷ i− y i )❑
2

n
, (5)

Where ŷi are predicted values, yi are observed values and n is the number of observations.

Pearson correlation is defined as:

r=
∑ (x i− x̄ ) ( y i− ȳ )

√∑ (x i− x̄ )
2
∑ ( yi− ȳ )

2 , (6)

Where xi are samples of the x variable, x̄ is the mean of the x variable,  yi are samples of the y

variable, ȳ is the mean of the y variable.

On the other hand, to forecast future BCS values we only kept the last values in the

lactation to build the validation set, while the rest of the points were kept for the calibration

set (Figure 4-b). This setup allowed methods to be trained on past values (green points in

Figure 4-b) to predict future values (orange points in Figure 4-b). 
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3. RESULTS AND DISCUSSION

3.1 Descriptive Statistics

After  data  preparation,  83.2%  of  the  total  original  BodyMat  records  were  kept

showing a mean of 2.50 and a  SD of 0.59 BCS units. This included 4,286 records on 755

Holstein cows for DBA and 17,518 records on 1,951 animals for DBB (4,053 records on 753

Holstein and 13,465 records on 1,198 Montbéliarde cows). Means for BCS found for both

databases were very similar with values around 2.50 BCS units. However, the SD of BCS

found for DBB was considerably lower than that found for DBA (0.56 vs 0.70 BCS units for

DBB and DBA, respectively). A potential explanation for this difference is the high number

of  Montbéliarde  cows  for  the  DBB,  which  is  a  breed  with  different  characteristics  from

Holstein. Figure 5 shows the average BCS by DIM and corresponding modelled mean curves

using  the  modified  Wilmink  function.  We  found  similar  evolutions  of  lactation  curves

between both databases (Figure 5a). It can be seen that the DBA was noisier, which could be

due to a lower number of points by DIM contributing to averages for this database.

As explained above, we only kept the majority breeds for each database which results in

three groups: I) DBA-Holstein, II) DBB-Holstein, and III) DBB-Montbéliarde (Figure 5b).

The inclining slopes after the nadir (the lowest value of BCS throughout the lactation) were

similar for Holsteins from DBB and DBA (0.0022 and 0.0025 BCS units / DIM, respectively),

but  different  from  that  found  for  DBB-Montbéliarde  (0.0013  BCS  unit  /  DIM).  Each

population  showed  a  particular  global  distribution  regarding  BCS  (Figure  6).  A  lower

variance (i.e., lower density at the ends of the distribution) was observed for the Montbéliarde

population compared to that found for Holstein populations in both datasets. The SD of BCS

records was 0.50 for DBB-Montbéliarde, 0.68 for DBB-Holstein and 0.70 for DBA-Holstein.
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In this sense, Montbéliarde seems to be a more stable breed throughout the lactation. These

findings support the general  accepted hypothesis  that,  Montbéliarde cows keep their  body

condition better than Holstein cows, indicating a higher resilience in terms of body condition

through the lactation for this breed (Walsh et al., 2008, Berghof et al., 2019, Poppe et al.,

2020,  Poppe et  al.,  2021).  On the  other  hand,  the  behavior  of  DBB-Holstein  and DBA-

Holstein populations was similar (i.e.,  similar shapes), with a minimal difference between

median values (2.3 and 2.5 BCS units respectively).

Training  the methods  with the  combined data  allowed us  to  build  a  more  general

model and this is an advantage when, for example, there are crossbreeds or a large variety of

parities in the population.   Based on the raw data summaries of both datasets  (DBA, and

DBB), we concluded that they are mostly compatible. Also, BCS data were acquired with the

BodyMat  system  and  following  the  same  experimental  protocols.  In  the  following,  the

datasets were combined to a single dataset with which methods were calibrated and evaluated.

Due to the similar behavior found for each breed, we decided to analyze the data by breed,

without a division by region. Figure 5c shows the behavior of each breed through the lactation

and considering two parity classes: primiparous and multiparous. Statistical description of the

used datasets considering parity classes and breed is shown in Table 2. It was observed that

primiparous animals presented a higher mean of BCS throughout lactation (2.68 and 2.66

BCS unit  for Montbéliarde  and Holstein breeds,  respectively)  compared with multiparous

animals  (2.51 and 2.32 BCS unit  for  Montbéliarde  and Holstein  breeds,  respectively).  In

addition, the nadir values of BCS were higher and  expressed earlier for primiparous cows

compared to multiparous cows. However, it was observed that the recovery BCS rates (delta

in equation 4) found for multiparous cows were almost double those found for primiparous

cows in both breeds (Table 2). 
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The analysis by breed and parity classes showed that the primiparous cows tend to be

more resilient than multiparous cows (Poppe et al., 2021). It could be due, at least in part, to

the fact that primiparous cows mobilize less body energy than multiparous cows during their

lactations and they produce less milk (Friggens et al., 2007, Wathes et al., 2007). On the other

hand,  we  observed  that  multiparous  cows  generally  express  the  nadir  stage  later  than

primiparous cows (Truman et al., 2022). Primiparous cows presented higher BCS at the nadir

time than multiparous cows, which is consistent with previous works.  (Mao et al.,  2004,

Sakaguchi, 2009). For both breeds, the recovery BCS rate during mid- and late-lactation for

multiparous cows was higher than the corresponding to primiparous cows.

In this work, no formal analyses were performed to look for statistically significant

differences due to breed, dataset and parity. Comparisons between breeds and parities were

not the main aim of this study, rather just comparing data collected across these categories for

analyzing the suitability of models for these categories.

3.2 Identification of Atypical Curves

The variance of the residual between observed and expected curves for each specific

population was computed and used as an indicator of the deviation from the expected curves.

Higher variance of the residual indicated that beyond a translation (i.e., constant shift) of the

curve, which will not show up in the variance, its shape was not as expected. During the data

analysis, we found typical curves but also a considerable number of atypical curves (Figure

7). We sorted the curves according to the variance of the residuals and the curves with the

lowest and highest variances were plotted. In the left side of Figure 7 we can see a typical

evolution, even considering that the observed cow is thinner than expected for her population

indicating a translation. In contrast, in the right side of Figure 7 the observed points follow a

very messy curve with a behavior far from that expected for that population, even considering

potential health issues. We found 11% of observations that were over one BCS unit SD in
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variation of the residual. Moreover, our data did not allow us to determine if this could be

related  to  device  problems  or  measurement  problems  or  reflected  real  variability  of

underlying BCS status. For this reason, and in order to keep the study close to a real-life

situation, we did not filter based on this aspect but used all the previously selected (i.e., pre-

filtered) data.

Finally, if an atypical BCS value is obtained in practice, the first thing that should be

done is to identify that value and then analyze it.  This value could be compared with the

expected for that cow (e.g. using an imputation method). An atypical value could be due to

measurement error or a pathological condition of the animal, which is an objective of the use

of BCS. In the first case, it could be directly discarded. On the other hand, if this BCS value is

due to an atypical condition of the animal, it should be saved for detection of relevant animals

in bad condition. These BCS values will also be useful  for future adjustments of the methods

or models used for BCS prediction.

3.3 Performance Evaluation

The performance of methods including TIM, and MTP, and the ML methods of MLP,

Elman, LSTM and BiLSTM to predict BCS values were evaluated. The proposed methods

were divided into those suitable for the imputation of intermediate values such as TIM, MTP,

MLP and BiLSTM and those suitable for forecasting tasks such as MTP, Elman and LSTM.

Each method was calibrated using the calibration data and then evaluated using the validation

data.  Performance measures  were  computed  between  the  reference  values  and the  values

predicted by each method. The average RMSE and the average correlation for each method

suitable for the imputation task are presented in Table 3. 

Figure  8  shows the  distribution  of  the  RMSE and  r  for  each  imputation  method.

Among the evaluated methods, MTP achieved the best performance (Table 3; Figure 8). The
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results showed that MTP achieved the lowest RMSE (median of 0.288) followed by LSTM

(median  of  0.295)  and MLP (median  of  0.297).  Regarding the  Pearson correlation,  MTP

achieved the highest value (median of 0.849) followed by BiLSTM (median of 0.845) and

MLP (median of 0.843). These results proved to be significantly different from each other (p

< 0.05) under the Wilcoxon test  (Woolson, 2007), except between MLP and biLSTM. The

Wilcoxon test is a non-parametric test that compares paired samples or two related groups,

offering the advantage of not requiring normal distribution, making it suitable for small or

non-normally  distributed  data.  The  poorest  results  for  this  task  were  observed  for  TIM

(medians of 0.302 and 0.837 for RMSE and r, respectively).

In addition to its advantage to be able to extrapolate values, a task that TIM cannot do;

MTP can impute missing values  even when the distance between existing  points  is  large

(Schaeffer and Jamrozik, 1996). In some cases, MTP allows a smoothing effect on the messy

curves,  resulting  from  atypical  measurements,  by  incorporating  information  from  the

population. This could imply an advantage to process data from noisy automatic systems, but

it  could  be  a  disadvantage  when  there  are  real  abrupt  changes  in  the  body  condition.

Regarding  the  ML methods,  MLP and BiLSTM showed comparable  results  to  MTP and

provided better performance than those provided by TIM. MLP can be considered as a non-

linear  interpolation  for  data  imputation  (Bishop and  Nasrabadi,  2006).  In  this  sense,  this

superiority over a linear method like TIM is not surprising. MLP is a simple ML method that

was not designed to directly handle longitudinal data. However, MLP can be used for that,

and its use is common and accepted (Anglart et al., 2020). On the other hand, a recurrent

approach like BiLSTM allows past and the future sequences of measurements to be received

as inputs, which makes BiLSTM ideal for longitudinal data, and useful as a tool to impute

missing values in between known values. A practical advantage of this method is that it can

receive input sequences of variable length as past or future measurements, which would be
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common for data collected in the field. (Graves and Schmidhuber, 2005). Table 4 shows the

results  of  the  forecasting  methods.  For  this  task,  again  MTP achieved  the  lowest  RMSE

(0.348) followed by LSTM (0.356) and Elman network (0.373).  This  difference was also

observed  when  r  was  evaluated,  where  MTP  achieved  the  highest  correlation  (0.760),

followed by LSTM (0.751) and Elman networks (0.728). Due to the validation methods used

for this task, already mentioned in the validation strategy section, no random executions were

obtained over all the methods. Due to the deterministic nature of MTP, a single execution is

reported for this method, while for the ML methods the average of 5 executions is reported.

The reason is the random process involved in the initialization of the weights for a neural

network. Although MTP showed that best performance for imputation and forecasting BCS

values,  its  performance for forecasting was generally  lower than the corresponding to the

imputation of intermediate values. This is logical due to the greater difficulty of predicting

future values only from past data, which becomes even more challenging when the temporal

distance  between  measurements  increases.  Although  Elman  and  LSTM  showed  lower

performance than MTP, these results are of great interest considering that unlike the other

methods, which use past and future information to predict intermediate missing values, Elman

and LSTM only use past information to predict future information. This is important because

one application of interest is to predict the future information using the historical data for

purposes of evaluation and as a tool to provide early warning indicators of the body condition

of an animal. RNNs like Elman or LSTM learn the temporal relationships in the evolution of

the BCS through lactation. Unlike MTP, these networks do not assume a previous evolution,

but  instead  they  learn  from  the  data  sequence  during  the  training  stage.  Finally,  this

information persists in the weights of the network.

A limitation of the validation strategy used in this work for the forecasting task is that

by keeping only the last points of the sequence for the validation set, these were found mostly
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in mid- and late- lactation.  Although it  could be interesting to evaluate  the forecasting of

points in early lactation, in the present study this was not possible because to train only with

previous  points,  many  later  points  would  have  had  to  be  discarded  to  keep  the  natural

sequence of recordings. The latter was not possible due to the limited amount of data to train

some of the methods. 

3.4 Comparing Methods and Perspectives

The studied deep learning methods like LSTM or BiLSTM did not outperform MTP, which

may be due to the limited amount  of data available  for the training phase.  Also, MTP is

directly using information available across (sub-)populations inside a Bayesian framework.

However,  this  key  feature  of  MTP  may  also  generate  an  issue  as  it  is  potentially

oversmoothing the observed BCS records towards the expected BCS curve which might not

reflect the correct expectations. This was already reported as a major issue in yield traits and

this  fact  explains  the  changed  lactation  curve  model  used  in  the  practical  application  as

reported by ICAR (2020). The improvement of the parametrization of MTP which controls

the weight of prior curves and observed BCS, or the use of finer expected curves for different

subpopulations could be available strategies. As shown in this study, the definition of such

subpopulations  needs  enough  data,  or  innovative  strategies  as  clustering  of  lactations  by

features which could include not only breed, as done in this study, but also genetic differences

between animals. 

In  the  context  of  machine  learning,  particularly  when faced with  limited  data,  the

relationship between the number of parameters in a model and the amount of available data is

crucial. Small-structured networks, characterized by fewer parameters, are often employed to

mitigate the risk of overfitting when data is scarce.  However, this trade-off necessitates a

careful  balance;  too  few  parameters  may  hinder  the  model's  ability  to  capture  complex
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patterns in the data. To address this, data augmentation techniques can be invaluable, as they

artificially expand the training dataset by introducing variations through different types of

transformations. This not only increases the effective size of the dataset but also enhances the

model's  robustness  and generalization  capabilities.  One possibility  in  the future is  also to

combine the strengths of the different methods shown. Methods such as TIM, MTP or others,

could  be used as  data  augmentation  tools  to  obtain extended  datasets.  Moreover,  domain

transfer  strategies  can  provide  significant  advantages  by  allowing  the  model  to  leverage

knowledge from related domains or tasks. By pre-training on larger, relevant datasets, we can

improve  performance  even  in  scenarios  with  limited  data.  Future  work  should  focus  on

optimizing  the  interplay  between  model  complexity  and  data  augmentation  while  also

exploring effective domain transfer methods to further enhance predictive performance. By

combining these strategies, models capable of achieving better outcomes in data-constrained

environments can be developed.

While few device-based methods for routine body condition scoring (Martins et al.,

2020)  are  available,  they  entail  significant  initial  capital  and ongoing maintenance  costs.

Consequently,  animal  scientists  and  producers  seek  a  cost-effective  method  for  regularly

predicting accurate body condition scores (BCS). One proposed solution is to utilize mid-

infrared (MIR) milk spectra to estimate BCS in dairy cows. However, this approach requires

precise alignment between BCS data and MIR spectra for effective calibration.  Successful

data imputation allows missing information to be completed and thus improve conditions for

the development of new models to add exogenous information that can also be obtained in

routine  by DHI. Therefore next  steps  will  be to  use these imputed  BCS data,  directly  or

indirectly, in the context of the development of models that predict BCS using exogenous

information from milk yield, milk composition and especially milk mid-infrared (MIR)-based

fine milk composition (McParland et al., 2011; Gengler et al., 2016; Mota et al., 2021). This

requires further developments and needs additional research even if the present work provided
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insight  into  strategies  to  align  smoothed and imputed  reference  BCS data  with DHI data

containing relevant potential predictors. Even if the setting of this study did not favor their

use, random regression models (e.g., Mayeres et al., 2004) and alternative approaches such as

generalized  additive  models  (e.g.,  Ankinakatte  et  al.,  2013)  have  specific  advantages  to

become alternatives to the methods proposed in this study.

This work is not conclusive since more experimentation might be needed. However, we can

conclude that ML can avoid some initial  assumptions that limit  conventional interpolation

methods  and  possess  great  potential  in  advanced  intelligent  applications  over  traditional

techniques. Particularly, it is the case of the predictive capability of RNNs for longitudinal

data without requiring any or much domain knowledge about the phenomenon of study. ML

methods and especially deep learning methods are promising for the future development and

use  in  the  field  of  study.  However  traditional  methods  such as  TIM or  MTP,  which  are

defined by known equations, facilitate the interpretation of the obtained model. This is often

not  straightforward  for  ML  methods  and  particularly  deep  learning,  in  which  model

explainability is a known weak point (Arrieta et al., 2020).

4. CONCLUSIONS

The application of data imputation is of particular interest in the precision livestock

farming  area.  In  this  study  six  different  methods  were  evaluated  to  impute  BCS  values

throughout  the  lactation  in  Holstein  and  Montbéliarde  dairy  cows.  These  methods  were

classified into traditional methods (TIM and MTP), and ML methods (MLP, Elman, LSTM

and BiLSTM). Two tasks were addressed: the imputation of intermediate BCS values and the

forecasting of future BCS values. For both tasks, MTP provided the best performance in terms

of RMSE and Pearson correlation. The studied deep learning methods like LSTM or BiLSTM
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did not outperform MTP, but this may also be due to non-optimal context (i.e., amount of

available data) of their use. 

This  study  analyzes  methods  for  successful  BCS  imputation,  allowing  missing

information  to  be  completed  and  thus  improving  conditions  for  the  development  of  new

models to add exogenous information that is also obtained in routine by DHI. The proposed

methods also provide expected BCS values, which are useful for triggering early warnings in

the event of atypical or unexpected conditions.
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Figure 1.  Distribution of BCS data for each database. DBA = data collected in the Alsace region in

France, DBB = data collected in the Bourgogne-Franche-Comté region in France
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Figure  2.  The  multiple-trait  prediction  procedure  curve  (blue  squared)  represents  the  estimated

lactation curve parameters as a combination of the population curve (red dashed) representing the

population curve parameters and the observed BCS values (green dotted) for each specific cow and

lactation combination.
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Figure 3. General architecture of the used Machine Learning methods: Multi-layer perceptron (MLP)

(a),  Elman network (Elman) (b),  long-short term memories (LSTM) (c),  and Bi-directional LSTM

(BiLSTM) (d).
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Figure  4. Exemplification  of  lactation  curves  composed  of  discrete  BCS  observations  for  both

settings: intermediate data imputation (a) and forecasting (b).  In (a),  BCS values in-between were

randomly selected to build the validation set (orange points), while the remaining points were kept for

the calibration set (green points). In (b), only the last values of each sequence were selected to build

the validation set (orange points), while the remaining points were kept for the calibration set (green

points).
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Figure 5.  Evolution of average BCS by days in milk (DIM) (blue dots) and its corresponding mean

curve (red curves) through the lactation for each database (a),  population defined as breeds inside

databases (b) and parities and breeds (c).
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Figure 6. Global distribution of BCS values for each population. Median (dashed lines) and quartiles

(dotted lines) of the populations are included in the Figure.
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Figure 7. Examples for a typical curve (left) and an atypical curve (right). The observed (green dotted)

and the expected (red dashed) curves for the population are shown for each cow and lactation.
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Figure 8. Distribution of root mean squared error (RMSE) and the Pearson correlation (r) for each 

method over 10 random executions. P-values (Wilcoxon test) are at the top of the Figure.
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Table 1. Details of the raw BCS databases used in this study.

DBA1 DBB2

Number of BCS records

Primiparous

Multiparous

5,629

37.8%

62.2%

20,578

28.6%

71.4%
Number of animals

Primiparous

Multiparous

932

52.7%

47.3%

2,106

50.0%

50.0%
Number of herds 8 18
Majority breeds3

Holstein

Montbéliarde

Other4

86%

-

14%

22%

77%

1%
Number of groups cow and parity (BCS curves) 1,367 3,380
Number of BCS records by cow and parity (SD) 4.03 (2.14) 5.61 (3.54)
Recording period Jan. 2019 - Dec. 2020 Nov. 2018 - Oct. 2020

1 DBA = data from the Alsace region in France.

2 DBB = data from the Bourgogne-Franche-Comté region in France.

3 Expressed as a percentage of the total number of animals.

4 Includes crossbreeds and other minority breeds.
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Table 2. Body condition score details for studied populations.

Montbéliarde Holstein

Primiparous Multiparous Primiparous Multiparous

Mean (SD) 2.68 (0.49) 2.51 (0.49) 2.66 (0.63) 2.32 (0.73)

Median 2.65 2.50 2.57 2.34

Nadir 2.56 2.32 2.33 1.95

Nadir DIM 28 39 19 37

Delta (δ)1 0.15 0.28 0.28 0.52

1  The parameter of the linear term in equation (3), indicating the general  slope after nadir and strongly

related with the recovery of the body condition.
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Table 3. Macro-average over 10 random executions for the imputation of intermediate BCS values. 

Under the Wilcoxon test, MTP achieved significantly better results than the rest of the methods (p<0.05).

Traditional ML1

TIM2 MTP3 MLP4 BiLSTM5

Root Mean Squared Error 
(RMSE)  ↓

0.302 0.288 0.297 0.295

Pearson Correlation (r) ↑ 0.837 0.849 0.843 0.845
1. ML = Machine learning.

2. TIM = Test Interval Method.

3. MTP = Multiple-Trait Procedure.

4. MLP = Multi-Layer Perceptron.

5. BiLSTM = Bi-directional Long-Short Term Memories.
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Table 4. Methods evaluated for the forecasting of BCS values.

Traditional ML1

MTP2 Elman3 LSTM4

Root Mean Squared Error (RMSE)  ↓ 0.348 0.373 0.356

Pearson Correlation (r) ↑ 0.760 0.728 0.751

1. ML = Machine learning.

2. MTP = Multiple-Trait Procedure.

3. Elman = Elman network.

4. LSTM = Long-Short Term Memories.
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