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Abstract. The automatic recognition of speaker-independent digits re-
quires high accuracy and robustness to noise and variability. Spiking
neural networks (SNNs) are a promising model for this task, as they
can mimic the temporal dynamics and energy efficiency of the human
auditory system. However, SNNs are difficult to train and often require
complex learning algorithms. Spoken digits provide a useful benchmark
task to evaluate new SNN architectures. Performance in small vocabu-
lary tasks is an important first step before scaling up to more complex
recognition scenarios. In this paper, we propose to use an extreme learn-
ing layer (ELL) as a simple and effective way to improve the learning
of SNNs for spoken digit recognition. The ELL is a randomly generated
layer that maps the input features to the next layer without any further
adjustment. The output layer is then trained by entropy minimization.
We show that ELL can boost the performance of the SNN on the bench-
mark data set TIDIGITS. We also compare our approach with some
state-of-the-art methods achieving competitive results with less compu-
tational cost and complexity. The proposed approach also shows good
robustness to additive noise.

Keywords: Spiking Neural Networks · Extreme Learning Machines ·
Automatic Speech Recognition

1 Introduction

The task of speech recognition has numerous applications in various fields such
as education, health, security, and communication. However, despite significant
advances, one of the main barriers to speech recognition is the difficulty for
current systems to handle noise in the signal, while the human brain is almost
immune to it [1]. Therefore, it is important to explore new strategies to address
this problem, especially those inspired by the functioning of the auditory system
and the human brain.

Deep neural networks (DNNs) are the models that currently achieve the best
performance in most speech-related tasks. DNNs also have the ability to learn
features directly from raw speech samples. However, despite their success, DNNs
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2 Peralta et al.

suffer from some drawbacks such as high computational requirements and high
energy consumption [5], which encourages the scientific community to continue
looking for alternatives.

One strategy that has generated growing interest in the last years is the use of
spiking neural networks (SNNs), a special type of artificial neural network that
aims to closely mimic the functioning of biological neurons [10]. This enables
event-driven and parallel implementations to improve efficiency [8,3,13]. One of
the most significant properties of SNNs is their ability to communicate between
neurons using pulses that mimic the action potentials of biological neurons.
These potentials can be efficiently modelled using binary codes, which facilitates
the implementation of SNNs in digital devices [8]. In addition, SNNs mimic the
internal potential of the membrane by following a temporal dynamic similar to
biological neurons [3], making them suitable for processing temporal signals such
as speech [13].

Extreme Learning Machines (ELM) is a learning technique proposed by
Huang et al. [7] that allows for fast and efficient training of single hidden layer
neural networks. The basic idea behind ELM is to randomly assign the weights
of the connections between the input layer and the hidden layer and then cal-
culate the weights of the connections between the hidden layer and the output
layer using a closed-form analytical formula. ELMs have several advantages over
other neural network training methods. Firstly, it is very fast, as it does not
require iterations to adjust the connection weights. Secondly, ELM is very easy
to implement, as it does not require the calculation of gradients or the adjust-
ment of hyperparameters such as the learning rate or momentum. Third, ELM
has been shown to perform well on various classification tasks, including speech
recognition [6].

In this work, we propose a new supervised neural network (DELSNN, Digital
Extreme Learning Spiking Neural Network) that is tested on a spoken digit
recognition task. The DELSNN was inspired by the classical work presented by
Unnikrishnan and Hopfield [14], but we also added an extreme learning layer.
Unnikrishnan proposed an analogue network for the recognition of isolated digits
using a binary temporal encoding of speech spectral features.

The main contributions are a novel SNN architecture incorporating random
projections for feature expansion combined with direct output layer training
by entropy minimization, alongside evaluations demonstrating noise robustness
for isolated spoken digit recognition. Detailed analysis of the DELSNN training
and results is presented for the first time. In a previous work [12], an FPGA
implementation and some preliminary results showing real-time capacity were
presented.

The rest of the article is organized as follows. Section 2 presents the design
and implementation of the proposed DELSNN, as well as the training algorithm
and the spike encoding method. Section 3 shows the experimental results ob-
tained in a database of spoken digits in English. Finally, Section 4 presents the
conclusions and possible lines of future work.
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ELM Layer: A Boost for Spoken Digit Recognition with SNNs 3

2 Methods

2.1 Proposed DELSNN Model

The SNN proposed in this work is called DELSNN (Digital Extreme Learning
Spiking Neural Network), and its goal is to recognize spoken digits in clean
or additive noise conditions. The SNN has a feedforward architecture with one
input layer and two layers of neurons: the extreme learning layer (ELL) I and
the output layer J. The input layer is not composed of neurons but of a vector
V that receives a binary encoding of the speech signal as a stimulus, obtained
by spectral analysis and mapping to spikes. The neurons of the ELL layer are
connected with multiline connections on one side to each coefficient of the input
vector, and on the other side to each neuron in the output layer. The output
layer has as many neurons as digit classes to recognize (11 in this case), and
each one emits a spike when it detects the presence of a specific digit.

The main feature of DELSNN is that it uses temporal delays and random
weights in the connections of the neurons for the first layer, allowing for extreme
learning without the need to adjust these weights using complex algorithms.
Temporal delays introduce temporal diversity in neuron inputs, facilitating class
separation. Random weights introduce spatial diversity in neuron inputs, pro-
moting generalization capacity. The only component that requires training are
the output layer weights, which are adjusted using a straightforward algorithm
based on entropy minimization.

The neuronal model used for SNN neurons is the spike response model (SRM),
which is one of the models with a good trade-off between realistic and efficient
hardware implementation.

A simplified diagram of the DELSNN architecture is shown in Figure 1,
illustrating the flow of data from input spikes to output spikes.

2.2 Speech Signal Encoding

Speech signal encoding is the process of transforming the speech signal into a
binary sequence that can be used as a stimulus for SNN. Speech signal encoding
consists of two main steps: feature extraction and spike mapping.

In this work feature extraction is based on spectral analysis performed using a
Mel scale spectrogram (MSS). This is a widely used and effective psychoacoustic-
motivated energy distribution of the speech signal over time and frequency.

The process of spike mapping involves converting the MSS into a binary
representation by assigning each value a 0 (no spike) or a 1 (spike). This is
accomplished by applying a thresholding function to each frequency band of the
spectrogram. If the energy of the band surpasses a certain threshold, a spike is
generated. In this study, the thresholding function used for spike mapping differs
from [14] as it does not use the lateral inhibition strategy. Instead, an adjustable
parameter is used to determine the threshold.

The result of the speech signal encoding is a matrix of spikes, where each
row corresponds to a frequency band, and each column to a time window. This
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Fig. 1. Simplified diagram of the proposed DELSNN structure.

matrix is used as input for the SNN, where each frequency band corresponds to
a coefficient of the vector V.

2.3 Neuron Model

The spiking neuron model used for this work is the Spike Response Model (SRM).
The SNN operates in a time-driven manner, where the simulation time incre-
ments by a constant value, and at each step, the presence of spikes in the input
vector V is analyzed to update the state of all neurons in the SNN. Below,
we describe the operation of a neuron i belonging to the layer I. However, this
explanation can be applied to any neuron in the SNN.

The state of neuron i is described by the state variable ui. This neuron fires
if ui reaches the threshold ϑ. At the instant when the threshold is crossed, the

discrete firing time n
(f)
i is defined, where f indicates the number of firings or

spikes emitted by the neuron i. The set of all firing instants of neuron i is defined
as:

Fi =
{
n
(f)
i

}
= {n/ui[n] > ϑ} . (1)

The sequence of spikes emitted by a neuron in layer I can be written as a
sequence of discrete Dirac deltas:
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ELM Layer: A Boost for Spoken Digit Recognition with SNNs 5

Si[n] =
∑

n
(f)
i ∈Fi

δ[n− n
(f)
i ], with Fi =

{
n
(1)
i , ..., n

(s)
i

}
. (2)

The excitations to the neuron i are given by the spikes coming from each
component of the input vector V. Moreover, since the input vector is updated
at each simulation instant, the temporal evolution of each component can be
described as Vv[n], where n is the simulation time instant, and v (with 1 ≤
v ≤ N) indicates the v-th component of the vector V. A spike that belongs
to an element of the input vector is distributed among each of the propagation
delays dk of each connection leaving that component. Once the spikes have been
delayed by the propagation delays, they reach the neurons as presynaptic pulses
triggering a change in the neuronal state. Each presynaptic spike that excites
neuron i increments (or decrements) its variable ui by an amount W k

v,i, h[n −
dk], where h is the impulse response (spike) of the neuron. The increment or
decrease in the variable depends on whether the weight is positive or negative,
respectively. The state ui of neuron i at time n is given by the linear superposition
of the contributions from all propagation delays of all components of the input
vector. This is described in Eq. 33:

ui[n] =

N∑
ν=1

K∑
k=1

∞∑
τ=0

Vν [τ ]W
k
ν,i h[n− τ − dk]. (3)

If we consider a neuron in the output layer J, the update equation for the
state variable uj of neuron j at time n is given by the linear superposition of
the contributions of all spikes coming from neurons in layer I. This is described
in Eq. 4:

uj [n] =

M∑
i=1

K∑
k=1

∞∑
τ=0

Si[n]W
k
i,j h[n− τ − dk]. (4)

Similar to Eq. 2, we can represent a sequence of spikes emitted by a neuron
in layer J as a sequence of discrete Dirac deltas:

Sj [n] =
∑

n
(f)
j ∈Fj

δ[n− n
(f)
j ], Fj =

{
n
(1)
j , ..., n

(s)
j

}
, (5)

where n
(f)
j is the instant of the f -th firing of neuron j ∈ J.

Considering Eqs. 3 and 4, the internal operation of a neuron, that is, the
variation of its state u, can be interpreted as the discrete linear convolution of
incoming spike sequences with an impulse response function h[n]. This implies
that when simulating the operation of the SNN, one can choose an “arbitrary”
h[n].

3 The internal summation with the upper limit ∞ indicates that the summation is
performed until the entire spike encoding of the digit is completed.

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
si

nc
.u

nl
.e

du
.a

r)
I.

 R
. P

er
al

ta
, N

. O
de

tti
 &

 H
. L

. R
uf

in
er

; "
E

xt
re

m
e 

L
ea

rn
in

g 
L

ay
er

: A
 B

oo
st

 f
or

 S
po

ke
n 

D
ig

it 
R

ec
og

ni
tio

n 
w

ith
 S

pi
ki

ng
 N

eu
ra

l N
et

w
or

ks
"

Sp
ee

ch
 a

nd
 C

om
pu

te
r,

 p
p.

 3
-1

7,
 2

02
3.



6 Peralta et al.

2.4 Output Layer Training through Entropy Minimization

During each iteration of the process, the SNN is presented with all the training
pronunciations encoded in spikes. Projecting these spikes by the fixed random
layer ELL enables weight updates of the next layer to be performed through an
iterative process. When a pronunciation is presented, it produces a sequence of
spikes (Si[n]) at the outputs of neurons in layer I. These sequences of spikes
(Si[n]) are then distributed in the propagation delays to enter the neurons in
the output layer J. Equation 4 can be rephrased in the following way:

uj [n] =

M∑
i=1

K∑
k=1

W k
i,j

∞∑
τ=0

Si[n]h[n− τ − dk], (6)

uj [n] =

M∑
i=1

K∑
k=1

W k
i,jRik[n], (7)

where Rik[n] =
∑∞

τ=0 Si[n]h[n−τ−dk] is the unweighted response of any neuron
belonging to the output layer to the sequence of spikes emitted by the i-th neuron
in layer I with the k-th delay. That is, for each digit w in the training word set
W, the input data to the second layer consists of M ×K responses Rw

ik[n], which
will be used to describe the weight update function. In turn, the endpoint n∗ is
defined as the moment when digit w generated the last spike in layer I. That is:

n∗ = max {n | Si[n] = 1} . (8)

Considering the endpoint n∗, we can define Rw
ik[n

∗] = Rw
ik.

Next, we will describe the training considering only the endpoints for each
pronunciation of digit w. That is, for each digit, only the D = 11 values of
the state variables uj of the output neurons j = 1, 2, ..., D will be used at the
endpoint (uj [n

∗]). Later, the algorithm will be extended to the rest of the values
of n.

The goal is to have the activity of each output neuron represent the mem-
bership to a specific digit class. To achieve this, the probability of belonging to
a class can be approximated by applying a function to the state variable uj [n].
For this, it is necessary to ensure that the range of this function varies between
zero and one. The probability of digit w belonging to the j-th class at instant n∗

is defined as V w
j [n∗] = V w

j . This value is determined by the SNN and is obtained
by evaluating uj [n

∗] with a sigmoid function whose range varies between zero
and one. Eqs. 9 and 10 show two possible options for the sigmoid function:

V w
j =

1

2
[1 + tanh (βuj [n

∗])] , (9)

V w
j =

1

1 + e−auj [n∗]
. (10)

Associated with each digit w in the training set, there are the probabilities
Pw
+,j that the digit is an instance of category j, and Pw

−,j that the digit is not an
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ELM Layer: A Boost for Spoken Digit Recognition with SNNs 7

instance of that category, where Pw
−,j = 1 − Pw

+,j . These probabilities can only
take unambiguous values of “1” or “0”, given that the class to which each train-
ing word belongs is known. The proposed algorithm uses the Kullback-Leibler
divergence measure between two probability distributions. In other words, it
minimizes the relative entropy between the distribution Pw

+,−,j – which repre-
sents the desired output values of the SNN – and the distribution V w

+,−,j , which
is the actual output obtained by the SNN. This is expressed as:

DKL(P ||V ) =
∑
W

∑
j

∑
+,−

Pw
+,−,j ln

(
Pw
−,+,j

V w
−,+,j

)
, (11)

where V w
+,j = V w

j = 1− V w
−,j . The inclusion of non-membership cases (negative

probabilities) is equivalent to what is done when training a multilayer perceptron
(MLP). During the training of an MLP, the desired output value of the neuron
representing the class of the input pattern is usually set to one, and the outputs
of the rest of the neurons in the network are set to zero. This is done because,
for a particular word, we only want the SNN output neuron representing the
pronounced digit to be active.

To perform the weight adaptation in the last layer, the well-known Newton’s
method equation can be used:

∆W k
i,j = −ϵ

dDKL(P ||V )

dW k
i,j

. (12)

DKL(P ||V ) =
∑
W

∑
j

∑
+,−

Pw
+,−,j

[
ln
(
Pw
+,−,j

)
− ln

(
V w
+,−,j

)]
(13)

Then, the negative derivative of the divergence is determined as follows:

−dDKL(P ||V )

dW k
i,j

=
∑
W

Pw
+,j

V w′

+,j

V w
+,j

− Pw
−,j

V w′

+,j

1− V w
+,j

(14)

If we use the sigmoid function described in Eq. 9, we can write:

V w′

j = V w
j βRw

i,k [1− tanh (βuj [n
∗])] , (15)

1− V w
+,j =

1

2
[1− tanh (βuj [n

∗])] . (16)

Then, the equation for the weight update becomes:

∆W k
i,j = ϵ

∑
W

[Pw
+,j − V w

+,j ]R
w
i,k, (17)

where the constant ϵ determines the speed at which the algorithm attempts to
reach the optimal weight values. If its value is very small, the algorithm will take
many iterations to reach the goal. On the other hand, if ϵ is too large, it will not
reach an optimal solution. In the experiments conducted in this work, ϵ = 0.008
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8 Peralta et al.

was used. It can be shown that using the sigmoid function from Eq. 10 leads to
the same result. If we calculate the second derivative of the divergence, we get:

d2DKL(P ||V )

dW k
i,j

=
∑
W

β(Rw
i,k)

2V w
+,j [1− tanh(βuj [n

∗])] ≥ 0. (18)

Since Eq. 18 is always greater than or equal to zero, the use of Eq. 17 will always
lead to the global minimum of the divergence DKL(P ||V ).

While the algorithm was described for the endpoint n∗, it can be extended to
any temporal point n ∈ P of the pronounced word. Simply include the evaluation
points described by the set P in the summation and establish the desired value
(Pw

+,j) for those points. In the experiments carried out in this work, all points
of each pronunciation are used for adaptation. The weight update rule can be
expressed by the following equation:

∆W k
i,j = ϵ

∑
W

∑
P

[
Pw
+,j − V w

+,j [n]
]
R

w[n]
i,k , (19)

where the desired values are determined by the following rules:

– If the pronounced word belongs to the class of the output neuron

• Pw
+,j = 1 if the training point is the endpoint.

• If the training point does not match the endpoint, Pw
+,j is unspecified,

and no adaptation is performed.

– If the output neuron does not match the class of the pronounced word,
Pw
+,j = 0 at the endpoint and the other evaluation points.

The choice of the above rules allows training the output neurons to emit
spikes in a period of time close to the endpoint of the pronunciation. The algo-
rithm is initialized with all weights set to zero.

3 Results and Discussion

3.1 Database and Experiments

To train and evaluate DELSNN, subsets of the TI-DIGITS database [9] were
used. This database comprises isolated English digit pronunciations and digit
sequences spoken by various speakers from 21 different dialectal regions in the
United States. For this work, only isolated-digit pronunciations were used. The
considered digits range from 0 to 9, including both versions of the zero digit
commonly used in English speech (zero and oh). The database consists of 326
speakers, including 111 males, 114 females, 50 boys, and 51 girls.

Each speaker produced two pronunciations for each digit, resulting in 22
isolated digit pronunciations per speaker. For the experiments carried out in
this work, these speakers were divided into three distinct sets: train, test, and
validation.
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ELM Layer: A Boost for Spoken Digit Recognition with SNNs 9

To train the weights and delay lengths of the final layer, various experiments
were performed. The study considered 11 classes (zero, oh, one, two,..., nine),
with 138 pronunciations per class used for the training dataset, 226 pronunci-
ations per class for the evaluation dataset, and 50 pronunciations per class for
the validation dataset. As each speaker contributed two pronunciations for each
digit, the total number of speakers amounted to 207, with 113 for evaluation
(57 females, 56 males), 69 for training (42 females, 27 males), and 25 for valida-
tion (15 females, 10 males). These datasets are mutually exclusive, meaning that
speakers present in one dataset are not included in the others. Thus, the speech
recognition process is independent of the speaker. The partitioning used adheres
to the proposals provided in the TIDIGITS database to facilitate comparison
with other research.

3.2 Design Decisions and Hyperparameter Tuning

The reproducibility of results is crucial in scientific research. To reproduce an
experiment, all relevant parameters must be thoroughly documented. In machine
learning, this includes specifying the hyperparameter configuration used to train
models, as small variations can greatly impact final performance. A reduced
subset of the training partition was used to find suitable values for relevant
hyperparameters, such as:

– Number of frequency bands: Values between 16 and 64 were tested. 32 bands
were chosen as a good trade-off between resolution and dimensionality.

– Number of neurons M for the ELL layer: Values between 16 and 64 were
tested.

– Threshold for spike generation Ψ : Values between 0.25 and 0.75 were evalu-
ated. 0.37 was selected as it provided the best results.

– Sigmoid parameter a (Ec. 10): Values between 0.0001 and 0.1 were tested.
a = 0.001 provided the fastest convergence.

– Learning rate ϵ: Values between 0.001 and 0.1 were tried. 0.008 resulted in
stable learning.

The number of output layer neurons was set to 11, to account for the 1-9
digit classes plus two extra neurons for distinguishing the two “0” versions. The
number of training iterations was fixed at 100 based on convergence analysis.

The neuron model parameters were configured as follows: threshold θ = 15
for ELL neurons and θ = 1 for output layer neurons, and impulse response
h[n] matching a linearly increasing function. shape. Refractory periods were not
taken into account. The weights of the ELL were randomly assigned with a mean
µ = 0 and variance σ = 80. Twenty delays per connection were used, and the
duration of the delays starts at zero and increases by a constant value Ti = 60
milliseconds. The value Ti also coincides with the duration of the Spike-Response
Model (SRM), which only mimics the morphology of a biological response, not
its temporal duration. The SNN was configured so that all weights are of integer
type to facilitate the transfer to digital design.

Table 1 resumes the main final hyperparameters of the proposed DELSNN
model.
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10 Peralta et al.

Table 1. DELSNN final hyperparameters. See Fig. 1 for notation references.

Stage Hyperparameter Value

Spectral Analysis

Sampling frequency (fm) 8 kHz
Highest frequency 3785 Hz
Lowest frequency 227 Hz
Frequency bands 32
Window type Hamming
Window samples 80
Overlap 50 %

Spike Encoding Threshold Ψ 0.37

Neuron model

Firing threshold θ 15 and 1
Refractory period 0 ms
Inter-layer delays 0-1200 ms
SRM Ti 60 ms
h[n] linearly increasing

SNN Layer I

Input neurons N 32
ELL neurons M 32
Delays per connection 20
Weight mean µ 0
Weight variance σ 80

SNN Layer J

Output neurons D 11
Sigmoid a 0.001
Learning rate ϵ 0.008

3.3 Performance Metrics

To evaluate the performance of the neural network, various criteria were estab-
lished to determine the winning neuron when multiple neurons are active in the
output layer. The following criteria were used:

– CMATS (Class with Maximum Accumulated Time of Spikes): This
criterion declares the neuron with the maximum duration of the spike train
in its output as the winner.

– CS (Class with Maximum Number of Spikes): In this criterion, the
neuron that produces the maximum number of spikes in its output is declared
the winner, regardless of the time period it took to emit those spikes.

– DP (First to Discharge Class): The winner in this criterion is the neuron
that fires first and emits a spike.

– RAND (Random Class): In this case, the winning neuron is randomly
chosen among all the neurons that emitted spikes.

– HARD (Hard Criterion): This is the most demanding criterion, as if two
neurons emit spikes, the network considers it a failure to determine the class
of the input example.

The results obtained with these criteria showed no significant difference in
recognition performance, except for the HARD and RAND criteria, which ex-
hibited inferior performance. Consequently, the CMATS criterion was used to
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ELM Layer: A Boost for Spoken Digit Recognition with SNNs 11

measure recognition stability during training. Once stability was achieved, the
training process was terminated, and the weights obtained at the last epoch were
used to evaluate the network’s performance with the evaluation data.

3.4 Effect of including ELL

The purpose of random weights between the input vector and the first layer is to
project signals into a higher-dimensional space, thereby discriminating certain
characteristics that could not be separated in the initial representation. The
number of neurons in the first layer, which is a key parameter was set to 32,
equal to the dimension of the input vector. Although increasing the number of
neurons can potentially improve recognition rates, it also significantly increases
computational costs. Despite the number of hidden layer neurons equalling the
number of dimensions of the input vector, the transformation still increases
the dimensionality of internal network representation. This is due to connection
delays between the first layer and the input vector. This “expansion” effect in
the temporal dimension is analogous to that observed during a convolution with
an impulse due to the memory property of linear systems. An example of the
response of the first layer of neurons to the presentation of a spike pattern
corresponding to a digit at the input of the SNN can be seen in Fig. 2. The
above-mentioned expansion of the representation in the time domain can be
clearly observed.

The proposed DELSNN was evaluated on clean digits from the TIDIGITS
dataset. The training, validation and test partitions described in Section 3.1 were
used. To assess the benefits of incorporating the extreme learning layer, com-
parative experiments were conducted training the network with and without the
ELL. Without the ELL, the SNN was trained using direct entropy minimization
on the output weights. In contrast, the ELL configuration included an additional
20480 randomly initialized input-projection connections.

Figure 3 illustrates the test set accuracy over training iterations for both
settings. It can be in observed in Fig. 3 (B) that accuracy rapidly increases dur-
ing the first 10-20 iterations, reaching around 80% (CMATS). After that, more
gradual improvements occur until converging at approximately 88% accuracy.
After 100 iterations, the ELL network achieves 88.18% accuracy compared to
64.36% for the network without ELL (Fig. 3 (A)). So the ELL version converges
faster and to a higher level of performance.

The incorporation of randomly projected features provides two key benefits.
Firstly, it increases the separation between classes, facilitating the training pro-
cess. Second, it improves generalisation by improving the variability of internal
network representations.

Figure 4 shows the accuracy per class after training with and without ELL.
As it can be seen, accuracy levels are higher for most digits when using the
ELL, especially for challenging cases like 5 and 9. The ELL’s ability to better
distinguish acoustically similar digits highlights its advantages.

The high deviations in epochs 0-50 may be due to the randomness of the
ELL weights and delays, which affect the initial state of the network . Some
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Fig. 2. Response of the first layer of neurons to the presentation of the digit “three”.
Top: input pattern to the SNN after coding in frequency bands. Bottom: response of
the first layer of neurons to the presentation of this spectro-temporal pattern (hidden
layer).

instabilities in the computation of KL divergence can also contribute to these
deviations, as ELL may amplify them. As the training progresses, the output
layer weights are adjusted to minimize the entropy, and these deviations decrease.

These results validate the benefits of the proposed extreme learning layer
for boosting the training and accuracy of SNN models in speech recognition
applications. ELL provides a simple and effective technique to incorporate ran-
domness and improve learning in SNN. This also indicates successful training of
the output layer weights through the proposed entropy minimisation algorithm.

3.5 Noise Robustness Evaluation

To evaluate the noise robustness of the proposed DELSNN, experiments were
also performed by adding white noise from the NOISEX database [15] to the
clean TIDIGITS digits. White noise was chosen to evaluate the noise robustness
of the proposed neural network because it contains uniform power at all frequen-
cies of the audible spectrum. This results in a broad spectral mask that obscures
a wide variety of critical acoustic cues for discriminating between phonetically
similar digits.
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Fig. 3. Overall performance train/test accuracy comparison during training without
ELL (A) and with ELL (B) (for clean speech signals).
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Fig. 4. Per-class performance train/test accuracy comparison during training without
ELL (A) and with ELL (B) (for clean speech signals).

The best results obtained for clean and different signal-to-noise ratio (SNR)
levels for different threshold Ψ are summarized in Table 2. For Ψ = 0.370 it
can be observed that accuracy remains relatively stable down to 10 dB SNR,
indicating the noise tolerance provided by the SNN encoding and architecture.
However, performance degrades more sharply below 10 dB SNR, as noise com-
pletely masks discriminative speech characteristics. Nonetheless, the DELSNN
can operate at SNR levels where conventional MFCC and HMM-based systems
suffer from almost 70% error rates. For larger values of Ψ , stability of accuracy
is maintained for higher levels of noise, but speech recognition in clean speech
slightly deteriorates.

The increased noise tolerance of the proposed DELSNN compared to con-
ventional speech recognition systems highlights the potential of SNN-based ap-
proaches. Further improvements may be achieved by exploring alternative noise-
robust spike-coding strategies, such as phase coding [4] or Biologically plausible
Auditory Encoding (BAE) [11]. A comparison with deep architectures like CNNs
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14 Peralta et al.

Table 2. Comparison of different speech recognizers for this task under various levels
of white noise. Missing values correspond to values not reported in the bibliography.

Strategy Threshold Ψ Clean 20 dB 10 dB 5 dB 0 dB

Lyon ear + LSM [16] - 97.50% 84.00% 79.50% - -
LAM + HMM [2] - 98.80% 95.75% 72.79% - -
MFCC + HMM [2] - 98.80% 27.50% 12.20% - -

BAE + SNN [11] W/masking 97.40% 91.90% 87.50% - 78.20

MSE+DELSNN
0.785 79.65% 79.44% 79.81% 80.37% 58.57%
0.576 82.58% 82.54% 83.15% 78.76% 18.02%
0.370 89.14% 89.10% 88.2% 43.08% 1.81%

that also use MSE as input feature would be interesting. However, we could not
find any published results on the TIDIGITS dataset corrupted with additive
noise to include in the comparison.

4 Conclusions and Future Work

In this paper, a novel DELSNN incorporating an extreme learning layer for ro-
bust spoken digit recognition was proposed and evaluated. The presented results
provide initial evidence of the advantages of the EL approach to improving SNN
training. Noise robustness experiments also showcase the potential of SNN ar-
chitectures for speech processing under challenging conditions. Furthermore, as
already demonstrated in our previous work, this model can be efficiently imple-
mented on an FPGA platform, providing potential for real-time applications.

For future work, some research directions are identified, like the evaluation
of larger vocabulary tasks to assess scalability and the exploration of alternative
spike-coding strategies to further improve noise robustness. DELSNN architec-
ture could also be extended to handle connected word recognition by incorpo-
rating some mechanisms to deal with coarticulation effects.
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