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Abstract

Monitoring behaviour of the grazing livestock is a difficult task because of
its demanding requirements (continuous operation, large amount of infor-
mation, computational efficiency, device portability, precision and accuracy)
under harsh environmental conditions. Detection and classification of jaw
movements (JM) events are essential for estimating information related with
foraging behaviour. Acoustic monitoring is the best way to classify and
quantify ruminant events related with its foraging behaviour. Although ex-
isting acoustic methods are computationally efficient, a common failure for
broad applications is the deal with interference associated with environmen-
tal noises. In this work, the acoustic method, called Chew-Bite Energy Based
Algorithm (CBEBA), is proposed to automatically detect and classify masti-
catory events of grazing cattle. The system incorporates computations of in-
stantaneous power signal for JM-events classification associated with chews,
bites and composite chew-bites, and additionally between two classes of chew
events: i) low energy chews that are associated with rumination and ii) high
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energy chews that are associated with grazing. The results demonstrate that
CBEBA achieve a recognition rate of 91.9% and 91.6% in noiseless and noisy
conditions, respectively, with a high classification precision and a marginal
increment of computational cost compared to previous algorithms, suggesting
feasibility for implementation in low-cost embedded systems.

Keywords: Acoustic monitoring, Cattle grazing behaviour, Jaw movement
classification, Noise robustness, Pattern recognition, Sound energy analysis.

1. Introduction

Precision livestock farming typically integrates smart animal monitoring
technologies to aid farmers with relevant management decisions regarding
animal nutrition, health and welfare (Michie et al., 2020). The deployment
of animal monitoring dashboards has been enhanced recently by improved
sensors (Andriamandroso et al., 2016), advanced communication technologies
and enhanced visualization tools allowing for rapid inspection of production
traits and behaviours associated with specific activities, changes of location
and body posture (Berckmans, 2014).

The use of modern technologies based on fixed video cameras allow for
individual or group behaviour monitoring in an automatic, continuous and
non-intrusive way in a given fixed area (Fuentes et al., 2020). Their use is
limited to small farming areas such as pens and stables. On the other hand,
the use of small wearable video cameras on animals would allow to expand
the operating region, although their application still needs further develop-
ment (Saitoh and Kato, 2021). Thus, wearable sensors are the most widely
used acquisition method to cover large farm and field areas. However, their
operational requirements, primarily device portability, robustness and power
capabilities, along with the computational cost and complexity of analytical
components often represents an obstacle for further technological progress
and adoption (Stone, 2020).

Ones of the most frequently used monitoring techniques are the position
and motion sensors, which allows the surveillance of cattle and sheep move-
ments (Andriamandroso et al., 2016). Nose band sensors (Nydegger et al.,
2010; Werner et al., 2018; Zehner et al., 2017), multidimensional accelerom-
eters (Andriamandroso et al., 2017; Greenwood et al., 2017; Smith et al.,
2016) and jaw recorders have been applied to monitor animal locomotion
as well as feeding and rumination activities, being used to alert farmers on
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behavioural changes associated with diseases, estrus and labor. On the other
hand, acoustics methods have been used for monitoring livestock feeding be-
haviours. Laca et al. (1992) used directional microphones, attached to the
forehead of animals, for analysing masticatory sounds in cattle (Galli et al.,
2018) and sheep (Galli et al., 2011), as well as for accurate discrimination
between feeding and rumination bouts (Chelotti et al., 2020; Vanrell et al.,
2018) and for feed intake prediction based on sound energy fluxes (Galli et al.,
2018; Laca et al., 2000).

Masticatory sounds are the result of JM-events associated with bites,
chews and composite chew-bites (Laca et al., 1992). A grazing bite includes
the apprehension and severance of herbage. Chews include the crushing,
grinding and processing of herbage during ingestion or rumination. Finally,
chew-bites include the combination of chewing and biting in the same JM.
Thus, the attributes and statistics of JM-events provide a reliable measure for
identification of grazing (include bites, chews and chew-bites) and rumination
(chews only) activities and related behaviour events (Chelotti et al., 2016;
Milone et al., 2012). Rumination frequency is related to digestion processes
and serves as indicator of a suitable rumen health (Sauvant, 2000). The sound
properties of bites and chew-bites typically relate to common plant traits and
feed structural characteristics (Laca et al., 2000), providing insights of short-
term intake rate (Galli et al., 2018) and daily grazing time (Chelotti et al.,
2020), two major determinants of the daily feed intake (Hodgson, 1990). A
declining rumination time has been shown to be correlated with a declining
feed intake (Watt et al., 2015), an acute stressors (Schirmann et al., 2011),
an onset of diseases (DeVries et al., 2009), as well as the beginning of estrus
(Schirmann et al., 2009) and parturition (Schirmann et al., 2013).

The acquisition of masticatory sounds is the first step of a good acoustic
method because registered signals require further processing, analysis and
information weighing, and extraction to become useful and insightful for an-
imal monitoring. The analysis of masticatory sounds has been significantly
improved in recent years. Milone et al. (2012, 2009) used concepts from au-
tomatic speech recognition to develop an algorithm based on hidden Markov
models capable of identifying chew, bite, and chew-bite in sheep and cat-
tle. It combines spectral analysis with language-based analysis to detect and
classify JM-events. These algorithms achieved an average recognition rate of
80% of successful classifications of bites, chews and chew-bites when tested in
controlled experiments lasting a few minutes under good signal-to-noise ratio
(SNR) conditions. Chelotti et al. (2016) proposed an alternative algorithm
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based on time-domain features of sound signals, achieving similar JM-events
recognition rate success at a lower computational cost, compared to Milone
et al. (2012), such that it can be implemented in portable microcontroller-
based embedded systems (Deniz et al., 2017). More recently, Chelotti et al.
(2018) modified and improved this algorithm (Chelotti et al., 2016) using
concepts and tools derived from signal processing, pattern recognition and
artificial intelligence areas without significantly increasing the computational
cost. This algorithm, called Chew Bite Intelligent Algorithm (CBIA), atten-
uates the effects of time-varying noises and trends, and it achieves a 90%
recognition rate. Although CBIA showed good performance for moderate
SNR, significant limitations arose when it was employed in farming and hus-
bandry environments, which typically involved louder and time-varying noise
and disturbance sources. These negatively affect the detection, features ex-
traction and classification of JM-events since they can not be completely
removed from processes internal signals (see Chelotti et al., 2018).

The present work documented and tested the integration of a new set of
tools for pattern recognition analysis and artificial intelligence for robust on-
line analyses of masticatory sound signals collected from grazing livestock.
The main objective is to achieve a more robust detection and classification
of JM-events than the CBIA algorithm. Specifically, the new algorithm was
especially designed to: i) attenuate distorting effects of environmental noises
on masticatory signals likely associated with typical farming conditions and
animal handling procedures; and ii) improve the detection and classification
of JM-events without significantly increasing the computational cost. The
computational cost and a cost-benefit analysis of the new algorithm and
CBIA were also evaluated to assess future feasibility for real-time execution
in low-cost embedded systems.

The paper is organised as follows: Section 2 analyses the CBIA and
presents the new classification features intended to attenuate effects of noises
on detection and classification tasks. Then, the proposed algorithm is in-
troduced. Also it is described the acquisition of datasets, the performance
measures and the experimental setup used to validate the algorithms. Sec-
tion 3 shows the comparative results for the proposed algorithm and CBIA.
A focused discussion and main conclusions follow in Section 4 and Section 5,
respectively.
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2. Materials and Methods

In the following section, the operation and weakness of the former CBIA
are briefly described. Then, the approach of the proposed algorithm is pre-
sented. It is based on the use of instantaneous power signal and it incor-
porates a novel set of features that are more robust to withstand against
likely distortions and interferences produced by environmental noises. The
algorithm recognises and discriminates JM-events into four classes (Fig. 1):
exclusive rumination-chews (RC - chews related to rumination only), exclu-
sive grazing-chews (GC - chews related to ingestive grazing only), exclusive
grazing bites (B - bites taken during grazing) and composite chew-bite (CB
- compound chew-bite taken during grazing).

2.1. CBIA review
The CBIA is a real-time pattern recognition system that detects and clas-

sifies masticatory sounds produced by ruminants into three JM-event classes
(chew (C), bite (B) and chew-bite (CB)) using heuristic features (Chelotti
et al., 2018). It is characterised by a sequence of generic stages that allows
the processing, description and analysis of the sound signal: conditioning,
pre-processing, segmentation, feature extraction and classification. In the
signal conditioning stage the sound signal is conditioned and filtered to
improve its SNR using an adaptive low-pass filter. Then, the pre-processing
stage computes the sound envelope, from the filtered signal, and decimates
it to reduce the computational cost of following stages. The segmenta-
tion stage identifies the candidate JM-events (i.e. peaks in the envelope
signal) using a time-varying threshold. Once a candidate JM-event is de-
tected, the following features are extracted from the filtered sound intensity
or from the sound envelope: amplitude, duration, shape index and symme-
try of the candidate JM-event. Then, the extracted features feed a classifier
(classification stage) that assigns each candidate JM-event to one of the
three possible JM-event classes. Two stages (segmentation and feature ex-
traction) have been specifically designed for CBIA while the remaining ones
(conditioning, pre-processing and classification) can be implemented using
any algorithm available in the signal processing and computational intelli-
gence literature (Chelotti et al., 2018). This fact allows to implement distinct
combinations of algorithms that bring recognition systems with different com-
putational and performance characteristics. The most adequate combination
for real-time operation is the algorithm that uses an adaptive least mean
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square filter (LMS) for signal pre-processing and a multilayer perceptron
(MLP) for classification, leading to CBIA LMS-MLP variant.

The CBIA showed recognition rates of ∼90% under controlled experimen-
tal conditions (low noise environment). On the same conditions, other known
methods achieved lower rates: CBRTA (∼77%) and CBHMM (∼80%). There-
fore the CBIA will be used as baseline in this work.

A comprehensive study of the effect of environmental noises and dis-
turbances in CBIA has not been carried out. Incoming sound signals usu-
ally have noises and slow varying patterns superimposed on the masticatory
sounds produced by animals, causing JM-events detection and classification
mistakes. The tasks performed by signal conditioning and pre-processing
stages leave some noises and disturbances unaffected. They can distort the
sound envelope, upsetting the segmentation and feature extraction stages
and hampering the overall algorithm performance. Therefore, to improve
robustness in a noisy environment, alternative processing strategies and new
features should be used.

2.2. Proposed features
The key problem of the former CBIA is the sensitivity to changes in

the sound envelope. Any noise recorded together with masticatory sounds
distorts the envelope, leading to errors in the detection stage and misinter-
pretations of the features decreasing the successful JM-events classification
rate.

Since noises overlap with the target signal, they cannot be completely re-
moved from the incoming signals by the use of real-time low-computational-
cost signal processing techniques. The alternative tested in this work is to
combine pre-processing techniques with the use of the envelope of the instan-
taneous power signal, instead of using the sound envelope to detect JM-events
and extract their corresponding features. The instantaneous power is com-
puted as the scalar product of the conditioned incoming signal at a given
point of time. Thus, the envelope of the instantaneous power signal works as
an expander, increasing the event detection sensibility. It is analogous to an
asynchronous demodulation technique, which is frequently used to improve
the SNR for small signals in measurement systems (Roden, 1996).

In this work, we propose to extend computation to the following set of
temporal features, extracted either from the instantaneous power signal or
its envelope:
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• Sign of the envelope slope: This feature represents the shape of
the JM-event and is calculated as the number of times that the enve-
lope slope changes from positive to negative. Typically, the envelope
changes from positive to negative once for GC and B, two or more times
for CB, and one or more times for RC (Fig. 1, row 3).

• Accumulated envelope speed: The speed of the envelope slope (or
absolute magnitude of change) is related to the sound intensity and
variations. This feature is computed as the cumulative sum of the
speed of the envelope slope. It distinguishes low intensity RC from any
other grazing event. Also, a GC is differentiated from a B and a CB,
which present similar values between them. The Fig. 1, row 4, shows
how the accumulated envelope speed increases as a function of time.

• Duration: event duration is the time that an JM-event takes place.
A typical compound grazing CB has a greater duration than others
grazing events. In turn, the duration of a RC is similar to or longer
than a GC due to the moisture content of the chewed material (Fig. 1,
row 5) (Galli et al., 2020).

• Symmetry: is related to the shape of the event and is a measure of
the length symmetry of a JM-event computed at peak envelope signal.
The value is greater for B than CB, while GC and RC typically present
variable values between B and CB (Fig. 1, row 5).

• Total energy: is the accumulated value of the instantaneous power
signal and it is related to the intensity and duration of the JM-event.
The value is higher for CB than B, and B usually have higher value than
GC and RC. In turn, RC have a much lower value than any grazing
event because the ruminated herbage has already been partially chewed
and crushed. The Fig. 1, row 6, shows how the event energy increases
as a function of time.

The sign of the envelope slope and duration features have been already
used by Chelotti et al. (2018) but in the present work the same features are
extracted from a different signal: the instantaneous power signal.

2.3. The CBEBA description
In this section the proposed algorithm called Chew-Bite Energy Based Al-

gorithm (CBEBA) is introduced. CBEBA performs three tasks: i) JM-event
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Figure 1: Signals of typical acoustic events produced by jaw movements and their cor-
responding features for: a) rumination-chew, b) grazing-chew, c) bite and d) chew-bite
obtained from the noiseless dataset described in section 2.4. In each row, 1. acoustic
signal, 2. instantaneous power envelope, 3. sign of the envelope slope, 4. accumulated
envelope slope change rate or speed, 5. duration and symmetry, and 6. accumulated
power.

detection, ii) JM-event classification and iii) parameters tuning. JM-event
detection is performed by searching for peaks in the instantaneous power
signal envelope. Once a possible JM-event has been detected, the features
are extracted from the instantaneous power signal and an evaluation is car-
ried out indicating whether the considered event corresponds or not to a
true JM. The JM-event classification is carried out using a machine learning
technique of low computational cost, to allow future implementation in low-
power embedded devices. Finally, parameters tuning is performed. In the
time between two consecutive JM-events, the background noise level is esti-
mated and used for the adjustment of internal variables, which significantly
improves the algorithm robustness against time-varying conditions.

The online implementation of the algorithm for operation real-time can
be internally divided into six stages in a feedback configuration (Fig. 2):

Stage 1 – Signal pre-processing: The input signal usually has noises
and disturbances that distort the masticatory sounds produced by animals.
Therefore, it is necessary to process the signal in order to remove them. This
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task is performed by limiting the signal bandwidth with a second-order But-
terworth band-pass filter where the energy spectral density of the JM-events
is located. The filtered signal is multiplied by itself to obtain the instanta-
neous power signal (p(k)), where k corresponds to the sampling frequency of
the input audio signal. The gain of the acquisition system serves as input
to normalize the incoming audio signal for further processing, matching its
range with the range of the device where the algorithm is running.

Envelope
computation

Pre-processing

Threshold algorithms

Tune 
parameters

Feature extraction

Event 
classification

Event detection

Frame-energy 
computation

Digitized sound

Classified 
Event

f(n)

Buffering

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

Stage 6

Gain acquisition 
system

e(n)

T(n) , TF

p(k) 

Figure 2: General top-down block diagram of the Chew-Bite Energy Based Algorithm
(CBEBA) showing the structure and flow of functions along six operating stages.
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Stage 2 – Buffering: The pre-processed instantaneous power signal p(k)
follows two parallel paths. In the first path, the envelope computation re-
quires three steps. In the first step, the instantaneous power signal p(k) is
filtered with a second-order low-pass Butterworth filter, obtaining the en-
velope of p(k). In the second step, the low frequency envelope signal is
subsampled to reduce the computation cost of the algorithm. Finally, the
decimated envelope is saved in the envelope buffer e(n), where n corresponds
to the updating frequency of the buffer. In the second path, the frame-energy
buffer f(n) stores the energy of p(k) computed by non-overlapping frames,
where a “frame” is the cumulative summation of p(k) during a period of time.
Stage 3 – JM-event detection: The buffers e(n) and f(n) contain one
second of signals information to be analysed. A peak in e(n) denotes the
presence of a possible JM-event. Each peak is detected as a change in the
sign of the derivative of the envelope located at the centre position in the
e(n). In this case, a second peak is searched beyond the centre position. Each
peak must be higher than the value of a given time-varying threshold T (n).
If a second peak was found, the middle position of the peaks is centred in
e(n).
The time-varying threshold algorithm T (n) is a piecewise linear function that
considers both the same anatomical and behavioural characteristics of the an-
imal proposed in the threshold algorithm used in the CBIA and time-varying
feeding activities conditions. A description of the parameters involved in the
computation of T (n) are available in the supplementary material.
Once a peak has been detected in e(n), the start and end of the candidate
JM-event are defined from f(n). The start (nSTART ) and end (nEND) of
the candidate JM-event correspond to the minimum and maximum n where
f(n) > TF during a hangover period. TF is the adaptive energy threshold
level described in stage 6.
Stage 4 – Features extraction: nSTART and nEND positions of the candi-
date JM-event are used as boundaries to compute and extract the following
features: sign of the envelope slope, accumulated envelope speed, duration,
symmetry and total energy, as it was described previously in section 2.2.
Stage 5 – JM-event classification: Once the features have been extracted,
the candidate JM-event is analysed to determine if the event should be fur-
ther classified or not. To be considered a JM, the duration feature must be
in a predefined range and the total energy feature must be greater than a
certain value of the energy in f(n). Otherwise, the tune threshold algorithm
is informed, and the extracted features are discarded. The final classification
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step is performed by a MLP.
Stage 6 – Threshold algorithms and parameters tuning: Once the
JM-event has been classified, some internal values are extracted from the
buffers e(n) and f(n). These values are used to update parameters associ-
ated with the time-varying threshold algorithm T (n) and the adaptive energy
threshold algorithm TF . The computation of internal values and parameters
related to both algorithms are available in the supplementary material.

2.4. Datasets
Two independent datasets of dairy cow sound records were used to im-

plement and evaluate the proposed algorithms. The first dataset (referred as
DS1) was acquired during grazing feeding trials performed at the dairy farm
of the W.K. Kellogg Biological Station of Michigan State University, United
States, in August 2014. Protocols for animal handling and care were re-
viewed, approved, and conducted according to the Institutional Animal Care
and Use Committee of Michigan State University, as described in Vanrell
et al. (2018). Cows were housed and managed on a pasture-based robotic
milking system with voluntary cow traffic as described previously in Watt
et al. (2015). During six non-consecutive days the foraging behaviour of five
lactating multiparous Holstein cows weighing 652 ± 40 kg was continuously
monitored. The dairy cows were group grazed on perennial ryegrass (Lolium
perenne) / white clover (Trifolium repens) and orchardgrass (Dactylis glom-
erata) / white clover pastures as part of a larger herd of ∼140 cows.

The second dataset (referred as DS2) was acquired during grazing feeding
trials conducted at the dairy farm of the Campo Experimental J. Villarino
of Universidad Nacional de Rosario, Argentina, in October 2014. Project
protocols were previously evaluated and approved by the Committee on Eth-
ical Use of Animals for Research of the Universidad Nacional de Rosario.
The foraging behaviour of five lactating multiparous Holstein cows weighing
570 ± 40 kg grazing on alfalfa (Medicago sativa), fescue (Festuca arundi-
nacea) and prairie grass (Bromus catharticus) mixed pastures, were contin-
uously monitored during six non-consecutive days. The experimental cows
were managed along with a larger dairy herd ( 150 cows) and milked twice a
day (∼6 am - 6 pm).

The two field studies used the same cow acoustic halters to record masti-
catory sounds. Each halter included a directional microphone pressed to the
forehead of each animal connected to a digital recorder (Sony Digital ICD-
PX312, Sony, San Diego, CA, USA). Microphones were held and protected
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by an elastic band attached to halters, avoiding microphone movement, fric-
tion and scratches. On a given recording day, the five acoustic halters were
randomly assigned to each of five cows and were rotated across cows and
sampling days. This design allowed to control for any likely device effect (i.e.
all cows were tested with all halters). All recordings were saved in wave-
form audio (WAV) file format, using 16-bit resolution and a sampling rate of
44.1 kHz. The DS1 dataset is composed of eighteen short-term records of in-
gestive grazing sounds (grazing-segments) of 150 s for each one, and eighteen
short-term segments of rumination sounds (rumination-segments) of 75 s for
each one. The selected recordings were captured with minimum or no influ-
ence of external environmental noise; thus, represented ideal acoustic condi-
tions for algorithm testing. A typical grazing-segment contains more than
170 JM-events whereas a typical rumination-segment contains more than 65
JM-events, which results in over 4,200 JM-events in DS1 (32% RC, 18% GC,
9% B and 41% CB). The DS2 dataset contains more than 5,200 JM-events
(28% RC, 28% GC, 11% B and 33% CB) collected from sixteen segments of
grazing activity and sixteen segments of rumination activity of same dura-
tion as DS1. The DS2 recordings were purposely captured in a free-ranging
environment; thus, recordings included acoustic signals corrupted by typical
external noises, such as blowing wind, cow calls, cow steps, vehicle engines
and human voices, among others, and were used to evaluate the proposed
algorithm under adverse acoustic conditions.

All segments were labelled aurally by two experts in cows foraging be-
haviour and with prior experience to identify and classify individual JM-events
associated with grazing and rumination. The supervised labelling was done
by one of the experts, with results double inspected and checked by the sec-
ond expert. In most of the cases experts largely agreed with the labelling
process, but when there was disagreement, both experts worked together to
convey final JM-events classification decisions. The same procedure was ap-
plied successfully in Chelotti et al. (2018, 2016, 2020); Vanrell et al. (2018).
This supervised JM-event labelling was used as control reference for the pur-
poses of comparing and testing the performance of the algorithm, and to
evaluate the quality of sound signals.

The noise effect of environmental sounds on grazing and rumination sig-
nals was measured using the JM modulation index (MIJM) and the SNR.
The MIJM denotes the suitability of signals for recognition of JM-events
in a given segment and it is defined as the ratio between the mean sound
intensity during JM-events to the mean sound intensity during the pauses
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inter-JM-events. The SNR is used to indicate how the proper JM-events clas-
sification is affected by noise. A detailed description of the computation of
quality factors is given in Appendix A. Both factors were computed for each
segment and then averaged per foraging activity (rumination or grazing) in
each dataset. Reported values are given in Table 1.

Table 1: Average value for the noise effect on acoustic signals of foraging activities collected
in the DS1 and DS2 datasets

Rumination Grazing

DS1 DS2 DS1 DS2

MIJM (%) 37.9 21.5 78.1 45.8
SNR (dB) 5.5 2.7 11.7 9.8

2.5. Performance measures
To evaluate the algorithm, comparisons between JM-events recognised

by the algorithm vs. JM-events classified aurally were mutually synchro-
nised and compared. This temporal synchronisation and comparison was
performed using the HResults tool, which is available as part of the HTK
speech analysis toolkit software (HTK 3.4.1, Cambridge University, UK).
JM-event synchronisation, matching algorithm recognised and aurally clas-
sified JM-event sequences was conducted by an optimal string match using
a dynamic programming-based string alignment procedure (Young et al.,
2002). The recognition statistics outputs were used to evaluate the detection
and classification performance metrics.

The JM-event detection only considers the existence or not of an JM-event,
ignoring their corresponding class. The detection performance is collectively
affected by the number of correct JM-events detected (true positives), the
number of undetected JM-events (false negatives) and the number of incor-
rect JM-events detected (false positives). The effectiveness of the JM-event
detector is reported through metrics for precision, recall and F1− score.

The JM-event classification considers the type of JM-events detected.
The correct number of previously detected JM-events were used to com-
pute the number of true positives (tpi), the number of true negatives (tni),
the number of false positives (fpi), and the number of false negatives (fni)
JM-events for each JM-event class i, respectively. Classification perfor-
mances were averaged by JM-event class (macro-averaging) and reported
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as F1-score (F1−scoreM), arithmetic precision (precisionM) and arithmetic
recall (recallM), (Sokolova and Lapalme, 2009), and their equivalent geo-
metric precision (precisionG) and geometric recall (recallG) (Ballabio et al.,
2018). The dispersion of the classification performance per JM-event class
tends to affect more negatively geometric averages than arithmetic averages.

2.6. Experimental setup
The proposed CBEBA was coded and the experiments were both carried

out using Matlab R2019b (MathWorks, Natick, MA, USA) in a personal
computer with an Intel Core i7-4790 3.6 GHz with 16 GB of RAM. The
MLP network classifier was implemented using the Levenberg-Marquardt
backpropagation algorithm optimising the mean square error (Demuth et al.,
2014). Inputs were normalised and output labels binarised to match MLP
output. MLPs classifiers with five input neurons (number of input features),
four output neurons (number of output labels corresponding to JM-events)
and one hidden layer were used. The hyperparameters correspond to the
learning rate (from 0.1 to 0.001) and numbers of neurons in the hidden layer
(from three to seven) were optimised using the grid search method.

Segments in each dataset were split into two parts. The first part in-
cluded one-third of the segments and served to tune the internal parameters
of the algorithm. The second part included the remaining two-thirds of the
segments and were used to validate the algorithm (Fig. 3).

In the first part, a train/test split scheme was performed to tune the
internal parameters of CBEBA using a grid search method. Four grazing
segments and four rumination segments were used for training the model
(light red background segments in Fig. 3). A MLP was trained for each in-
ternal parameters configuration optimising its hyperparameters. Additional
synthetic JM-events for the minority class (bites) were generated using the
adaptive synthetic (ADASYN) algorithm. This step was applied to con-
trol for JM-events class imbalances during the algorithm training phase (He
et al., 2008). Two grazing segments and two rumination segments were used
for evaluating the performance of the system for each configuration (dark
red background segments in Fig. 3). The optimal internal parameters con-
figuration that maximised the condition F1− scoreM was founded varying
the following parameters: (i) lower (flower) and (ii) upper (fupper) frequencies
during pre-processing stage, (iii) the cut-off frequency (fcut) involved during
envelope computation, and (iv) the envelope sub-sampling frequency (Ss).
The corresponding optimal values for both datasets were flower = 175 Hz,
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fupper = 900 Hz, fcut = 9 Hz and Ss = 150 Hz. The variation range of the
parameters and their relationships with JM-event features computations are
available in the supplementary material.

R G R G R G R G R G R G R G R G R G R G R G R G R G R G R G R G

R G R G R G R G R G R G

R G R G R G R G R G R G R G R G R G R G

R G R G R G R G R G R G R G R G R G R G

R G R G R G R G R G R G R G R G R G R G

Internal parameters 
tuning segments

Validate algorithm 
segments

Train/test split

All segments

Cross-validation

Figure 3: Configuration of the segment fragmentation used to perform the experiments in
each dataset. R labels correspond to 75 s rumination-segments and G labels correspond
to 150 s grazing-segments.

The optimal internal parameters obtained in the first part of the split
dataset were used in the second part for the final validation of the algorithm
in a cross-validation scheme with the corresponding part of the data (Fig. 3).
Since grazing and rumination segments are related to different JM-events
class, in each iteration, one grazing segment and one rumination segment
were selected for the purpose of testing (dark green background segments in
Fig. 3), while the remaining segments were used to train the model (light
green background segments in Fig. 3). The two segments chosen for testing
were only used once and they were not used for testing in subsequent iter-
ations. During the algorithm training phase, synthetic bites were generated
with the ADASYN algorithm (He et al., 2008). Performance metrics informed
were obtained averaging all iterations. Cross-validation was instrumented as
a comprehensive statistical method for evaluation of CBEBA.

Evaluations were conducted according to the following four dataset com-
binations: i) training with DS1 and testing with DS1 (referred as DS11); ii)
training with DS1 and testing with DS2 (referred as DS12); iii) training with
DS2 and testing with DS1 (referred as DS21); and iv) training with DS2 and
testing with DS2 (referred as DS22).
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3. Results

3.1. Qualitative results
A qualitative analysis of the effect on JM-event class separation of the

proposed features was performed using a t-distributed stochastic neighbor
embedding (t-SNE) analysis (van der Maaten and Hinton, 2008). Fig. 4
shows the result of the dimensionality reduction analysis applied to both
sets of JM-events features proposed in this work (Fig. 4a and Fig. 4b) and
those sets of features previously applied in the former CBIA (Fig. 4c and
Fig. 4d). These figures show the separation of JM-events in four classes for
the proposed algorithm (B, CB, RC and GC) and three for CBIA (B, CB and
C, where RC and GC are joined as C). Fig. 4a and Fig. 4c show the results
for both algorithms in noiseless conditions using the DS1 dataset. B and CB
are grouped into two detached clusters with few mixed data points between
them. C are also grouped into two clear clusters for both sets of features. In
the CBIA case (Fig. 4c) both clusters correspond to the same JM-event class,
while in the CBEBA case (Fig. 4a) each cluster corresponds to a different
JM-event class. The clusters obtained with the proposed set of features
are detached with few mixed data points between them (Fig. 4a). RC and
GC are clearly separated, which supports the hypothesis for differences in
acoustic properties associated with chewing of fresh (GC) and preprocessed
(RC) material. Only B are mixed with both C and CB. CB mixed with GC
are negligible. On the other hand, the clusters obtained with the CBIA set
of features are detached for some groups and they have mixed data points
between them (Fig. 4c). The C cluster is blended with the B cluster. CB
form two separated clusters with one of clusters slightly mixed with C events.
C form two isolated clusters, which may be explained by the presence of GC
and RC (Fig. 4c).

Fig. 4b and Fig. 4d show the results in noisy conditions using the DS2
dataset. Similar separation and characteristics of clusters occurs for the
proposed set of features with an increment in clusters overlapping (Fig. 4b).
For the CBIA set of features, the clusters are less dense with a considerable
number of mixed data points. In this sense, C are grouped in two clusters.
One of them presents low density and is mixed with data points corresponding
to B and CB. The cluster corresponding to B is low density grouped and
mixed with C and CB points. A similar situation occurs with the cluster of
CB (Fig. 4d).
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Figure 4: t-SNE analysis of the set of JM-events features used in the proposed CBEBA
(panels a and b) and those used in previous CBIA (panels c and d) performed against DS1
noiseless dataset (panels a and c) or DS2 noisy dataset (panels b and d).

3.2. Algorithm performance metrics
The proposed CBEBA was evaluated in each of the four possible dataset

combinations, and their performance metrics are summarised in Table 2. The
detection reached an excellent performance as shown by a recall of ∼98.0%
in all dataset combinations and a precision of ∼99.0% for DS11 and DS21.
However, precision decreased to values of ∼96.0% for DS12 and DS22. A
similar behaviour was seen for F1− score. The classification performance
was the highest and more consistent for DS11 as shown by all classification
metrics with higher mean and lower standard deviation. Likewise, classifi-
cations for DS22 showed smaller deviations in the mean value (<2%) and
standard deviations (<3%) than DS11. Conversely, DS12 had lower over-
all classification performance than DS11. This deterioration was relatively
small (<4%) for recallM , recallG and F1− scoreM ; and greater (>5%) for
precisionM and precisionG, respectively. The standard deviation for the
classification metrics of DS12 doubled the standard deviation observed for
DS11 due to the influence of environmental noise. The classification perfor-
mance for DS21 had lower recallM (-3.8%), F1− scoreM (-1.5%) and recallG
(-6.5%), with slighter improvements for precisionM (0.9%) and precisionG

(1.2%) than those corresponding to DS22. The standard deviation for the
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Table 2: Comparative metrics for CBEBA detection and classification performance (mean
± SD; %) for different combinations of training and testing dataset variants.

DS11 DS12 DS21 DS22

Recall 98,4 ± 1,0 98,0 ± 0,9 97,9 ± 1,3 98,4 ± 1,2
Precision 99,2 ± 0,5 95,8 ± 2,1 98,7 ± 0,8 96,1 ± 2,6

D
et
ec
ti
on

F1− score 98,8 ± 0,6 96,9 ± 1,4 98,3 ± 0,9 97,2 ± 1,8

RecallM 92,0 ± 2,6 89,8 ± 4,3 87,5 ± 3,8 91,3 ± 3,8
PrecisionM 92,2 ± 2,8 87,0 ± 5,5 91,6 ± 3,1 90,7 ± 5,1
F1− scoreM 92,1 ± 2,4 88,4 ± 4,7 89,5 ± 3,2 91,0 ± 4,2
RecallG 88,9 ± 3,7 87,9 ± 4,8 81,8 ± 5,7 88,3 ± 4,3

C
la
ss
ifi
ca
ti
on

PrecisionG 89,3 ± 4,3 81,5 ± 8,6 88,9 ± 4,7 87,7 ± 6,6

classification metrics of DS21 were smaller than those for DS22 due to re-
ductions of environmental noise associated with the sound signal of DS1.

(a) (b)

(d)(c)

Figure 5: Confusion matrices for classification of grazing-chews (GC), bites (B), chew-bites
(CB) and rumination-chews (RC) by CBEBA in the a) DS11, b) DS12, c) DS21, and d)
DS22 dataset combinations, respectively.
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The recognition results across the four dataset combinations, obtained
by accumulating the results of each segment used for testing, are presented
in the confusion matrices in Fig. 5. Each row represents the distribution
of true JM-events over the event class into which they were classified. The
rumination-chew events were almost perfectly classified. The grazing-chew
and chew-bite events reached recognition rates higher than 86.2% in all
dataset combinations. Grazing-chews and chew-bites were better classified
in DS1 (DS11 and DS21) than in DS2 (DS12 and DS22). There was lower
confusion between datasets in DS1 (3.8% GC classified as CB and 2.1% CB
classified as GC in DS11, and 1.7% GC classified as CB and 5.6% CB clas-
sified as GC in DS21) than in DS2 (8.2% GC classified as CB and 6.4% CB
classified as GC in DS12, and 4.9% GC classified as CB and 8.8% GC clas-
sified as GC in the DS22). Particularly, GC and B were the most affected
JM-events in mismatch conditions. The recognition rate of GC increased,
whereas the recognition rate of B decreased when CBEBA was trained using
the noisy dataset (DS2).

3.3. Comparisons between CBEBA and CBIA
A direct comparison between the CBEBA and the former CBIA is not

possible because both algorithms are based on a different classification of
JM-events. Therefore, one alternative is to combine the grazing and rumi-
nation chews in CBEBA into a single chew (C) class in order to have the
same type and number of JM-event classes as in CBIA (C, B and CB classes,
respectively).

The comparative performance for detection and classification of JM-events
between CBIA and CBEBA are presented in Table 3. The CBIA was con-
figured, trained and tested in the same way as the CBEBA. Performance
metrics discrepancy between CBEBA and CBIA were evaluated to be statis-
tically significant (p < 0.05), using a Wilcoxon signed-rank test (Wilcoxon,
1945).

CBEBA showed better overall performances than the former CBIA. Both
algorithms showed similar recall for detection in all dataset combinations
(p > 0.05). However, the precision and F1− score indicated a better
overall JM-event detection performance for CBEBA than CBIA, respec-
tively (p < 0.05). In noisy testing environments (DS12 and DS22), CBEBA
achieved better metrics for precision (∼96% vs. ∼92%) and F1− score
(∼97% vs. ∼95%) for detection than CBIA. This discrepancy between met-
rics is likely due to the apparent effects of noises on the precision and
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Table 3: Comparative performance metrics (mean ± SD; %) for CBIA and CBEBA across
the four dataset combinations. Metric values with green background within same rows
and dataset combinations differ significantly, whereas metric values with pink background
within same rows and dataset combinations show no significant difference (p < 0.05;
Wilcoxon signed-rank test).

DS11 DS12 DS21 DS22

CBIA CBEBA CBIA CBEBA CBIA CBEBA CBIA CBEBA

Recall 98,8 ± 0.7 98.4 ± 1.0 98.5 ± 0.7 98.0 ± 0.9 98.0 ± 0.9 97.9 ± 1.3 98.7 ± 0.6 98.4 ± 1.2
Precision 98.8 ± 0.8 99.2 ± 0.5 91.7 ± 2.8 95.8 ± 2.1 98.0 ± 0.7 98.7 ± 0.8 91.9 ± 2.6 96.1 ± 2.6

D
et
ec
ti
on

F1− score 98.8 ± 0.5 98.8 ± 0.6 95.0 ± 1.7 96.9 ± 1.4 97.8 ± 0.5 98.3 ± 0.9 95.1 ± 1.5 97.2 ± 1.8
RecallM 91.7 ± 3.3 91.8 ± 3.4 72.9 ± 5.0 90.5 ± 4.6 82.0 ± 6.8 92.9 ± 2.6 86.7 ± 6.2 90.0 ± 4.2
PrecisionM 93.7 ± 2.4 92.1 ± 3.5 79.6 ± 6.7 85.9 ± 5.7 83.0 ± 4.9 85.1 ± 4.8 86.8 ± 5.5 90.2 ± 5.4
F1− scoreM 92.5 ± 1.8 91.9 ± 2.4 77.5 ± 5.2 88.0 ± 4.4 82.9 ± 5.1 88.8 ± 3.1 87.3 ± 5.0 90.0 ± 4.3
RecallG 90.8 ± 3.9 91.5 ± 3.8 68.0 ± 7.6 90.2 ± 5.1 80.2 ± 7.8 92.7 ± 2.8 85.3 ± 8.2 89.5 ± 4.7

C
la
ss
ifi
ca
ti
on

PrecisionG 93.5 ± 2.8 91.6 ± 4.0 78.5 ± 7.6 84.3 ± 7.3 81.6 ± 5.8 83.3 ± 5.7 85.7 ± 7.3 89.6 ± 6.0

F1− score when each algorithm was trained with a noiseless dataset. This
fact is noteworthy for DS12 compared with DS11, where the performance
deterioration for CBEBA was roughly half of that observed for CBIA.

The JM-event classification showed similar results. Both algorithms had
similar performance metrics for the noiseless train/test dataset combination
(DS11), but CBEBA had better classification performance (high mean and
low standard deviation of metrics) than CBIA in the presence of noises. Com-
pared to DS11, the performance metrics for JM-event classification for DS12
declined, but the decline for CBEBA was less than half of that observed for
CBIA. For the cases of noisy training conditions (DS21 and DS22), CBEBA
achieved better overall metrics for JM-event classification performance than
CBIA, respectively, indicating a greater sensitivity of CBIA to environmental
noise (Table 1). In addition, the difference between recallM and recallG was
smaller for CBEBA than CBIA in the same dataset combination, supporting
greater dispersion in the recall per JM-event class for CBIA than CBEBA.
The same situation occurred for precisionM and precisionG in DS22, further
supporting the proposed set of JM-events features for robust detection and
classification of broad sets of JM-event classes using CBEBA.

The confusion matrices in Fig. 6 and Fig. 7 show the JM-events recogni-
tion rates obtained by CBEBA and CBIA. Fig. 6 shows comparative results
for JM-events classification in noiseless data (DS11) and noisy data (DS12)
obtained using noiseless data for training. A similar situation obtained using
noisy data for training (DS21 and DS22) is shown in Fig. 7. The first row
in figures (Fig. 6a and Fig. 6b, and Fig. 7a and Fig. 7b) show the results for
CBEBA, whereas the second row in figures (Fig. 6c and Fig. 6d, and Fig. 7c
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and Fig. 7d) show the results for CBIA.

(a)

(c)

(b)

(d)

Figure 6: Confusion matrices of the DS11 and DS12 dataset combinations showing recog-
nition rates for chew (C), bite (B) and chew-bite (CB) events classified respectively by the
CBEBA (panels a and b) and CBIA (panels c and d) algorithms.

The confusion matrices for DS11 in Fig. 6 showed a slight improvement in
the recognition of bites for CBEBA vs. CBIA. Compared to findings shown
for CBEBA in DS11, confusion matrices for CBEBA in DS12 showed a similar
average JM-events recognition rate (91.8% vs. 90.9%, respectively) with a
9.6% deterioration for recognition of chew-bites and 9.9% improvement for
recognition of bites. Compared to results for CBIA in DS11, findings for
CBIA in DS12 showed a clear decline in average JM-events recognition rate
(91.4% vs. 73.3%, respectively), due to a 20.7% decline in recognition of
chews, a 35.1% decline in recognition of bites, and only a 1.3% improvement
in recognition of chews-bites as a consequence of the great confusion of chews
and bites with chew-bites.

The confusion matrices for DS21 in Fig. 7 showed a slightly better aver-
age JM-events recognition rate for CBEBA (84.9%) than CBIA (83.2%). The
confusion matrix for DS21 showed that CBEBA correctly recognised more
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(a)

(c)

(b)

(d)

Figure 7: Confusion matrices of the DS21 and DS22 dataset combinations showing recog-
nition rates for chew (C), bite (B) and chew-bite (CB) events classified respectively by the
CBEBA (panels a and b) and CBIA (panels c and d) algorithms.

than 93.9% of combined grazing and rumination chews and chew-bites, but
only 62.3% of bites. Conversely, CBIA achieved a better recognition of bites
(81.3%) at the expense of a lower recognition of chew-bites (70.1%). Fur-
thermore, CBIA presented a much lower recognition of bites in DS22 than
CBEBA (68.9% vs. 88.3%, respectively). However, it is noteworthy that
regarding DS22 the average JM-events recognition rate for CBEBA declined
5.6% compared to a decline of 2.4% for CBIA in DS21, with a 26% decline
in the recognition of bites and despite a 1.5% and 7.7% improvement in the
recognition of chews and chew-bites for CBEBA, respectively. Compared to
results for CBIA in DS22, findings for CBIA in DS21 showed lower average
JM-events recognition rate (85.6% vs. 83.2%, respectively) due to a 23.9%
decline in the recognition of chew-bites, and despite the 4.1% and 12.4%
improvement in the recognition of chews and bites, respectively.

Table 4 shown the computational cost of CBEBA and CBIA, both ran
on a similar MLP neural network for JM-event classification, expressed in
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terms of the number of operations per second (ops/s). A detailed description
of the operations and assumptions is given in Appendix B. The overall
computational cost of CBEBA was 11% higher than that for CBIA, mainly
due to the additional costs associated with the signal conditioning, JM-event
classification and updating of internal algorithm parameter tasks.

Table 4: Partitioned computational costs for the CBEBA and
CBIA expressed in operations per second.

Algorithm computational stage CBIA
[ops/s]

1 CBEBA
[ops/s]

2

Signal conditioning and pre-processing 10000 16000
Event detection and feature extraction 28800 26110

Event classification 160 690
Internal parameters update - 378

Global cost 38960 43178
1 Considering k=2 kHz, n=100 Hz and a MLP classifier.
2 Considering k=2 kHz, n=150 Hz and a MLP classifier.

4. Discussion

Previous deployment of acoustic telemetry to monitor livestock foraging
behaviour showed a promising future for the technique, but a major bottle-
neck has been the need for more appropriate and robust analytical proce-
dures to deal with issues associated with environmental noise. The present
study builds upon a previous methodology (CBIA) to analyse JM of graz-
ing cattle and incorporates analytics of novel sound signal features combined
with machine learning techniques for a better detection and classification of
JM-events in noisy environments.

A major advantage for the proposed CBEBA has been the expansion in
detection and classification of JM-event classes. While previous attempts
(Chelotti et al., 2018, 2016; Deniz et al., 2017; Milone et al., 2012) did not
differentiated chews among those associated with ingestive grazing and those
for rumination, a qualitative analysis of the proposed and previous (CBIA)
set of JM-events features showed that chew events are always clustered into
two groups, independently if we explicitly differentiate chews associated with
ingestive grazing and rumination (the proposed set of features) or not (the
CBIA set of features) (Fig. 4). This organisation of the data indicates that
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this desegregation of the chew events cluster is possible and could be pro-
posed to improve the recognition capabilities of the algorithms. Thus, the
present CBEBA method successfully classified JM-events into exclusive bites,
grazing-chews, composite chew-bites and exclusive rumination-chews. Fur-
ther, the computation of the instantaneous signal power for determination of
JM-event energy as a new discriminative feature allowed a better discrimina-
tion of chews associated with ingestive grazing and rumination. A plausible
explanation could be related to differences in the water content of grazed and
ruminated forages. Moisture content can be classified into internal or exter-
nal, depending on whether it belongs or not to cell wall contents. Likewise,
as masticatory sounds produced by chewing are partly due to a rupture of
cell walls and extrusion of internal water and contents, we hypothesise that
grazing-chews may have produced sound JM-events of greater total energy
than rumination chews because the water and contents of intact cells in the
ingested forage material were greater than that for the partially processed
and degraded material regurgitation during rumination (Galli et al., 2020).

The suitability and comparative ability of CBEBA for detection and clas-
sification of JM-events were evaluated using the same and different dataset
combinations for the algorithm training and testing. This approach in-
volved datasets acquired in a noisy and noiseless environment, thus allowing
for direct evaluating of noise effects and the sensibility to mismatch condi-
tion. CBEBA presents good overall results for detection and classification
of JM-events. In all training and testing dataset combinations, including
noisy datasets, the recall for detection was close to 98%, which indicates
a low rate of undetected JM-events. The precision for detection reached
slightly better values for test with noiseless data (DS11 and DS21) than for
test with noisy data (DS12 and DS22) (∼99% vs. ∼96%), which was associ-
ated with a greater number of false JM-events detected when testing under
noisy scenarios. This finding supports promising applications of CBEBA for
deployment in noisy environments. Furthermore, all classification metrics
for DS22 decreased less than 1.6% compared to the best noiseless scenario
(DS11) (Table 3) and a recognition rate higher than 82% for all JM-events
(with the particularity that rumination-chews were almost perfectly classi-
fied) was observed in DS11 and DS22 (Fig. 5), suggesting that the features
choices are robust in a noisy environment.

The CBEBA performance using different training data was evaluated.
Better results in all classification metrics were observed when CBEBA, tested
with noiseless data, was trained using noiseless data (DS11) than those using

24

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
si

nc
.u

nl
.e

du
.a

r)
L

. R
au

, J
. O

. C
he

lo
tti

, S
. R

. V
an

re
ll,

 J
. G

al
li,

 S
.A

 U
ts

um
i, 

A
. M

. P
la

ni
si

ch
, H

. L
. R

uf
in

er
 &

 L
. G

io
va

ni
ni

; "
A

 r
ob

us
t c

om
pu

ta
tio

na
l a

pp
ro

ac
h 

fo
r 

ja
w

 m
ov

em
en

t d
et

ec
tio

n 
an

d 
cl

as
si

fi
ca

tio
n 

in
 g

ra
zi

ng
 c

at
tle

 u
si

ng
 a

co
us

tic
 s

ig
na

ls
"

C
om

pu
te

rs
 a

nd
 E

le
ct

ro
ni

cs
 in

 A
gr

ic
ul

tu
re

, V
ol

. 1
92

, 2
02

2.



noisy data (DS21). Further, similar JM recognition rates of grazing-chews,
chew-bites and rumination-chews were observed, but the JM recognition rate
of bites decreased considerably to 62.3% in DS21 (Fig. 5). This suggests
that the additional information provided to algorithm training by noise had a
negative influence on noiseless JM-events classifications success. On the other
hand, CBEBA, tested with noisy data, showed a decrease in all classification
metrics when it was trained using noiseless data (DS12) compared to those
using noisy data (DS22). A plausible explanation could be related to the fact
that the noise provided additional useful information during the algorithm
training for correct noisy JM-events classifications.

Additionally, changing either the sampling frequency of the input audio
(fulfilling the Nyquist–Shannon sampling theorem) or increasing the word-
length of the digitised input audio above eight bits had a negligible variation
(<0.5%) in all performance metrics for CBEBA, and consistent with previ-
ous work by Chelotti et al. (2016). The computational cost of CBEBA was
11% higher than CBIA (43178 ops/s vs 38960 ops/s). Thus, the low com-
putational cost, the low input sampling frequency, and the reduced input
word-length representation required by CBEBA make it suitable for use as
part of portable components for embedded devices. Microcontroller-based
embedded systems can reduce their power consumption working at low clock
frequency. This fact allows the devices to operate for extended periods of
time. In the case that CBEBA would like to be implemented in a microcon-
troller to operate in real-time, the amount of processing operations associ-
ated to registers and memory access would be taken into account. If it is
considered that these operations are approximately three times higher than
the previously 43178 arithmetic and logic operations, the total number of
processing operations for the microcontroller would be 172,712 ops/s. Fur-
thermore, the execution time depends on the architecture and the operating
frequency of the microcontroller. For example, using an ARM Cortex-M4
microcontroller (ATSAM4LS2A, Microchip Technology Inc., Chandler, AZ,
USA) operating at 1 MHz and considering that performing an operation may
require up to 4 clock cycles, CBEBA would require approximately 173 ms.
In the case of CBIA, the execution time would be approximately 156 ms
following the same analysis. The idle time available until the next JM-event
could be used to perform peripheral management or enter in a low power
mode.

Accurate measurement of herbage intake is critical to advance knowledge
on foraging mechanisms that can result in a more efficient production and
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utilization of herbage resources along with a more profitable and affordable
animal production. According to pioneer acoustic works (Laca et al., 2000)
and earlier applications of the technique with sheep (Galli et al., 2011) and
dairy cattle (Galli et al., 2018), the sound energy enclosed in masticatory
(chewing and biting) events serves as robust predictor of herbage intake and
could be scaled successfully to monitor changes in animal production, health
or fitness, long-term. Therefore, the automated computation of sound energy
as a novel analytical property in CBEBA is highly relevant and very appeal-
ing. This new property suggests a new opportunity to automate CBEBA to
routinely monitor and assess use livestock foraging behaviour to manage feed
intake (Galli et al., 2018).

5. Conclusions

In this study, the CBEBA was tested as robust alternative for acoustic
detection and classification of JM of grazing cows, typically involving noisy
environments. The algorithm integrated six generic stages and incorporated
computations based on the instantaneous power signal rather than on the
intensity signal to improve the JM-event detection sensibility. A novel and
extended set of robust features are extracted and combined using machine
learning techniques to recognise JM-events. Specific performance metrics for
pattern recognition were used to evaluate the results of CBEBA in noisy,
noiseless, and crossed scenarios. Overall, CBEBA showed good results, in-
dicating adequacy and scalability of the algorithm for acoustic analytics in
broad sets of acoustic scenarios.

Specifically, notable results were obtained in noisy and crossed algorithm
training and testing scenarios outperforming the algorithm from the state-of-
the-art. To the best of our knowledge this is the first algorithm that is able to
distinguish chew events associated with ingestive and rumination activities
in grazing cows while dealing accordingly with augmented noises typical of
grazing environments. The increase in the computational cost of CBEBA
compared to CBIA remained in the same order of magnitude, suggesting
feasibility for efficient implementation in a low-cost embedded device for
real-time operation.

Future work must include evaluations of the algorithm in more challeng-
ing animal husbandry scenarios such as dairy cattle barns and beef cattle feed
yards exhibiting louder and more varied array noises as plausible sources of
signal interference and degradation. Likewise, future work is needed to scale
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up uses of CBEBA as part of low cost online applications to monitor an-
imal activities with regard to feed intake, health, breeding, parturition or
production. Finally, the recognition performance of the algorithm could be
improved by including more complex processing techniques such as using a
deep learning approach combining the JM features extraction and JM clas-
sification at the expense of an increased computational cost.
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Appendix A. Signal quality factors

The quality of the signals available in the two datasets depends on both,
the JM and the noise levels. The noise level in corrupted signals can affect
the recognition and classification performance.

Given that JM during rumination and grazing feeding activities are per-
formed rhythmically, the variations between the mean sound intensity during
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JM-events xE and the mean sound intensity inter-JM-events xIE are used to
indicate the suitability for recognition of true JM-events in a given segment
by the following JM modulation index MIJM = (xE−xIE)/(xE+xIE), with:

xE =
1

ls

l∑
k=1

x2[k] · w[k] (A.1)

xIE =
1

ln

l∑
k=1

x2[k] · (1− w[k]) (A.2)

where x[k] is the corrupted segment, l is the length of a segment in samples, ls
and ln are the number of samples with and without JM activity, respectively,
and w[k] is a logical function indicating the presence of an JM-event in the
k-th sample.

Regarding the classification task, the noise present during JM-events must
be isolated. To estimate a noise-free activity signal ŝ[k] and a noisy signal
n̂[k], a multiband spectral subtraction algorithm assuming uncorrelated ad-
ditive noise in signal segments was used (Loizou, 2013). The criterion used
to indicate the difficulty to classify JM-events in a given segment is the SNR,
which is computed as follow:

SNR(dB) = 10log

(
l∑

k=1

ŝ2[k]

)
− 10log

(
l∑

k=1

n̂2[k]

)
(A.3)

Appendix B. Computational Cost

The computational cost of the CBEBA stages depends on the selected
classifier, the sampling frequency of the input signal k, and the sub-sampling
frequency n, which also determines the size of buffers. In order to obtain a
simple comparison with other online algorithms, a MLP classifier using two
JM-events per second was considered in this analysis. Worst-case scenarios
were considered for each stage in order to get a theoretical upper bound. The
required number of operations per stage of computation for CBEBA was:

1. Signal pre-processing
(a) Bandwidth limitation: A second-order band-pass filter is applied

to avoid undesired noises, which involves 4 multiplications and 3
sums per sample (7k ops/s).
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(b) Power computation: 1 multiplication per sample is required to
obtain the instantaneous power signal (k ops/s).

2. Buffering
(a) Envelope computation: A second-order IIR low-pass filter is ap-

plied to the instantaneous power signal to compute the envelope,
which requires 5 multiplications and 4 sums per sample (9k ops/s).
In order to reduce the computational cost of the next stages the
envelope is decimated, so a counter and a comparison per sample
is needed (2k ops/s). These values are stored in e(n) at a rate n
(n ops/s).

(b) Frame-energy computation: An internal accumulator computes
the sum of the energy signal (k ops/s). At a rate n the accumulator
value is stored in f(n) and it is reseted (2n ops/s).

3. JM-event detection
(a) Possible event : Finding the first valid peak of the envelope re-

quires 1 subtraction and 1 comparison per JM-event. Searching
for a second peak in the envelope requires 0.275n subtractions and
0.275n comparisons per JM-event. Centring the position between
both peaks requires 1 subtraction and 1 comparison per JM-event.
Additionally, updating the threshold T (n) requires 0.375n opera-
tions per JM-event.

(b) Event bouts : Determining the threshold energy level involves 0.5n+
4 operations per JM-event. Assuming the worst case scenario in
which the start and end positions of the candidate JM-event co-
incide with the start and end positions of f(n), 0.5n comparisons
and 8 accumulations per JM-event are required.

4. Feature extraction: In this scenario, 0.5n − 1 sums per JM-event are
needed to compute the total energy feature. 0.5n subtractions and
0.5n comparisons per JM-event are required to determine the sign of
the envelope slope feature. Computing the duration of the candidate
JM-event requires 1 subtraction per JM-event. The symmetry feature
involves a maximum of 0.5n − 1 comparisons, 1 subtraction and 1 di-
vision per JM-event. Finally, the accumulated envelope speed feature
requires 1.5n− 1 operations per JM-event.

5. JM-event classification
(a) Event decision: A candidate JM-event must meet the two condi-

tions previously established. The first condition requires 1 com-
parison per JM-event. The second condition requires n− 1 sums
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per JM-event to compute the total energy in f(n), and 1 multi-
plication and 1 comparisons per JM-event to evaluate the logic
condition.

(b) Event classifier : According to the possible values of the optimal
hyperparameters, the most expensive computational cost is con-
sidered. The required operations in the MLP classifiers depend on
the number of input neurons (5), the number of hidden layers (1),
the count of neurons in the hidden layer (7) and the number of
output neurons (4). The cost of these classifiers is 192 operations
per JM-event.

6. Threshold algorithms and parameters tuning: Update and compute all
values related to T (n) requires n + 24 operations per JM-event. Simi-
larly, the parameters related to TF involve 15 operations per JM-event.

The required total number of operations per second is:

fCBEBA,MLP (k, n) = 20k + 17.85n+ 500
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