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Abstract

The automatic annotation of the protein universe is still an unresolved challenge. Today,

there are 229,149,489 entries in the UniProtKB database, but only 0.25% of them have

been functionally annotated by expert curators. This manual process integrates knowledge

from the protein families database Pfam, where those are annotated with their family

domains using sequence alignments and hidden Markov models. This approach has grown

the Pfam annotations at a low rate in the last years. Recently, deep learning models

appeared with the capability of learning evolutionary patterns from unaligned protein

sequences, however requiring large-scale data while many families contain just a few

sequences. In this opinion we show how this limitation can be overcome by transfer

learning, exploiting the full potential of self-supervised learning on large unannotated data

and then supervised learning on a small labeled dataset. We show results where errors in

protein family prediction can be reduced by 55% with respect to standard methods.

Introduction

The protein families database (Pfam) is the most widely used repository of protein families and

domains. Pfam uses manually curated ’seed’ alignments of homologous protein regions (named

families) to generate profiles based on hidden Markov models (HMMs). The resulting models

are a representation of each profiled family and can be used to classify novel sequences1. Even

though this approach is very successful, there still remain many proteins of UniProtKB2 (≈ 25%)
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that have not been annotated yet. Moreover, the number of sequences in this knowledge base

grows at a much faster rate than its Pfam coverage, introducing novel sequences that may belong

to completely new families3.

Very recently, deep learning (DL) models have emerged4 to potentially provide a powerful

alternative to profile-HMMs which are the dominant technology for protein family

classification. DL techniques are capable of inferring patterns shared across the family

sequences, allowing autonomous domain annotation on unaligned sequences. This was

especially helpful for accelerating the characterization of sequences that do not resemble

anything known5. However, it is well known that DL techniques rely on large scale data to infer

meaningful sequence patterns. This can be a limitation on domain annotation since many Pfam

families comprise few seed sequences. Indeed, it has been taken an important step towards

overcoming this limitation4 and we show that this issue can be further significantly reduced with

transfer learning (TL) by transferring representations of protein sequences already learned

without requiring annotations from large-scale protein data6.

Transfer learning for protein representations

Transfer learning (Figure 1) is a machine learning technique where one model is first trained

with a big unlabeled dataset in a self-supervised way, that is, not using annotations of any

specific task, but predicting parts of the same data fed as input (e.g. masked small

sub-sequences). This step is also named pre-training, and the result is a task-agnostic deep

model and an output model associated with the pretext task for self-supervised learning, which is

then discarded. In a second step, the task-agnostic deep model is frozen and what was learned by

it is “transferred” to another deep architecture in order to train a new task-specific model. Here

another model is trained with supervised learning on a small dataset with labeled data for a

specific task (e.g. protein family classification). In summary, TL refers to the situation where

what has been learned in one setting is exploited to improve generalization in another one7. For

proteins there are several already available task-agnostic deep models, which integrate in their

output different types of protein information in a compact representation usually named

embeddings.
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Figure 1: Transfer learning is a machine learning technique where the knowledge gained by training a
model on one general task is transferred to be reused in a second specific task. The first model is trained
on a big unlabeled dataset, in a self-supervised way (left). This process is known as pre-training, and the
result is a task-agnostic deep model (input layers). Through transfer learning, the first layers are frozen
(middle) and transferred to another deep architecture. Then, the last layers of the new model are trained
with supervised learning on a small dataset with labeled data for a specific task (right).

Protein embeddings are becoming known and required by the community. So much that

UniProtKB now provides embeddings as part of the protein annotations

(https://www.uniprot.org/help/embeddings). The available protein embeddings were pre-trained

on UniRef50, which provides clustered sets of sequences from the complete UniProtKB2. A

recent review has demonstrated that the Evolutionary Scale Modeling (ESM)5 is one of the most

outstanding protein embeddings in terms of representational power8. ESM was trained using 220

million (unaligned) sequences from UniProtKB. ESM is based on Transformers, which have

emerged as a powerful general-purpose model architecture for representation learning9,

out-performing deep recurrent and convolutional neural networks. They were originally

designed for natural language processing10, where context within a text is used to predict masked

(missing) words. The main hypothesis in this pretext task for self-supervised learning is that the

semantics of words can be derived from their contexts. ESM makes an analogy between

syllables in text and amino acids in protein sequences: it learns meaningful encodings for each
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residue in a self-supervised way, by masking some of the residues in the sequence and trying to

predict them. This way, ESM builds an embedding per residue position that encodes the

“meaning” of the residue in that context. Then, the per residue representation can be collapsed to

a per protein embedding. After this, the ESM learnt representation from UniProtKB, already

trained and ready-to-use out of the box, can be “transferred” to be used in a specific downstream

task.

Transfer learning for annotating protein domains

In order to illustrate how the use of TL can improve a task like protein domain annotation, we

trained a new classifier with Pfam data4. Expertly curated sequences from the 17,929 families of

Pfam v.32.0 were used to define a benchmark annotation task. Seed sequences from each family

were split into challenging train and test sets by clustering them based on sequence similarity.

The clustered split provides a benchmark task for annotation of protein sequences with remote

homology, that is, sequences in the test set that have low similarity to the ones in the training set.

This is useful as an estimation of how well a model will perform with new sequences that are

quite different from the ones in the training data. To this end, single-linkage clustering at 25%

similarity within each family was used. The resulting benchmark has a distant held-out test set

of 21,293 sequences. For this task authors proposed ProtCNN and ProtENN4. ProtCNN receives

a one-hot coded sequence and learns to automatically extract features to predict family

membership. ProtENN is an ensemble of 19 ProtCNNs using a majority vote strategy, where

each model was trained with different random parameter initializations.

For the TL approach, we have obtained the ESM embeddings (ESM-1b) of all the train and

test sets for the clustered split (a total of 1,339,083 seed sequences). We used two baseline

machine learning classifiers for the supervised downstream task: k-nearest neighbor (kNN) and

multilayer perceptron (MLP), both trained with the embeddings collapsed to full-sequence,

representing each protein domain with a vector in ℝ1,280. After training, these models were tested

with the distant held-out test partition for family domain prediction. Finally, we took advantage

of TL to improve ProtCNN by training this architecture with the embedding as inputs, instead of

the (original) one-hot encoding.
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Table 1 shows the results when performance is evaluated by the error rate and the number of

errors for classifying the protein domain sequences contained in a held-out clustered test set. The

model with the fewest errors is indicated in bold. The first four rows reproduce the ProtCNN,

ProtENN, TPHMM and BLASTp results4. The next rows show the results obtained when TL is

used with different classifiers. The first interesting result is that TL with a simple kNN has

obtained at least as good results (27.29% error rate) as ProtCNN (27.60%). Similarly, when

transferred to the MLP model or an ensemble of 5 MLPs the error rate is even lower (19.39%

and 18.02% respectively). This is a very remarkable result taking into account that embeddings

have not been fine-tuned for this particular downstream task. When TL is used as input to a

single ProtCNN the results improve even further (15.98%) and the best results are achieved

when it is used as the input of an ensemble of 10 TL-ProtCNNs (8.35%). All these cases have

achieved better performance than ProtCNN with convolutional feature extraction from a one-hot

representation. Moreover, when comparing only ensemble models, the TL-ProtCNN ensemble

of 10 models has clearly outperformed the ProtENN ensemble of 19 models (8.35% vs 12.20%

error rate, respectively). That is, the error rate has been diminished by 33% thanks to the use of

TL for the annotation task. Furthermore, in comparison to the TPHMM the improvement is an

impressive 55%.

Table 1: Performance on the clustered split of Pfam.

Method Error rate (%) Total errors
ProtCNN 27.60 5,882
ProtENN 12.20 2,590
TPHMM 18.10 3,844
BLASTp 35.90 7,639
TL-kNN 27.29 5,816
TL-MLP 19.39 4,132
TL-MLP-ensemble 18.02 3,840
TL-ProtCNN 15.98 3,405
TL-ProtCNN-ensemble 8.35 1,743

Closing remarks

In the last few years, several protein representation learning models based on deep learning have
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appeared, which provide numerical vectors (embeddings) as a unique representation of the

protein. With TL the knowledge encoded in these embeddings can be used in another model to

efficiently learn new features of a different downstream prediction task. This TL process allows

models to improve their performance by passing knowledge from one task to another, exploiting

the information of larger and unlabeled datasets. Protein embeddings has become a new and

highly active area of research, with a large number of variants already available in public

repositories and easy to use.

The results achieved in a challenging partition of the full Pfam database, with low similarity

between train and test sets, have shown superior performance when TL is used in comparison to

previous deep learning models. Even in the case of the most simple machine learning classifiers,

such as kNN and MLP, the decrease in the error rate was remarkable. Moreover, the best

performance is achieved when a convolutional based model is mixed with a pre-trained protein

embedding based on transformers. In terms of computational power, even half of ensemble

members provided a 33% of improvement in the classification performance.

We hope that this comment will make researchers consider the potential of TL for building

better models for protein function prediction. On the practical side, instead of building one’s

own embedder for proteins, it is very useful to reuse all the computation time already spent

building the available learnt representations. Leveraging TL for new tasks with small sets of

annotated sequences is easy to implement and provides significant impact on final performance.
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