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Abstract—Precision livestock farming allows farmers to opti-
mize herd management while significantly reducing labor needs.
Individualized monitoring of cattle feeding behavior offers valu-
able data to assess animal performance and provides valuable
insights into animal welfare. Current acoustic foraging activity
recognizers achieve high recognition rates operating on com-
puters. However, their implementations on portable embedded
systems (for use on farms) need to be further investigated.
This work presents two embedded deployments of a state-
of-the-art foraging activity recognizer on a low-power ARM
Cortex-M0+ microcontroller. The parameters of the algorithm
were optimized to reduce power consumption. The embedded
algorithm processes masticatory sounds in real-time and uses
machine-learning techniques to identify grazing, rumination and
other activities. The overall classification performance of the
two embedded deployments achieves an 84% and 89% balanced
accuracy with a mean power consumption of 1.8 mW and
12.7 mW, respectively. These results allow this deployment to
be integrated into a self-powered acoustic sensor with wireless
communication to operate autonomously on cattle.

Index Terms—embedded system, real-time acoustic processing,
precision livestock farming, foraging behavior, low-power micro-
controller

I. INTRODUCTION

The new and diverse precision livestock farming tools and
applications significantly reduce farm labor [1]. Precision
livestock farming solutions allow individualized monitoring
of animals to optimize herd management in most production
systems [2]. Monitoring the feeding behavior of livestock can
provide valuable insights into animal welfare, including their
nutrition, health, and performance [3]. Changes in feeding
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patterns, periodicity and duration are used to improve pasture
allocation management [4] and ruminant diets that signal
anxiety [5] or stress [6], as well as an early indicator of
diseases [7], rumen health [8], and the onset of parturition [9]
and estrus [10].

Grazing and rumination are the most relevant foraging
activities of free-ranging cattle, which together may account
for 40-80% of their daily time allocation [11]. Grazing com-
prises the process of searching, apprehending, chewing and
swallowing herbage. This process involves three distinct types
of jaw movement (JM) events produced in a non-predefined
sequence: chews, bites, and composite chew-bites [12]. Ru-
mination involves cycles of chew events followed by a pause
required to swallow and regurgitate the feed cud [13]. In both
activities, approximately one JM-event per second is produced.
Sequences and types of JM-events can be analyzed at higher
temporal scales to determine foraging activity bouts [14].

Ruminant feeding activities have been monitored with wear-
able sensors [15]. Typical accelerometer-based applications
are widely used to discriminate among various nutrition,
position, and displacement behaviors [16]. However, this type
of sensor has inherent operability and calibration challenges
for application with free-range livestock, including difficulties
in accurately classifying sensor data with grazing behavior
variables associated with pasture dry matter intake. On the
other hand, head-placed microphones in free-grazing cattle
have been used to identify JM-events [17], discriminate both
rumination and grazing bouts [18], distinguish plants and
feedstuffs eaten, and estimate dry matter intake [13] using
computer software. Despite progress, few autonomous acoustic
sensors are available for real-time acoustic monitoring of
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grazing cattle for practical use on farms [19], [20]. Motivated
by this need, this work describes two embedded implemen-
tations of a state-of-the-art foraging activity recognizer on a
low-power ARM Cortex-M0+ microcontroller. The embedded
algorithm allows the estimation of grazing and rumination
bouts of cattle. It analyses segments of identified JM-events
associated with grazing and rumination to delimit activity
bouts in real-time. To the best of our knowledge, this is the first
implementation in a low-power device of an acoustic algorithm
to recognize grazing and rumination behaviors suitable for
pasture environments.

II. MATERIALS AND METHODS
A. Foraging Activity recognizer

The approach presented in this work is the Noise-Robust
Foraging Activity Recognizer (NRFAR) acoustic method. It
outperformed previous acoustic-activity recognizers reported
in the literature [18], [21] in quiet and noisy environments.
NRFAR is a pattern recognition system that uses masticatory
sounds to identify foraging activities [22]. The audio signal is
processed sample-by-sample with the Chew-Bite Energy Based
Algorithm (CBEBA) to recognize JM-events [17]. CBEBA is a
real-time pattern recognition algorithm that distinguishes four
JM-event classes (rumination-chews, grazing-chews, bites, and
chew-bites) in adverse conditions. It is implemented through
four sequential stages (Fig. 1):

« Signal preprocessing - a second-order Butterworth band-
pass filter is applied to the audio signal to constrain
the signal bandwidth. The filtered signal is squared to
compute the instantaneous power signal. The former is
used to compute two down-sampled signals that are used
by the following stages: a decimated envelope signal and
an energy signal calculated by frames. These signals have
a lower frequency (150 Hz) than the input audio signal,
thus decreasing the computation of the next stages.

o JM detection - the presence of peaks in the envelope
signal, above a time-varying threshold, indicates the de-
tection of a candidate JM-event. Then, the JM is bound
in time by comparing the energy signal with an adaptive
threshold.

o JM feature extraction - the delimited signals are em-
ployed to compute five heuristic JM features: zero-cross
derivative of the envelope, accumulated absolute value of
the derivative of the envelope, duration, symmetry and
total energy. These features are related to the waveform
shape and duration of the JM-events and the sound
intensity and variation.

o JM classification - the values of the JM features are used
to decide if the candidate JM-event should be discarded
or classified by a multilayer perceptron (MLP) [23]. The
MLP network is formed by an input layer (5 neurons
corresponding to the JM features), a hidden layer (5
neurons) and an output layer (4 neurons corresponding
to the JM-event classes). Then, the thresholds of the
JM detection stage are updated according to the signal-

to-noise ratio estimated over the energy and envelope
signals.

The final stage of the NRFAR buffers the recognized JM-
events during 5 min to generate a set of statistical activity
features (the JM rate and the percentage of the total JM-
events of each class: rumination-chew -%rc-, grazing-chew -
Yogc-, bite -%b- and chew-bite -%cb-). The five features feed
the input of an MLP activity classifier to generate one of the
three possible activity labels (Fig. 1). The MLP classifier has
one hidden layer with nine neurons and uses the hyperbolic
tangent sigmoid and softmax activation functions in the hidden
and output layers, respectively. The resulting output labels are
smoothed with a third-order median filter to reduce the frag-
mentation of recognized activity bouts. A detailed description
of CBEBA and NRFAR is provided in [17], [22], respectively.

B. Model deployment

This section describes different approaches employed to
reduce the computational requirements of NRFAR without
significantly affecting the performance for later deployment
in an embedded system.

The NRFAR algorithm analyses JM-events from audio sig-
nals sampled at 44.1 kHz to determine foraging activities. JM-
events are recognized using the CBEBA algorithm. However,
CBEBA has reported that its performance does not change
with a sampling frequency higher than 2 kHz, although the
computation load does. Thus, a variation of the NRFAR
algorithm is proposed using audio signals sampled at 2,450 Hz
(18 times less than the original), hereafter called NRFAR-
MLP. The down-sampling frequency was chosen to match
the requirement for the other approaches. The acronym MLP
refers to the machine learning classifier used to recognize
foraging activities. An MLP is a feed-forward artificial neural
network capable of generating non-linear decision boundaries
of data classes [23]. An artificial neural network involves
the computation of non-linear activation functions. These
mathematical operations are not computationally efficient for
implementation in constrained low-power microcontrollers. To
address this issue, machine learning classifiers with simpler
mathematical operations can be used to recognize foraging
activities. The proposed NRFAR-DT algorithm uses a decision
tree (DT) classifier. A DT generates linear decision boundaries
to make predictions based on a sequence of hierarchical binary
if-else statements. A DT consists of nodes and edges, with the
nodes representing decision points and the edges representing
the paths taken based on the input values. The root node is
split into child nodes based on the value of a chosen input.
The leaf nodes represent the final decision or prediction of the
algorithm [24].

The implementation of both NRFAR-MLP and NRFAR-
DT algorithm into an embedded system requires further opti-
mization. The original implementations use a double-precision
floating-point numerical representation. It provides high res-
olution but poses challenges for computation on typical low-
power microcontrollers [25]. To address this issue, two de-
ployments in a low-power microcontroller are proposed. The
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Fig. 1. Block diagram of the different stages of the NRFAR algorithm.

first deployment embeds the NRFAR-MLP algorithm using
single-precision floating-point data representation. We refer
to it as single-NRFAR-MLP. This deployment focuses on
optimizing the foraging activity recognition performance. The
second deployment focuses on reducing the microcontroller
energy consumption by using a fixed-point data representa-
tion (FP-NRFAR-DT). FP-NRFAR-DT uses the state-of-the-
art fixed-point representation of the CBEBA algorithm (FP-
CBEBA) [26]. Table I summarizes the distinctive characteris-
tics of the different NRFAR algorithm approaches.

TABLE I
MAIN PARAMETERS OF THE DIFFERENT NRFAR ALGORITHM
APPROACHES.
Algorithm Activity Data format Input sampling
approaches classifier representation frequency [Hz]
NRFAR* MLP Double-precision 44,100
NRFAR-MLP MLP Double-precision 2,450
NRFAR-DT DT Double-precision 2,450
single-NRFAR-MLP MLP Single-precision 2,450
FP-NRFAR-DT DT Fixed-point 2,450

*State-of-the-art algorithm used for reference.

C. Dataset

The fieldwork to collect acoustic signals took place at the
Michigan State University’s Pasture Dairy Research Center at
the W.K. Kellogg Biological Station, Hickory Corners, MI,
USA in August of 2014. The procedures for animal handling
and use were revised and approved by the Institutional Animal
Care and Use Committee of Michigan State University. The
experimental cows were part of a herd that was housed and
managed on a pasture-based robotic milking system with
voluntary cow traffic as described by [27]. Twenty-four hours
of continuous acoustic recordings were obtained on 6 non-
consecutive days. Every day, the foraging behavior of 5 lactat-
ing high-production multiparous Holstein cows was recorded
by 5 independent equipment devices that were rotated daily
across the 5 cows, according to a 5 x 5 Latin-Square design.
Each device included two directional electret microphones
connected to a digital recorder (Sony Digital ICD-PX312,
Sony, San Diego, CA, USA). The recorder was enclosed
in a weatherproof case (1015 Micron Case Series, Pelican
Products, Torrance, CA, USA) for protection, which was
attached to a halter located on the neck of the animal. The
microphones were placed at the forehead of the cow in a non-
invasive way and held and protected by an elastic band to
prevent microphone movement, reduce noise caused by wind,
and protect microphones from friction and scratches [28].
One microphone was positioned facing outwards to collect
masticatory sounds. The other microphone faced inwards to
capture the vibrations transmitted through the animal’s bones.
Each recorder generated four audio recordings of 6 h duration
daily. The recordings were saved in stereo with a 16-bit
resolution using a sampling rate of 44.1 kHz. The channel of
the audio recordings corresponding to the microphone faced
inwards was only used in this study because they present better
sound quality. More relevant information on the conditions of
this experiment is given in [22]. The ground truth identification
of foraging activities was carried out by two experts with
extensive experience in foraging behavior scouting and digital
analysis of acoustic signals. Both experts listened to the
recordings to identify, delimit and label activities. Activity
blocks were labeled into one of three classes: grazing, ru-
mination or other.

D. Experimental Setup

The experiments were carried out in Matlab R2022b (Math-
Works, Natick, MA, USA), except for specific cases mentioned
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in the following. This study used 92 audio recordings, totaling
349.4 h of outdoor activities. The sampling frequency was
decreased from 44,100 Hz to 2,450 Hz using the decimate
function of Matlab. This function applies an 8th-order infinite
impulse response Chebyshev Type I low-pass filter to the
original signal to avoid aliasing. The filter is applied forward
and reverse to avoid phase distortion. Classes distribution
corresponds to 50.5% grazing, 34.9% rumination and 14.6%
of other activities, which reflects typical cattle behaviors [11].
A 5-fold cross-validation scheme was conducted to train and
test the models. In each fold, 80% and 20% of the audio
recordings were used for training and testing, respectively. The
training data were balanced using synthetically oversampled
with random undersampled algorithms [29].

To assess the algorithm’s performance, the roster of labeled
blocks, accompanied by their corresponding activity types and
bouts for each audio signal was partitioned into 1-second
frame sequences. This division allows for a direct one-on-
one comparison between the algorithm output predictions and
the ground-truth labels, producing a high-resolution activity
recognition analysis of 1,257,759 frames. Furthermore, this
approach eliminates the need to handle time offsets, block
fragmentation, and merging in the time series activity clas-
sification [30]. The balanced accuracy metric was computed
for each audio recording to determine model performance.
This metric is a reliable performance indicator for imbalanced
multi-class problems [31].

The MLP activity classifier of NRFAR-MLP has the same
architecture and was trained in the same way as the MLP
classifier of NRFAR. A grid-search method was used to
determine the optimal values for the two hyperparameters:
learning rate and the number of neurons in the hidden layer.
The number of neurons was evaluated within a range of 4
to 10 and the learning rate was evaluated at values of 0.1,
0.01, 0.001, and 0.0001. The network weights and biases were
optimized using the scaled conjugate gradient backpropagation
algorithm. The DT classifier of the NRFAR-DT was built using
the classification and regression tree algorithm [24]. To limit
the growth of the tree, the maximum number of splits was
limited to 20, and the minimum number of samples required
to be considered a leaf node was optimized during model
training.

The Fixed-Point Designer tool of Matlab was used to
manually adjust the bit-accurate fixed-point representation of
the variables of FP-NRFAR-DT. No modification over the FP-
CBEBA used internally in the FP-NRFAR was conducted. The
original 16-bit input audios were requantized to 9-bit resolu-
tion to match the requirements of the FP-CBEBA. Unlike the
NRFAR approaches using double-precision floating-point rep-
resentation, the foraging activity recognition performance of
FP-NRFAR-DT and single-NRFAR-MLP was evaluated using
the compiled C code. The C code was compiled with arm-
none-eabi-g++ and deployed in an RP2040 microcontroller
mounted on a Raspberry Pi Pico board, using the default pe-
ripheral and clock configurations. The RP2040 microcontroller
is a 32-bit dual-core ARM Cortex-MO+ based processor able

TABLE II
ACTIVITY RECOGNITION PERFORMANCE OF THE NRFAR ALGORITHM
USING DIFFERENT INPUT AUDIO FREQUENCIES.

Algorithm Input sampling  Balanced Accuracy

approach frequency [Hz] (median + SD)

NRFAR* 44,100 88.7 £ 10.8
NRFAR-MLP 2,450 89.0 £ 9.6

*State-of-the-art algorithm used for reference.

TABLE III
PERFORMANCE RATE FOR THE PROPOSED ALGORITHM USING DIFFERENT
FORAGING ACTIVITIES CLASSIFIERS. THE INPUT AUDIO FREQUENCY IN
ALL CASES IS 2,450 Hz.

Algorithm Activity  Balanced accuracy
approach classifier (median + SD)
NRFAR-MLP MLP 89.0 £ 9.6
NRFAR-DT DT 87.4+11.4
single-NRFAR-MLP MLP 88.8 £9.9
FP-NRFAR-DT DT 83.8 +12.9

to operate up to 133 MHz with 264 kB of embedded static
random-access memory, 30 general purpose input/output pins
and two main power-saving modes. The dormant sleep mode
uses a real-time clock to wake up the microcontroller, which
is suitable for our implementations [32]. In our deployments,
the current consumptions were 29 mA and 0.18 mA for the
active and sleep mode, respectively, using a power supply of
3.3 V and a clock frequency of 125 MHz.

III. RESULTS

The effect of decreasing the sampling frequency of the audio
signal from 44,100 Hz to 2,450 Hz is shown in Table II. The
balanced accuracy averaged over the audio signals presented
a small improvement of 0.3% in favor of NRFAR-MLP
(p = 0.81; Wilcoxon signed-rank test [33]). Table III shows
that NRFAR-DT exhibited a lower performance of 87.4%
than NRFAR-MLP (p=0.01). The embedded implementation
of single-NRFAR-MLP achieved an 88.8% balanced accuracy,
which is comparable to the 89.0% reported by the double-
precision NRFAR-MLP (p = 0.78). Moreover, the fixed-point
implementation of FP-NRFAR-DT decreases the performance
by 3.6% in comparison to the double-precision NRFAR-DT
(p=0.01).

The energy consumption to periodically classify the seg-
ments of 5 min (fsegment) in the RP2040 microcontroller
depends on the inference time (finference) and the power
consumption in active (Pyetive) and sleep (Pyjeep) modes.
The energy consumption in active (Egctive) and sleep (Pyjeep)
modes and the mean power consumption P are given by:

Eactive = Pactive * tinference (1)

Esleep = Fsleep * (tsegment - tinfe’rence) (2)

Eactive + Esleep

tsegment

P= 3)
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The inference time and energy/power consumption for both
algorithm deployments are presented in Table IV. Table IV
also gives the time required to recognize the JM-events
(bottom and middle levels in Fig. 1) and to classify the
performed activity (top level in Fig. 1). The entire computation
for classifying a 5 min segment depends almost entirely on
the processing time associated with recognizing JM-events, as
over 99% of the total inference time is dedicated to this task.
These findings agree with the results of the NRFAR [22]. The
single-NRFAR-MLP algorithm consumes 3.66 J to compute
the identification of a segment during 38.23 s. During the idle
state, it consumes 0.16 J over 261.77 s. Therefore, on average,
it consumes 12.71 mW. Similarly, FP-NRFAR-DT consumes
0.35 J in active mode during 3.70 s and 0.16 J in sleep mode
during 296.30 s, resulting in an average power consumption
of 1.77 mW.

IV. DISCUSSION

Acoustic monitoring is a reliable method for continuous
monitoring of ruminants’ foraging behavior. It provides insight
into animal welfare and pasture management practices. In
recent years, algorithms for monitoring the foraging behavior
of cattle have been developed. However, its real application
on autonomous sensors designed to work in field conditions
still needs to be researched. In this work, an acoustic-based
foraging activity recognizer has been deployed in an embedded
system for real-time application. The motivation of this work is
to provide farmers with a reliable tool to enhance productivity
through the individualized monitoring of animals. To the best
of our knowledge, it is the first embedded implementation
able to accurately classify rumination and grazing activities
using masticatory sounds. The NRFAR algorithm was chosen
as the target for this embedded implementation due to its high
performance even in noisy environments commonly found
in pastures. NRFAR is based on the statistical analysis of
different JM-events classes. Their proper operation depends,
therefore, on the correct recognition of the JM-event classes.
To achieve the computational and power requirements for the
embedded implementation, the NRFAR algorithm has been
modified using different approaches. The effect of reducing
the sampling frequency of the audio from 44,100 Hz to
2,450 Hz presented a slight increase in performance of 0.3%,
although this is not statistically significant (Table II), which
is consistent with the requirement to properly recognize JM-
events established in a previous work [17]. We hypothesize
that the increase in performance is due to the anti-aliasing
filter removing high-frequency noise. Therefore, the algo-
rithm approaches described in the following operate with an
audio sampling frequency of 2,450 Hz. Machine learning
classifiers based on logic operations present good results
in several problems and are feasible to implement in most
microcontrollers. The original MLP neural network activity
classifier in NRFAR-MLP was replaced with a DT (NRFAR-
DT), resulting in a slight decrease in performance by 1.3%.
This level of performance drop is deemed acceptable for a
classifier that requires a maximum of 20 comparison opera-

tions. NRFAR-MLP using single-precision data representation
(single-NRFAR-MLP) and NRFAR-DT using fixed-point data
representation (FP-NRFAR-DT) were deployed on an RP2040
microcontroller.

The single-NRFAR-MLP algorithm has a higher recognition
performance metric than FP-NRFAR-DT (88.8% vs. 83.8%)
(Table III). However, the inference time of single-NRFAR-
MLP is 10 times longer (38.2 s vs. 3.7 s) which increases
its power consumption by more than 7 times (12.7 mW vs.
1.8 mW) (Table IV). This is related to the optimized fixed-
point data representation and mathematical operation used by
the FP-NRFAR-DT. In both deployments, the total inference
time has a remarkable dependency on the inference time
for the recognition of JM-events (bottom and middle levels
with blue background color in Fig. 1). While the JM-events
recognizer processes all input signal samples, the last stage
of the algorithm for classifying the foraging activity performs
only once per segment (top level of Fig. 1). These results
support the basis for the deployment of a fixed-point data
representation of NRFAR using an ensemble tree classifier
to improve the recognition performance of FP-NRFAR-DT
in a future study. Remarkable is that the energy consumed
in sleep mode for the FP-NRFAR-DT represents 33% of the
total energy consumption (active mode plus sleep mode). The
energy profile of FP-NRFAR-DT of this deployment could be
improved using an ultra-low-power microcontroller with lower
power consumption in sleep mode. However, due to its higher
computational requirements, embedding single-NRFAR-MLP
on ultra-low-power microcontrollers could be ineffective. Us-
ing the RP2040 microcontroller allows us to implement a
complex algorithm, able to provide high recognition rates, in
a portable device for developing a practical device to be used
in farms. Moreover, the microcontroller has an ARM Cortex-
MO+ processor. This processor presents a simpler architecture
than other Cortex-M family and is commonly used in low-cost,
low-power embedded applications [34].

V. CONCLUSION

This study presented the real-time implementation in a low-
power embedded system of an algorithm for the recognition of
grazing and rumination activities in cattle. As far as we know,
this is the first time masticatory sound signals are used to
recognize foraging activities in an electronic device. The state-
of-the-art NRFAR algorithm was selected as the reference for
deployment on an energy- and resource-constrained micro-
controller. Various parameters, such as input audio frequency,
data bit resolution, and the machine learning activity classifier,
were fine-tuned to reduce computational requirements without
compromising algorithm accuracy. Two optimized algorithm
approaches were embedded in an ARM Cortex-M0+ micro-
controller, achieving a balanced accuracy metric of 83.8% and
88.8%, while consuming 1.8 mW and 12.7 mW, respectively.
These promising results lay the groundwork for creating a
completely autonomous acoustic sensor with wireless com-
munication and energy harvesting capabilities in future work.
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TABLE IV
INFERENCE TIME AND ENERGY CONSUMPTION OF THE EMBEDDED ALGORITHMS TO CLASSIFY A SEGMENT OF 5 MIN.

Algorithm deployment single-NRFAR-MLP  FP-NRFAR-DT
Inference time to recognize JM-events (median + SD) [s] 38.23 £ 0.05 3.70 & 0.00
Inference time to classify foraging activities (median + SD) [us] 964.60 £ 8.14 59.70 £ 0.90
Total inference time (median £+ SD) [s] 38.23 +0.05 3.70 £ 0.00
Energy consumption in active mode (Eq. 1) [mJ] 3658.61 354.09
Energy consumption in sleep mode (Eq. 2) [mJ] 155.49 176.00
Average power consumption (Eq. 3) [mW] 12.71 1.77
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