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Abstract

Monitoring the foraging behaviour of ruminants is a key task to improve1

their productivity and welfare. During the last decades, several monitoring2

approaches have been proposed based on different types of sensors such as3

pressure-based, accelerometers and microphones. Among them, microphones4

have been one of the most promising options because they acoustic signals5

provide comprehensive information about the foraging behaviour. In this6

work, a fully end-to-end deep architecture is proposed in order to perform7

both detection and classification tasks of masticatory events in one step, re-8

lying only on raw acoustic signals. The main benefit of this novel approach is9

the substitution of handcrafted preprocessing and feature extraction phases10

for a pure deep learning approach, which has shown better performance in re-11

lated fields. Furthermore, different data augmentation techniques have been12
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evaluated to address the data shortness for models development, typical in13

this field. The results demonstrate that the proposed architecture achieves14

a F1 score value of 79.82, which represents an increment close to 18% with15

respect to other state-of-the-art algorithms. Moreover, the proposed data16

augmentation techniques provide further performance enhancements, emerg-17

ing as interesting alternatives in this field.18

Keywords: Deep learning, data augmentation, acoustic monitoring,

precision livestock farming, ruminant foraging behaviour.

1. Introduction19

Specific changes in animal behaviour are directly related to its physical20

conditions (Frost et al., 1997), therefore tracking these changes comprises an21

essential task of livestock management monitoring. Traditionally, it has been22

done by manual observation, which is labour-intensive and unfeasible in some23

practical scenarios. With the advances in communication and information24

technologies, new automatic and non-invasive methods arose to boost data25

collection and processing, simplifying herd management tasks (Neethirajan,26

2020).27

Monitoring ruminants’ foraging behaviour is a critical and challenging28

task. When long-term analyses are performed (ranging from several minutes29

to hours), two main activities must be distinguished: rumination and graz-30

ing. These activities are build-up on different jaw movement (JM) events:31

bites, chews and chew-bites (Ungar et al., 2006; Milone et al., 2012). Bites32

reflect the apprehension and severance of forage, and chews, the herbage33

comminution. A combination of them in the same jaw movement is called34
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a chew-bite event. Monitoring the number of these events helps to provide35

useful information regarding animal health, nutrition status, welfare and for-36

aging activities (De Boever et al., 1990). For example, a consistent reduction37

in rumination activity might indicate the presence of health disorders or dis-38

eases (Calamari et al., 2014; Paudyal et al., 2018).39

Different sources of information have been used in the last decades to40

detect and classify JM events (Andriamandroso et al., 2016; Monteiro et al.,41

2021). Initially, the proposed strategy was based on observation (in-situ or42

video recordings), switches and jaw strap adjustment (Balch, 1958; Penning,43

1983; Matsui and Okubo, 1991). This complex and fault-prone solution heav-44

ily depends on experts and is not possible to automate it, being unfeasible45

in large herds (Milone et al., 2009).46

Other methods that recognise JM events rely on pressure sensors mounted47

in a halter. The RumiWatch system (Itin and Hoch GmbH, Liestal, Switzer-48

land) is comprised of a pressure sensor and a 3D accelerometer to gather49

data produced during JM. This data is later analysed by a software that50

discriminates between chews produced during rumination, chews produced51

during feeding and grazing bites (Rombach et al., 2019). Although this sen-52

sor reached good performance under different conditions (Ruuska et al., 2016;53

Werner et al., 2018), their main limitation is the requirement of human inter-54

vention for calibration, making infeasible it use in commercial farms (Riaboff55

et al., 2022). Additionally, several practical issues have been reported in the56

use of halters (Nydegger et al., 2011) such as frequent damage when applied57

in loose housing systems.58

On the other hand, diverse motion sensors located in different places of the59
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animal’s body have been used to determine long-term activities (rumination,60

grazing, resting, among others) rather than JM events (Fogarty et al., 2020;61

Balasso et al., 2021; Riaboff et al., 2022).62

Bite events count has been addressed using pattern matching techniques63

from 1D accelerometer (Tani et al., 2013), 3D accelerometer (Oudshoorn64

et al., 2013; Giovanetti et al., 2017) and inertial measurement unit (Andria-65

mandroso et al., 2015). Despite the fact that motion sensors provide inter-66

esting options to automatically count feeding JM (low sampling frequency67

and comprehensive data), the distinction between different types of events68

represents a challenging task from these signals and proper validation on di-69

verse pasture and larger duration trials is still required (Ding et al., 2022).70

The sensitivity of this kind of sensors might introduce errors and misclassi-71

fications due to unrelated movements with JM events (ear wiggling or head72

turns). Furthermore, position displacements of the motion sensor affect the73

JM event recognition, and they are difficult to prevent in free-ranging condi-74

tions (Kamminga et al., 2018; Li et al., 2021a).75

Acoustic sensors are useful for the recognition of JM events in free-ranging76

environments. The use of microphones allows for capturing the sounds pro-77

duced by the teeth and propagated through the bones, cavities and soft tis-78

sues of the cattle’s head. The analysis of these signals is a difficult task due79

to the presence of environmental sounds (noises) and the high computational80

requirements. Beyond that, they are usually preferred over pressure and81

movement sensors because the acoustic signals capture more information in82

order to perform JM events classification (Ungar et al., 2006; Martinez-Rau83

et al., 2022). Milone et al. (2012) developed a computational demanding84
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method to detect and classify JM events using hidden Markov models on85

spectral-domain features. Navon et al. (2013) proposed a machine learning86

approach to separate true events (without specific classification) from back-87

ground noise and silence. Chelotti et al. (2016) proposed the Chew-Bite88

Real-Time Algorithm, which defined a sequential system for detecting and89

classifying chews, bites and chew-bites using heuristic rules and temporal fea-90

tures. In a later work, searching for better results, the same authors proposed91

a system based on machine learning called Chew-Bite Intelligent Algorithm92

(CBIA) (Chelotti et al., 2018). Recently, Martinez-Rau et al. (2022), pro-93

posed an algorithm for robust recognition of JM events called Chew-Bite94

Energy Based Algorithm. It is capable of discriminating four event types:95

bites, chew-bites, rumination chews and grazing chews.96

Automatic detection and classification systems based on sound analysis97

usually perform a preprocessing stage (e.g., to improve signal-to-noise-ratio)98

and then execute some sort of feature extraction to feed data into the classifi-99

cation models. The lack of an end-to-end solution introduces several potential100

troubles, such as dependency on specific sound recording systems and config-101

uration, as well as difficulties to exploit potentially valuable information not102

encoded in manually created features. Li et al. (2021c) introduced a compar-103

ison of several deep learning (DL) architectures to classify JM events using104

a preprocessing phase where frequency-domain representations are extracted105

from raw signals. The complete workflow proposed by these authors, to gen-106

erate the inputs of neural networks models includes the following steps: back-107

ground noise removal using a band-stop filter, uninformative data removal108

based on manually created thresholds and Mel-frequency cepstral coefficients109
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calculation. Compared with traditional machine learning techniques, the use110

of DL models brings the opportunity to automatically discover patterns and111

features from data at the expense of higher computational costs.112

Based on the analysis of previous research it is possible to state that DL113

models have been used only to classify JM events. Therefore, the application114

of DL models to perform JM events recognition (which involves JM events115

detection and the posterior classification of them), has not been explored116

yet. Additionally, the rest of the traditional alternatives (such as the CBIA117

system) heavily depend on manual feature extraction methods and arbitrarily118

defined pre-processing steps. Promising results presented by Li et al. (2021c)119

highly motivate the study of DL architectures to tackle the limitation of JM120

events recognition.121

In this paper, a truly end-to-end approach is proposed to process raw122

audio signals toward the detection and the classification of JM events (bite,123

chew and chew-bite). The proposed DL strategy combines the power of con-124

volutional networks for feature learning with the time modeling capabilities125

of recurrent units, to implement detection and classification tasks in one126

step. Several architectures have been explored and compared to point out127

the benefits and limitations of the proposed approach. Additionally, different128

data augmentation techniques have been evaluated to improve the generali-129

sation capabilities of the proposed approach. Experimental results show the130

benefits of the application of the proposed deep architectures over traditional131

machine learning approaches. The main contributions of this paper are the132

following: a) a novel deep-learning model that combines convolutional and133

recurrent neural networks is presented. It automatically learns the features134
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representations and the temporal dependencies between JM events from raw135

audio signals. b) The proposed model is able of solving the JM events detec-136

tion and classification tasks in one step from raw from acoustic signals; and137

finally c) different data augmentation techniques were analysed to undertake138

the data-shortness problem.139

2. Material and methods140

In this article, a novel deep-learning architecture called Deep sound is141

proposed. It is based on the combination of two types of neural networks:142

Convolutional Neural Networks (CNN) (Lecun et al., 1998) and Recurrent143

Neural Networks (RNN) (Rumelhart et al., 1986). In the following sections,144

a brief introduction to these architectures is provided. Then, a detailed145

description of the proposed method is presented.146

2.1. CNN and RNN147

Convolutional Neural Networks (CNN) (Lecun et al., 1998) are one of148

the most widely used architectures for classification problems where input149

data comes from unstructured sources - images (Kokalis et al., 2020) or au-150

dio (Ramirez et al., 2022), for example. They are usually composed by151

several convolutions layers, each one containing one or more filters. In the152

learning stage, filters’ weights (used in traditional convolution mathematical153

operations) are adapted in order to approximate outputs using optimisation154

strategies like stochastic gradient descent or back-propagation (Rumelhart155

et al., 1986). By doing this, the layers are capable of learning different high156

and low-level patterns without domain knowledge supplied.157
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In CNN, convolutional layers are used in combination with pooling, batch158

normalisation and dense layers. Pooling layers apply simple mathematical159

operations (such as maximum extraction) in order to reduce dimensionality,160

and they are commonly used after convolutional layers. On the other hand,161

batch normalisation layers scale the inputs, to the desired values, to accel-162

erate the training process. Finally, dense layers correspond to a flat set of163

hidden neurons fully connected (FNN) with the outputs of previous layers,164

providing to the CNN with the ability to adapt the effect of intermediate165

representations, learned by convolutions, on the output. The relation be-166

tween convolution with other layers is created using a flattening operation,167

which transforms the output of convolution layers into a vector. An impor-168

tant operation used in these layers (except for batch normalisation) is called169

drop-out, which introduces random crops between layer connections during170

the training phase to avoid model over-fitting (Hinton et al., 2012).171

Recurrent Neural Networks (RNN) (Rumelhart et al., 1986) are broadly172

used in a wide variety of problems involving temporal sequences (Lim et al.,173

2019; Li et al., 2021b). RNN connects layer outputs as inputs to the same174

layer, enabling temporal data flow more efficiently across the network. More175

sophisticated architectures have been developed in recent years to overcome176

some RNN limitations. Gated Recurrent Units (GRU) are composed of sev-177

eral neurons called cells, each one uses two different gates: reset and update178

(Cho et al., 2014). These gates, tuned during the training process, allow179

every neuron to control the trade-off between how much information is used180

from previous and current states. GRU networks are composed of several181

GRU cells placed sequentially. A variation of a RNN proposed by Schuster182
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and Paliwal (1997) is called Bidirectional RNN. This network introduces two183

identically RNN in terms of architecture, one trained with time sequences for-184

wards and the other one with the same sequences backward, both connected185

to the next layer of the network. Specifically, bidirectional GRU (BGRU)186

achieved very promising results in sound events detection (Lu et al., 2018;187

Meng et al., 2022) and classification (Zhu et al., 2020).188

2.2. Deep sound189

Different variations of several deep architectures were studied for this190

problem, based on previous research in related fields (Khamees et al., 2021;191

Bahmei et al., 2022; Petmezas et al., 2022). The alternatives were evalu-192

ated from a theoretical perspective and the most promising ones were im-193

plemented. Thus, a hybrid one-dimensional (1D) CNN-BGRU network ar-194

chitecture is proposed, named Deep sound. To the best of the authors’195

knowledge, this represents the first deep end-to-end approximation to the196

problem of JM events detection and recognition from acoustic signals. The197

network receives the sound windows extracted from the original audio files198

without any prior preprocessing or feature extraction phase, and classifies199

them into one of four possible classes: chew, bite, chew-bite and no-event.200

Therefore, the proposed method tackles the problems of JM event detection201

and classification at the same time.202

The proposed model structure is given by: an input layer and several hid-203

den layers distributed in three main blocks corresponding to CNN, BGRU,204

and FNN. An overall schematic of the proposed model is presented in Fig-205

ure 1(a), while a detailed description of the architecture is showed in Fig-206

ure 1(b). The first part of Figure 1(b) represents the CNN block of the model,207
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Figure 1: The overall proposed method architecture. a) Input signals correspond to au-

dio chunks extracted using fixed-length time windows and passed through the CNN (first

block) to automatically extract features. The output of this block is passed to the bidirec-

tional GRU to capture temporal dependencies in data. Finally, the output of the second

block is fed into the FNN block, combining information in dense layers, and predicts class

probabilities for each input sample. b) Specification of layers in each block, including the

number of filters or units, filter size (for convolutional layers), and activation functions.
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which is a combination of 1D convolutional layers, dropout operations, and208

max pooling layers. This way, the network is capable of extracting low- and209

high-level features from audio chunks and performing dimensionality reduc-210

tion at the same time. At the beginning of this block, a re-scaling layer211

adapts the range of input values for implementation purposes. A flatten op-212

eration is also used to create a raw vector from the last convolutional layer. A213

complete definition of layer configurations, such as number of filters and filter214

sizes, is provided in the figure. The second block in Figure 1(b) introduces a215

recurrent network, composed of a BGRU layer with 128 cells. The purpose216

of this block is to capture time dependencies in the data. The last block217

of the network implements a typical FNN with three dense layers and two218

dropout operations. Blocks one and three are placed into time-distributed219

wrappers, allowing the same layers to be applied to each window of the in-220

put signals. This means that the same set of connection weights is trained221

and used in these blocks for every time window. All convolutional layers222

use the activation function rectified linear unit (ReLU), whilst the cells of223

the BGRU use hyperbolic tangent and sigmoid. The first and second dense224

layers perform both ReLU, and the last dense layer uses the soft-max func-225

tion for classification. All layers (convolutional, recurrent and dense) use the226

Xavier initialisation method (Glorot and Bengio, 2010) and bias terms were227

initialised to zero.228

The main limitations of the proposed method are: a) a considerable229

amount of labelled data is needed for training, b) the interpretability of the230

method and its outputs is limited (Arrieta et al., 2020; Hoxhallari, 2022), and231

c) a considerable amount of processing is required in the inference phase.232
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2.3. Acoustic dataset233

2.3.1. Original dataset234

The data used in this work is one of the first open datasets in this field of235

study (Vanrell et al., 2020). The fieldwork to obtain this dataset took place236

at the Campo Experimental J.F. Villarino, Facultad de Ciencias Agrarias,237

Universidad Nacional de Rosario, Zavalla, Argentina. The recordings include238

sounds produced by dairy cows in individual grazing sessions conducted over239

a 5-day period. Microphones used to record audio signals (Nady 151 VR,240

Nady Systems, Oakland, CA, USA) were located on the cow’s forehead and241

covered with rubber foam. Further details about experimental design could242

be found in the dataset article (Vanrell et al., 2020).243

A total of 52 raw audio signals (WAV audio files, mono, 16-bits, 22.05244

kHz) are available 1. A summary of the dataset contents is presented in Ta-245

ble 1. Each audio signal consists of sequences of JM events – bites, chews,246

and chew-bites – separated by silence (ranging from 19 to 152 s, average du-247

ration 62.76 ± 28.61 s). Two different experts in ruminant foraging behaviour248

independently performed the identification of each JM (including event la-249

bel, start, and end time) by analysing videotapes and sounds at the same250

time. Agreement results were 100% for bites, 98.2% for chews, and 99.1%251

for chew-bites. There were 2.7% of insertions and 0.9% of deletions. Thus,252

the total segmentation and classification accuracy was 93.6%. Both experts253

worked together to achieve a final decision in case of disagreement.254

1Direct URL to data: https://github.com/sinc-lab/dataset-jaw-movements
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Table 1: Summary of audio files grouped by pasture and height.

Pasture Height Chews Bites Chew-Bites Overall duration

Alfalfa Tall 416 148 322 14 min 26 s

Alfalfa Short 260 179 123 12 min 42 s

Fescue Tall 487 100 238 14 min 03 s

Fescue Short 454 94 217 13 min 13 s

Total 1617 (53%) 521 (17%) 900 (30%) 54 min 24 s

2.3.2. Data preparation255

Since the delimitation of most of the labels in the original dataset was256

inaccurate with respect to the actual JM events, an improvement to label257

bounds has been proposed in the present work. Conducting a visual inspec-258

tion of original signals and labels, it is possible to notice that there is not a259

perfect time delimitation between JM events presence and timestamps. Fig-260

ure 2 shows some examples where over estimations of JM events duration261

are introduced. To tackle this situation, time event delimiters have been262

adapted using a label erosion method based on signal envelope computation263

and selected thresholds. The events start timestamp was moved to the po-264

sition where the signal envelope reaches a certain threshold; similarly, this265

process was repeated in the opposite direction with the event end timestamp,266

generating a time shift respecting the original label.267

The threshold is defined as follows: after JM event envelope calculation,268

the maximum value is obtained and multiplied by a factor adapted to the269

differences between event characteristics. Table 2 introduces start and end270

factors applied to different event classes.271

13

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
si

nc
.u

nl
.e

du
.a

r)
M

. F
er

re
ro

, L
. D

. V
ig

no
lo

, S
. R

. V
an

re
ll,

 L
. R

au
, J

. O
. C

he
lo

tti
, J

. G
al

li,
 L

. G
io

va
ni

ni
 &

 H
. L

. R
uf

in
er

; "
A

 f
ul

l e
nd

-t
o-

en
d 

de
ep

 a
pp

ro
ac

h 
fo

r 
de

te
ct

in
g 

an
d 

cl
as

si
fy

in
g 

ja
w

 m
ov

em
en

ts
 f

ro
m

 a
co

us
tic

 s
ig

na
ls

 in
 g

ra
zi

ng
 c

at
tle

"
E

ng
in

ee
ri

ng
 A

pp
lic

at
io

ns
 o

f 
A

rt
if

ic
ia

l I
nt

el
lig

en
ce

, V
ol

. 1
21

, 2
02

3.



Figure 2: Visual comparison of an example of a signal with original (top) and eroded

(bottom) labels with time delimiters (timescale on the top is expressed in seconds).

Table 2: Scale factors applied to maximum values extracted from the signal envelope to

define threshold calculation.

JM event type Start factor End factor

Bite 0.4 0.4

Chew 0.5 0.5

Chew-Bite 0.15 0.4

14

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
si

nc
.u

nl
.e

du
.a

r)
M

. F
er

re
ro

, L
. D

. V
ig

no
lo

, S
. R

. V
an

re
ll,

 L
. R

au
, J

. O
. C

he
lo

tti
, J

. G
al

li,
 L

. G
io

va
ni

ni
 &

 H
. L

. R
uf

in
er

; "
A

 f
ul

l e
nd

-t
o-

en
d 

de
ep

 a
pp

ro
ac

h 
fo

r 
de

te
ct

in
g 

an
d 

cl
as

si
fy

in
g 

ja
w

 m
ov

em
en

ts
 f

ro
m

 a
co

us
tic

 s
ig

na
ls

 in
 g

ra
zi

ng
 c

at
tle

"
E

ng
in

ee
ri

ng
 A

pp
lic

at
io

ns
 o

f 
A

rt
if

ic
ia

l I
nt

el
lig

en
ce

, V
ol

. 1
21

, 2
02

3.



Original audio signals have been recorded at 22.05 kHz. In order to reduce272

dimensionality and computational costs, all files were downsampled to 6 kHz.273

In addition to this, original audio signals were divided into small chunks274

of data using sequentially ordered windows. Different window sizes have275

been evaluated during the initial experimentation, considering the average276

duration of JM events, and the value of 300ms produced the best results,277

with a hop length of 150 ms. The average duration of the JM events is 330278

ms (± 150 ms), which means that two consequent windows might be needed279

to represent one JM event. To assign a label to a particular signal window, a280

minimum overlapping of 40% with a JM event label is required, guaranteeing281

that if only a small part of a window corresponds to a JM event of interest282

(bite, chew or chew-bite) it is tagged as ’no-event’.283

2.3.3. Data augmentation284

A distinctive characteristic of the proposed approach is the number of pa-285

rameters to be learned or tuned during the training process. Consequently,286

the use of a small amount of data may lead to overfitting. In the context of287

precision livestock farming, and JM events recognition in particular, getting288

more annotated signals requires great effort and resources. To overcome this289

problem, data augmentation techniques are traditionally employed to artifi-290

cially create synthetic samples from original ones (Nanni et al., 2021; Bahmei291

et al., 2022). Despite that data augmentation is well-known for image-related292

problems (Shorten and Khoshgoftaar, 2019), custom techniques are usually293

required when working with audio signals.294

When new samples are created from existing data, two facts should be295

considered: i) the types of perturbations applied on original data to create a296
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different one, but still usable synthetic audio signal (named here augmen-297

tation technique), and ii) how to apply them to every training sample298

(augmentation protocol). Several augmentation techniques have been ex-299

plored in early experimentation (including but not limited to loop, pitch shift,300

time stretch and percussive). Finally, six data augmentation techniques were301

selected:302

• Resynthesis by Linear Predictor Coefficients (LPC): given an input303

signal, the LPC is estimated, randomly perturbed, and finally used to304

generate a new signal using a resynthesis process.305

• Reverse: a copy is created from original values by doing a backward306

pass.307

• Random crop: randomly pick a very small fraction (1%) of continuous308

values from the input signal and turn them to zero.309

• Background noise: add white noise to the original signal, using a signal-310

to-noise ratio of 10 dB.311

• Amplitude change: increase or decrease signal amplitude by a certain312

decibel amount. Positive values stand for increases, while negative313

stands for amplitude decrease.314

• Frequency filters: apply a second-order Butterworth high-pass or low-315

pass filter to the input signal. The high-pass and low-pass filters have316

a cut-off frequency of 500 Hz and 100 Hz, respectively.317

On the other hand, two different augmentation protocols were tested:318
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• Random: pick one augmentation technique and use it to generate a319

synthetic signal.320

• Serial: create a pipeline serialising all defined augmentation techniques321

in order to apply them one by one. This way the input to the first tech-322

nique is the original audio signal and its output is fed to the subsequent323

technique.324

During experimentation, three synthetic signals were created from every325

single input sample when defining an augmentation protocol. These values326

were selected in order to explore the effect of this component without signif-327

icantly affecting the computational cost.328

2.4. Experimentation methodology329

2.4.1. Model selection approach330

For all experiments, the models were evaluated using 10-fold cross-validation331

(CV). Every fold contains 5 or 6 input files, randomly selected from the total332

of 52 available. In this way, every input file was included in only one fold.333

In addition to this, 20% of the 9 folds used for training on every iteration334

were reserved for validation. The assignment of sound files to the train and335

test sets in each fold was fixed across different experiments. The number of336

windows in test sets was 2168 ± 360 (proportion per class: 5 ± 1% bites -337

18 ± 1% chews - 14 ± 4% chew-bites - 63 ± 4% no-event). The number of338

windows in train and validation sets changed from one experiment to another339

due to the use of different data augmentation configurations. The training340

samples were weighted in order to tackle classes imbalance according to the341

following expression:342
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cwic = nmax/nc, (1)

where cwic is the class weight of instance i of class c, nmax is the number343

of instances of the majority class and nc is the number of instances of class344

c. Finally, the experiments were set-up with a total of 1500 epochs with345

early stopping (50 epochs tolerance), Adam (Kingma and Ba, 2014) as the346

optimizer, the batch size was fixed to 10, 0.001 as the learning rate, and347

categorical cross entropy as loss function. Default values were used for the348

remaining parameters.349

2.4.2. Evaluation metrics350

The dynamical problem of simultaneous detection and classification of JM351

events using raw audio signals is substantially different from the approach of352

dividing the problem into JM event detection and subsequent classification353

based on previously detected events (Chelotti et al., 2018; Martinez-Rau354

et al., 2022). In the former, the temporal component plays a very important355

role, since the need to properly detect JM event’s onsets and offsets affects356

the results of the classification. Based on this, the generation of a model357

that deals with detecting and classifying events at once requires the use358

of a validation mechanism that is capable of considering aspects related to359

temporality, as well as predicted labels accuracy.360

To evaluate JM events detection and classification performances, the361

sed_eval standardised toolbox was used (Mesaros et al., 2021). It is a trans-362

parent and broad library to evaluate sound event recogniser systems. The363

toolbox was designed for the task of sound event recognition, which involves364
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locating and classifying sounds in audio recordings, estimating onset and off-365

set for distinct sound event instances and providing a textual descriptor for366

each. This matches the task presented in this work, where sound JM events367

classes are chew, bite and chew-bite. A temporal tolerance (collar) of 300 ms368

was used. This value was determined based on preliminary experimentation369

considering two main aspects: 1) the collar should be smaller than the aver-370

age event duration (330 ms) in order to ensure overlap between reference and371

predicted window. 2) it should avoid undesired overlap between two adjacent372

events (with an average separation between two adjacent events of 726 ms).373

The selected value meets both criteria.374

With the use of sed_eval toolbox, a reference JM event is correctly de-375

tected if two conditions are met: i) The start timestamp of the predicted JM376

event is located in the interval defined by reference onset ± tolerance value.377

ii) The end timestamp of the predicted JM event is located in the interval378

defined by reference offset ± tolerance value. Figure 3 introduces a graphical379

representation of how this toolbox works.380

Based on before mentioned evaluation toolbox, several well-known metrics381

have been used:382

precision =
TP

TP + FP
,

383

recall =
TP

TP + FN
,

384

F1 score =
2 ∗ precision ∗ recall
precision+ recall

,

385

error rate =
S +D + I

N
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300 ms300 ms

Reference

Correct

Correct

Incorrect

Incorrect

Onset Offset

Collar

300 ms

Collar

300 ms

Figure 3: Illustration based on Mesaros et al. (2021) where two correct and two incorrect

predicted JM events are presented, compared with a reference JM event using a tolerance

value of 300 ms.

where TP denotes true positive, FP false positive, FN false negative, S386

substitutions (correct detected JM events in system output but incorrectly387

labelled), I insertions (detected events from system output which do not388

exist in the ground truth), D deletions (ground truth events which are not389

detected) and N is the total number of reference events. Due to the presence390

of class imbalance in the original dataset, JM events distributions are taken391

into account to calculate average final results. When using this approach for392

metrics calculation micro averages were computed (Sokolova and Lapalme,393

2009), which means that TP , FP and FN are calculated by summing up394

samples through all classes. For example, the term TP is finally expressed395

by TPc + TPcb + TPb, representing the amount of TP for chews, chew-bites396

and bites, respectively.397
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2.5. Experimental setup398

The design and implementation of the proposed model were developed399

using Python 3.6.2 and TensorFlow-GPU 2.6.2. Different utilities from the400

Python library scikit-learn 0.24.2 have been used, such as label encoders401

and k-fold extraction. Augly (Papakipos and Bitton, 2022), a Python data402

augmentation library, was used to apply some of the previously mentioned403

augmentation techniques (background noise, amplitude change and frequency404

filters). Experiments were performed using an Intel® Core™ i7-8700 3.20GHz405

CPU, 64 GB RAM and 24 GB NVIDIA GeForce RTX 3090 GPU. A Titan406

XP GPU was also used for model exploration, preliminary experimentation407

and hyperparameter tuning.408

3. Results409

During the optimisation process, a total of 39 experiments were tested,410

aiming to find the best model architecture configuration considering varia-411

tions in the CNN part of the model (block 1 in Figure 1). The most promising412

and standard hyper-parameters combinations (such as the number of layers,413

number of filters, and dimension of filters) have been considered for this414

exploration. All experiments used the 10-fold CV method described in Sec-415

tion 2.4.1. Layers configuration from most representative experiments are416

described in Figure 4, and their respective recognition results are presented417

in Table 3. In terms of performance, architecture (c) exhibited the high-418

est F1 score value. Moreover, this model also reached the lowest error rate.419

Therefore, it is possible to establish that architecture (c) configures the best420

combination explored, considering numbers of layers, number of filters and421

21

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
si

nc
.u

nl
.e

du
.a

r)
M

. F
er

re
ro

, L
. D

. V
ig

no
lo

, S
. R

. V
an

re
ll,

 L
. R

au
, J

. O
. C

he
lo

tti
, J

. G
al

li,
 L

. G
io

va
ni

ni
 &

 H
. L

. R
uf

in
er

; "
A

 f
ul

l e
nd

-t
o-

en
d 

de
ep

 a
pp

ro
ac

h 
fo

r 
de

te
ct

in
g 

an
d 

cl
as

si
fy

in
g 

ja
w

 m
ov

em
en

ts
 f

ro
m

 a
co

us
tic

 s
ig

na
ls

 in
 g

ra
zi

ng
 c

at
tle

"
E

ng
in

ee
ri

ng
 A

pp
lic

at
io

ns
 o

f 
A

rt
if

ic
ia

l I
nt

el
lig

en
ce

, V
ol

. 1
21

, 2
02

3.



32
@

18
, s

tr=
3,

 R
eL

U

dr
op

ou
t, 

ra
te

=0
.2

32
@

9,
 s

tr=
3,

 R
eL

U

m
ax

 p
oo

lin
g,

 4

fla
tte

n

dr
op

ou
t, 

ra
te

=0
.2

32
@

18
, s

tr=
3,

 R
eL

U

32
@

9,
 s

tr=
3,

 R
eL

U

12
8@

3,
 s

tr=
1, 

Re
LU

12
8@

3,
 s

tr=
1, 

Re
LU

dr
op

ou
t, 

ra
te

=0
.2

8@
36

, s
tr=

1, 
Re

LU

dr
op

ou
t, 

ra
te

=0
.2

16
@

18
, s

tr=
1, 

Re
LU

m
ax

 p
oo

lin
g,

 4

fla
tte

n

dr
op

ou
t, 

ra
te

=0
.2

8@
36

, s
tr=

1, 
Re

LU

16
@

18
, s

tr=
1, 

Re
LU

dr
op

ou
t, 

ra
te

=0
.2

64
@

6,
 s

tr=
3,

 R
eL

U

64
@

6,
 s

tr=
3,

 R
eL

U

32
@

9,
 s

tr=
3,

 R
eL

U

32
@

9,
 s

tr=
3,

 R
eL

U

dr
op

ou
t, 

ra
te

=0
.2

12
8@

3,
 s

tr=
1, 

Re
LU

12
8@

3,
 s

tr=
1, 

Re
LU

dr
op

ou
t, 

ra
te

=0
.2

32
@

9,
 s

tr=
3,

 R
eL

U

m
ax

 p
oo

lin
g,

 4

fla
tte

n

dr
op

ou
t, 

ra
te

=0
.2

32
@

9,
 s

tr=
3,

 R
eL

U

dr
op

ou
t, 

ra
te

=0
.2

(b)

(c)

(a)

Re
-s

ca
lin

g

Re
-s

ca
lin

g

Re
-s

ca
lin

g

12
8@

3,
 s

tr=
1, 

Re
LU

12
8@

3,
 s

tr=
1, 

Re
LU

16
@

32
 c

on
v,

 s
tr=

1, 
Re

LU

dr
op

ou
t, 

ra
te

=0
.2

32
@

9 
co

nv
, s

tr=
3,

 R
eL

U

m
ax

 p
oo

lin
g,

 4

fla
tte

n

dr
op

ou
t, 

ra
te

=0
.2

16
@

32
 c

on
v,

 s
tr=

1, 
Re

LU

32
@

9 
co

nv
, s

tr=
3,

 R
eL

U

dr
op

ou
t, 

ra
te

=0
.2

32
@

3 
co

nv
, s

tr=
1, 

Re
LU

32
@

3 
co

nv
, s

tr=
1, 

Re
LU

Re
-s

ca
lin

g

32
@

9 
co

nv
, s

tr=
3,

 R
eL

U

32
@

9 
co

nv
, s

tr=
3,

 R
eL

U

dr
op

ou
t, 

ra
te

=0
.2

(d)

Figure 4: Different CNN architectures used for exploration. Convolution layers definition

consist of number of filters, filter size and stride. No padding method was used.

filter dimensions.422

As described previously, the proposed model is composed of three blocks423

with different types of layers. Table 4 exhibits the performance of the pro-424

posed model without using the RNN (block 2 in Figure 1). It can be seen425

that providing the capacity to capture temporal relationships in acoustic426

sequences gives a significant advantage to the network.427

In addition to the optimisation of model hyperparameters, an exploration428
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Table 3: Recognition results of the proposed model for different layers architectures on

the CNN block. For every experiment, average values and standard deviation of 10-folds

CV are presented.

Precision ↑ Recall ↑ F1 score ↑ Error rate ↓ Deletion ↓ Insertion ↓

(a) 63.13 ± 6.53 79.81 ± 6.06 70.45 ± 6.26 0.54 ± 0.12 0.07 ± 0.03 0.34 ± 0.07

(b) 71.91 ± 5.26 85.77 ± 3.37 78.19 ± 4.33 0.39 ± 0.08 0.05 ± 0.02 0.25 ± 0.06

(c) 73.72 ± 4.92 87.16 ± 2.74 79.82 ± 3.70 0.37 ± 0.08 0.05 ± 0.01 0.24 ± 0.07

(d) 73.38 ± 5.30 85.92 ± 3.81 79.12 ± 4.46 0.37 ± 0.09 0.06 ± 0.02 0.23 ± 0.06

Table 4: Evaluation of the impact of the RNN block in the proposed model. For each

experiment, the average and the standard deviation of 10-fold CV are presented.

Precision ↑ Recall ↑ F1 score ↑ Error rate ↓ Deletion ↓ Insertion ↓

Deep sound 73.72 ± 4.92 87.16 ± 2.74 79.82 ± 3.70 0.37 ± 0.08 0.05 ± 0.01 0.24 ± 0.07

Deep sound (no RNN) 48.77 ± 3.89 82.55 ± 3.64 61.26 ± 3.79 0.95 ± 0.14 0.07 ± 0.03 0.77 ± 0.12

of the impact of using several data augmentation techniques and protocols429

were carried out using the proposed Deep sound (c) architecture. Table 5430

introduces the results of different experiments using isolated augmentation431

techniques (in order to measure the individual impact) and combining many432

of them at the same time with a particular augmentation protocol. The433

protocol combined the three best individual techniques based on its F1 score434

(background noise, random crop and amplitude (+2 dB)) to form a top 3435

augmentation technique. This combination has been tested using serial and436

random protocols. The highest F1 score (p=0.006; Wilcoxon signed-rank437

test) (Wilcoxon, 1945) was reported using the top 3 augmentation techniques438

with serial augmentation protocol.439

Finally, a contrast between the proposed model and other state-of-the-art440
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Table 5: Results of the proposed model using different augmentation techniques and pro-

tocols. For each experiment, the average and the standard deviation of 10-fold CV are

presented. The number of copies generated per original sample was fixed to three.

Augmentation

technique

Augmentation

protocol
Precision ↑ Recall ↑ F1 score ↑ Error rate ↓

No augmentation - 73.72 ± 4.92 87.16 ± 2.74 79.82 ± 3.69 0.37 ± 0.08

LPC - 71.88 ± 4.72 86.67 ± 2.64 78.54 ± 3.69 0.40 ± 0.08

Background noise - 76.83 ± 5.61 85.71 ± 3.46 80.96 ± 4.37 0.32 ± 0.09

Random crop - 77.28 ± 7.72 86.31 ± 3.72 81.43 ± 5.63 0.32 ± 0.12

Amplitude (+2 dB) - 76.14 ± 5.33 86.60 ± 3.89 80.98 ± 4.37 0.33 ± 0.08

Amplitude (-2 dB) - 74.24 ± 6.45 86.18 ± 3.33 79.68 ± 4.78 0.37 ± 0.10

High-pass filter - 70.63 ± 5.57 85.25 ± 3.82 77.19 ± 4.59 0.42 ± 0.09

Low-pass filter - 66.64 ± 8.37 83.80 ± 4.99 74.09 ± 6.83 0.50 ± 0.17

Reverse - 72.90 ± 5.91 86.78 ± 2.61 79.16 ± 4.38 0.39 ± 0.09

Top 3 Serial 78.39 ± 4.09 86.60 ± 3.08 82.27 ± 3.42 0.29 ± 0.06

Top 3 Random 77.04 ± 5.45 87.06 ± 3.19 81.67 ± 3.99 0.32 ± 0.08

methods has been carried out. In particular, the algorithm called Chew-Bite441

Intelligent Algorithm (CBIA) (Chelotti et al., 2018) and an implementation442

of the ResNet proposed by Hershey et al. (2017) for raw audio classifica-443

tion were compared using the same evaluation toolbox and metrics. The444

CBIA method was selected because it offers the best results of state-of-the-445

art in the detection and classification of JM events problem (unlike Li et al.446

(2021c), where only classification is performed) for chew, bite and chew-bite447

labels. Moreover, as the authors mention in their work, the Li et al. (2021c)448

proposal does not offer improvements in terms of classification rates with449

respect to Chelotti et al. (2018) approach. The ResNet architecture was450

selected because it is one of the best well-known DL models proposed for451

image classification and reached the best results for audio classification tasks452

(Hershey et al., 2017) among other DL models (such as VGG (Simonyan and453
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Table 6: Comparison between the proposed method and other state-of-the-art algorithms,

CBIA and ResNet architecture.

Precision ↑ Recall ↑ F1 score ↑ Error rate ↓ Deletion ↓ Insertion ↓

Deep sound 78.39 ± 4.09 86.60 ± 3.08 82.27 ± 3.42 0.29 ± 0.06 0.06 ± 0.02 0.17 ± 0.05

CBIA 68.69 ± 7.56 70.30 ± 7.92 69.43 ± 7.52 0.42 ± 0.11 0.10 ± 0.05 0.12 ± 0.06

ResNet audio 43.99 ± 12.96 54.99 ± 23.35 47.9 ± 17.16 0.97 ± 0.27 0.3 ± 0.21 0.52 ± 0.2

Zisserman, 2014), Inception (Szegedy et al., 2016) or AlexNet (Krizhevsky454

et al., 2017)).455

The results of this comparison are presented in Table 6 and separated by456

class in Table 7. Deep sound refers to the best architecture configuration457

(architecture (c)), trained using top 3 (background noise, random crop and458

amplitude increase +2 dB) serial augmentation protocol. It can be seen that459

there is a significant improvement using the proposed algorithm (p=0.002460

based on F1 score; Wilcoxon signed-rank test) (Wilcoxon, 1945). Despite461

this, results from all methods are higher for chew events, probably related to462

the fact that this is the most predominant class. Regarding deletion metric,463

the proposed algorithm increases the number of ground truth events detected.464

However, CBIA presents a smaller number of insertions than the proposed465

algorithm.466

Finally, a summary of the different approaches is introduced in Figure 5.467

In terms of F1 score and precision, the proposed architecture (Deep sound)468

using augmentation techniques obtained the best results, whereas ResNet469

architecture led to the lowest value. On the other hand, based on the re-470

call metric, the proposed architecture without augmentation techniques pre-471

sented the best results and ResNet produced the worst. It is possible to note472
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Table 7: Class based results obtained for the proposed architecture and other state-of-the-

art algorithms, CBIA and ResNet architecture.

Class Precision ↑ Recall ↑ F1 score ↑

Deep

sound

Bite 73.59 ± 8.49 76.10 ± 9.16 74.27 ± 6.52

Chew 82.56 ± 6.32 90.61 ± 3.58 86.33 ± 4.78

Chew-Bite 73.81 ± 8.40 86.53 ± 4.38 79.31 ± 5.24

CBIA

Bite 48.77 ± 10.72 66.41 ± 10.37 55.06 ± 7.48

Chew 77.30 ± 6.59 76.69 ± 5.72 76.77 ± 4.60

Chew-Bite 70.77 ± 15.06 60.78 ± 18.09 63.74 ± 16.65

ResNet

audio

Bite 36.72 ± 20.8 55.18 ± 23.95 42.6 ± 20.7

Chew 51.31 ± 26.02 52.6 ± 34.18 48.91 ± 28.54

Chew-Bite 41.62 ± 12.97 62.94 ± 20.09 46.87 ± 11.95

that ResNet also exhibited higher deviations in all presented metrics.473

4. Discussion474

4.1. End-to-end model architecture475

Based on the presented results, the use of a deep end-to-end approach476

provides the model the capacity to learn relevant internal representations477

starting from raw signals. Manual feature computation and extraction are478

difficult tasks, which involve a deep understanding of the studied phenomena479

as well as the capacity to apply that knowledge properly. This limitation480

is overcome in the proposed model, resulting in a significant improvement481

compared with traditional machine learning algorithms. It is important to482

highlight that the use of recurrent layers introduces a substantial benefit to483

the model architecture. The use of different gates allows these layers to learn484
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Figure 5: Overall comparison of the results obtained by the most relevant experiments of

each of the presented approaches.

how much information to incorporate into their internal memory regarding485

new events and how much to remember from previous events. A positive486

impact seems reasonable based on this, attending to ruminant foraging be-487

haviour activities, in which sometimes a single bite is followed by a sequence488

of chew and chew-bite events during grazing.489

Regarding the model architecture, the results suggest that the use of sev-490

eral layers is advantageous. When using a reduced number of convolutional491

layers (less than 6), the recognition performance of the network is remarkably492

damaged. In contrast, when using at least 6 convolutional layers the model493

performance seems to approach similar levels. A possible explanation of this494

fact is that the model requires a minimum number of layers in order to extract495

a relevant representation from data. In terms of the number of parameters,496

the model architecture presented in Figure 4 (c) uses 320,229. This value497
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probably represents a considerable increment compared to other traditional498

methods. However, the use of convolutional layers prevents a bigger increase499

in this number with respect to other neural network architectures, which use500

mainly dense layers.501

The evaluation with different data folds shows a considerable level of de-502

viation in the performance metrics. This effect might be due to the fact that503

several signals are particularly different from the rest in terms of duration504

(shorter) and JM events distribution (most of the present events correspond505

to the same class along the signal). The recognition performance decreased506

on those signals in all performed experiments.507

4.2. Effect of learning from synthetic data508

In order to increase the size of the dataset available for training in each509

fold, eight different data augmentation techniques were proposed and anal-510

ysed (Table 5). Results showed that a subset of them allowed the model to511

improve the recognition performance in terms of F1 score. When analysing512

precision and recall separately, it is possible to note that introducing syn-513

thetic data to the training process reduces the number of detected events514

in general. Despite this, for some techniques there was an improvement in515

the precision of predictions. The results highlight the importance of using516

augmentation techniques to increase the generalisation capacity of the model.517

Some individual techniques showed a positive impact on the performance,518

while others showed no impact or even a negative impact. The techniques of519

both low- and high-pass filters and reverse degraded the performance com-520

pared to the no augmentation approach. In contrast, when adding back-521

ground noise or random crops, the model presented improvements regarding522
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recognition results.523

A comparison between proposed protocols and individual techniques high-524

lighted that generating new samples by applying a selection of the best in-525

dividual techniques, in a sequential one-by-one pipeline, is more convenient526

than randomly picking one of them.527

4.3. Comparison against existing methods528

Results presented in Table 6 and Table 7 exhibit a considerable improve-529

ment of the proposed method against the CBIA and ResNet methods in530

terms of recognition performance. The results obtained by the ResNet are531

poor in this context. This may be mainly due to the fact that the model532

was originally intended to process images, and it lacks capabilities to learn533

from temporal sequences as needed for this particular problem. It is impor-534

tant to note here that results reported by Chelotti et al. (2018) are affected535

by the use of a different tool to compare ground truth values against model536

predictions. In this case, the temporal alignment of both events (real and537

predicted) is considered using a gap or collar. By doing this, for example, a538

sequence of events predicted in the correct order is not considered successful539

if the temporal localisation does not match. Consequently, it is possible to540

state that the comparison method proposed in this study is more rigorous541

and appropriate for problems of JM event detection and classification.542

In terms of computational costs, the proposed method involves a total of543

464,919,007 floating point operations (FLOPs) in order to analyse one second544

of the signal. The details about estimation of these costs are presented in the545

Appendix A. This number represents an increase in the calculations needed546

against the CBIA (1.000:1), which needs 398,860 FLOPs to process one sec-547
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ond of the signal. This value was estimated using the calculations reported548

by the authors for the version (Least Mean Squares filter and Multi-Layer549

Perceptron) and sampling frequency (22.05 kHz) used in the implementation550

conducted here. Although the proposed method represents an increase in the551

number of operations, the improvements obtained with respect to more ac-552

curate recognition results represent a considerable advantage in the context553

of applications where real-time operation is not required. The key advantage554

of the proposed method is its ability to accurately classify JM using raw au-555

dio signals, without any previous definition of sound features to be analysed556

by the system. In this stage, the computational cost of algorithms is not557

relevant compared with their ability to extract the appropriate information558

without an “expensive”, handcrafted and generally non-optimal feature engi-559

neering stage. This fact implies that this type of model can be used in the560

development stages of a system when relevant features for JM recognition of561

the sound are explored.562

The interpretability of a proposed solution is another subject that must be563

analysed from a practical point of view. In this sense, the method presented564

in this paper poses a disadvantage when compared to traditional methods565

that use "white box" models.566

On the other hand, when algorithms must be deployed on IoT systems,567

computational cost is a central issue since they must minimise the use of568

energy. This type of operational condition requires that algorithms must be569

optimised from the processor’s perspective, minimising the amount of energy570

and memory as well as the notation used to represent the information. In571

this way, handcrafted feature algorithms might require less implementation572
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effort in these scenarios. The price paid is the time and work required to573

develop the system.574

Concerning other DL methods, Li et al. (2021c) reported 88.8, 88.9 and575

88.8 for F1 score, precision and recall respectively. Even though these values576

seems to overcome the proposed Deep sound architecture in the classification577

task, detection is disregarded in that study. Moreover, the limitations of the578

approach proposed by Li et al. (2021c), plus the evaluation metrics proposed579

here, should be considered in order to perform a direct comparison between580

both methods. Finally, it is important to note that results reported by Li581

et al. (2021c) slightly outperformed or was comparable to CBIA.582

5. Conclusions583

In this study, a novel end-to-end architecture for detection and classifica-584

tion of ruminant masticatory JM events was presented and evaluated with585

real data. The model combines two well known neural network types into a586

single model, generating a CNN-RNN final architecture. Different numbers587

of convolutional layers in the CNN block of the network have been explored.588

The highest recognition performance (micro F1 score up to 79.8%) was ob-589

tained using 4 pairs of convolution (plus dropout) layers. The use of data590

augmentation has been evaluated, which resulted in an improvement of recog-591

nition performance (almost 2.5% in terms of micro F1 score) when using a592

selected subset of techniques to generate synthetic samples. The proposed593

architecture outperformed a previous method (CBIA) by at least 10% (micro594

F1 score) and a ResNet implementation by more than 30% (micro F1 score).595

On the other hand, the proposed architecture automatically extracts features596
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from raw signals, which introduces very promising results when compared to597

traditional methods that use manually created characteristics.598

Future research will focus on the optimization of computational cost of599

the proposed method, and the analysis of its impact on recognition results.600

The interpretation of learned features and their corresponding qualitative601

analysis will be part of future works. Finally, an exploration of transfer602

learning, semi-supervised learning and related approaches will be studied in603

order to evaluate other alternatives for small quantities of labelled data.604
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Appendix A. Computational costs825

The amount of operations required for processing one second of audio826

signal were estimated at a sampling frequency of 6 kHz, a time window of827

300 ms and a hop length of 150 ms. The procedure used to estimate these828

calculations is similar to the one used in Chelotti et al. (2018) in which829

additions and multiplications count as separated operations. The model830

architecture presented in Figure 4 (c) was used here for comparison purposes.831

In the first block of the proposed model, the following layers were con-832

sidered: re-scaling, 1D convolution and max pooling. FLOPs required for833

activation functions were also considered. Dropouts were discarded because834

these layers only applied during training, and no calculations were considered835

for the flatten operation. The cost of each of the convolutional layers were836

estimated using the following expression:837

(2 ∗ Ci ∗K ∗H ∗W ∗ Co) (A.1)
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where Ci and Co represents the input and output channels, K the kernel838

size, H and W the size of the output feature map. According to this, the839

total number of FLOPs in the first block of the model is 272.235.413.840

In the second block of the model, FLOPs involved in reset and update841

gates, activation functions and output generation were considered for every842

unit. The total number of FLOPs required is 191.363.413.843

Finally, in the last block of the model, the FLOPs required in dense layers844

as well as activation functions were considered. The cost of each dense layer845

were estimated using the following expression:846

(2 ∗ I ∗O) (A.2)

where I and O represent the number of input and output neurons, re-847

spectively. The total number of FLOPs in the last block of the model is848

1.320.180. In summary, the total number of FLOPs in order to process one849

second of signal is 464.919.007.850
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