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Abstract

Motivation: Experimental testing and manual curation are the most
precise ways for assigning Gene Ontology (GO) terms describing pro-
tein functions. However, they are expensive, time-consuming, and cannot
cope with the exponential growth of data generated by high throughput
sequencing methods. Hence, researchers need reliable computational sys-
tems to help fill the gap with automatic function prediction. The results
of the last Critical Assessment of Function Annotation challenge revealed
that GO terms prediction remains a very challenging task. Recent de-
velopments on deep learning are significantly breaking out the frontiers
leading to new knowledge in protein research thanks to the integration of
data from multiple sources. However, deep models hitherto developed for
functional prediction are mainly focused on sequence data and have not
achieved breakthrough performances yet.
Results: We propose DeeProtGO, a novel deep learning model for pre-
dicting GO annotations by integrating protein knowledge. DeeProtGO
was trained for solving 18 different prediction problems, defined by the
three GO sub-ontologies, the type of proteins, and the taxonomic king-
dom. Our experiments reported higher prediction quality when more pro-
tein knowledge is integrated. We also benchmarked DeeProtGO against
state-of-the-art methods on public datasets, and showed it can effectively
improve the prediction of GO annotations.
Availability: DeeProtGO and a case of use are available at
https://github.com/gamerino/DeeProtGO
Contact: gmerino@ingenieria.uner.edu.ar
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 Introduction

Proteins are involved in almost all biological processes in the cell. There-
fore, elucidating their functions, the processes they are involved in, as
well as the cellular location where those processes are being done, is key
for understanding how a biological system operates not only in normal
conditions but also in a disease context (Li et al., 2018). High through-
put sequencing efforts are driving increased coverage of the proteomes
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of thousands of organisms. However, providing high-quality information
on the function of individual proteins requires experimental and man-
ual techniques that are time-consuming and expensive. For instance, less
than 600 thousands of the 215 millions of protein records in the UniProt
Knowledgebase (UniProtKB, release 01-2021) have been reviewed by ex-
pert biocurators and deposited in the UniProtKB/Swiss-Prot repository
(UniProt Consortium, 2019). Moreover, only about 0.1% of proteins in
UniProtKB have at least one manually curated or experimental annota-
tion. As the number of sequenced genomes rapidly grows, the overwhelm-
ing amount of newly discovered proteins can only be annotated initially
by computational methods, which must provide a reasonable trade-off be-
tween precision and recall. Thus, automatic function prediction (AFP)
tools become essential to reduce the gap between sequenced proteins and
experimental annotations (Jiang et al., 2016).

The most comprehensive and widely used database for protein func-
tions annotations is the Gene Ontology (GO; http://geneontology.org).
The GO knowledgebase is structured using a formal ontology involving
classes of gene functions (GO terms) (Consortium, 2019). Each GO term
represents a unique functional attribute and all terms are associated with
each other in a directed acyclic graph (DAG) structure based on inher-
itance relationships. GO is organized in three DAGs, or sub-ontologies:
Molecular function (MF), biological process (BP) and cellular compo-
nent (CC). AFP methods deal with the computational assignment of GO
terms to proteins of unknown or incomplete function from proteins whose
function has already been manually curated and/or determined exper-
imentally. Many approaches have been proposed for solving the AFP
problem (Friedberg, 2006; Cruz et al., 2017; Zhou et al., 2019). These
different strategies can be grouped into three categories: transfer based
on sequence/homology, structure-based, and systems biology based (Cruz
et al., 2017). Sequence-based and structure-based methods assume that
proteins similar in sequence/structure have similar functionality, thus they
search for sequence domains, structural features or multi-sequence align-
ments to infer functions. In this scope, sequence-based methods are more
popular since it is experimentally more challenging to identify protein
structures than sequences. Since proteins do not act individually, the
third category of AFP methods is based on co-expression networks and
protein-protein interactions (PPI), which have shown to be good predic-
tors for complex biological processes (Rost et al., 2003; Cruz et al., 2017).
Thus, integrating protein knowledge available through databases and lit-
erature could improve the AFP quality since they contain implicit and
explicit descriptions of proteins and their functions (Zhou et al., 2019;
You et al., 2019). Therefore, computational methods that accurately pre-
dict protein functions, considering not only sequence but also all related
protein knowledge, and being applicable to proteins that have not been
previously studied, and also to those whose annotations must be com-
pleted are needed.

Many new computational methods for AFP are published every year,
which are mainly based on machine learning (ML) and methods for simi-
larity search (Bonetta and Valentino, 2020). In order to provide a fair and
equitative framework for their comparison, systematic benchmarking ef-
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forts have been developed by the community. The Critical Assessment of
Function Annotation (CAFA) challenge tries to solve this problem by pro-
viding a real blind test and identifying the most effective methods for the
AFP problem. The last challenge results (CAFA3, (Zhou et al., 2019)) in-
dicate that ML and sequence alignment remain the most used approaches
for AFP in the three GO sub-ontologies. In addition, results revealed that
top performing tools are mainly ensemble methods. For instance, GOLa-
beler (You et al., 2018b) consistently outperformed the methods from all
past CAFA challenges in the major categories. This method combines
k-nearest neighbors using the popular Basic Local Alignment Search Tool
(BLAST) (Altschul et al., 1990) with logistic regression and a Naive com-
putation of GO-term frequencies to solve the problem of learning to rank.
For this, GOLabeler uses different features, such as: GO term frequency,
sequence alignment, amino acid trigram, domains, motifs, and biophysical
properties. Although method performances have shown an increase be-
tween CAFA2 and CAFA3, they are still a matter of improvement, even
more for proteins without prior experimental annotation referred to as
no-knowledge (NK) proteins. Indeed, the best tools achieved a CAFA F1
score that barely exceeded 0.4 in BP, and 0.6 in both MF and CC sub-
ontologies for NK proteins (Zhou et al., 2019). These numbers show that
the problem of AFP is a long way from being solved and new approaches
are still required (Makrodimitris et al., 2020).

The emergence of deep learning (DL) to model complex patterns of
multi-level data has revealed its potential to address many challenges in
different research fields. In particular, recent works have reported DL as
a powerful tool for mining protein big data to obtain valuable knowledge
(Shi et al., 2021; Liu et al., 2022). DL has also been proposed for solving
the AFP problem in the last years (Kulmanov and Hoehndorf, 2020; You
et al., 2018a; Rifaioglu et al., 2019; Littmann et al., 2021). Furthermore,
novel tools based on the cutting-edge DL architectures, such as trans-
formers and graph neural networks, were presented very recently (Cao
and Shen, 2021; You et al., 2021). However, there are still limitations
that need to be addressed. In this sense, hitherto developed DL methods
have not been focused on integrating the heterogeneous available protein
knowledge, but mainly designed for predicting GO terms using only pro-
tein sequences. For instance, DeepGOPlus (Kulmanov and Hoehndorf,
2020) uses the raw protein sequence as inputs of a deep convolutional
neural network (CNN) being this enough for improving the performance
of state-of-the-art tools such as DeepText2GO, based on text semantic
representation (You et al., 2018a). Similarly, DEEPred (Rifaioglu et al.,
2019), a stack of multi-task feed-forward networks, predicts GO terms
from features calculated from the protein sequence. Meanwhile, goPred-
Sim (Littmann et al., 2021) is a method for annotation transfer based
on similarity of protein-sequence embeddings obtained from DL models.
Furthermore, most of these models do not have full coverage of the ontol-
ogy since they have been restricted to predict only those GO terms which
have already been assigned to a minimum amount of proteins. It should
be mentioned the importance of method comparisons on the same exact
and standard test set. Usually, some reported scores are higher than those
reached by CAFA3 winners but are based on their own datasets instead
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of standard data provided by CAFA community. Evenmore, sometimes
the reported results refer to the whole CAFA3 benchmark set, masking
the hardest challenge of NK proteins function prediction.

Here we propose DeeProtGO, a DL model for predicting GO terms
integrating protein data from multiple sources. To address the problem
of the diversity in the type and amount of knowledge currently available
for proteins, our approach considers different inputs ranging from only
the sequence to incorporating co-occurrence of GO annotations, previ-
ously known GO annotations, and sequence similarity. We show how the
combination of more than one type of protein information could improve
the prediction quality. Unlike other approaches, our method is easily
adaptable for predicting terms from any of the GO sub-ontologies, with-
out restrictions on the number of terms and providing high coverage. We
evaluated our models using the CAFA3 challenge training and benchmark
datasets, achieving scores that indicate DeeProtGO outperforms several
CAFA3 top methods and state-of-the-art DL algorithms.

2 DeeProtGO model

2.1 Prediction tasks

According to the CAFA rules, the AFP challenge involves a timeline with
three time points that are considered to build the sets of proteins used as
training and benchmark datasets. For CAFA3, t−1 is when the challenge
was released providing training and target proteins to the participants
(09/2016); t0, the deadline for participants submissions of the predictions
for the target proteins (02/2017); and t1 is when benchmark proteins were
collected for assessment (11/2017) (Zhou et al., 2019). Thus, the CAFA3
benchmark is composed of those target proteins that have, at least, one
new functional annotation added during the growth period between t0 and
t1. This dataset involves two classes of proteins. On the one hand, the
no-knowledge (NK) proteins are those that do not have experimental an-
notations in any of the GO sub-ontologies at t0, but have accumulated at
least one GO term with an experimental evidence code during the growth
period. On the other hand, the limited-knowledge (LK) proteins are those
which already had one or more GO terms experimentally annotated in at
least one of the three sub-ontologies at t0 (Jiang et al., 2016).

In order to fit models able to learn new annotations gained during a
time gap, we defined a growth period between t−1 and t0 specific for train-
ing. Thus, models presented here were trained using the protein knowl-
edge available at t−1 as input, to predict GO annotation at t0. Moreover,
specific training and benchmark sets for each sub-ontology were gener-
ated, as it is shown in Figure 1. For this, proteins were classified based
on their experimental annotations as follows:

• LK-S : Proteins having at least one GO term in a particular sub-
ontology at the reference time (t−1 for training, t0 for benchmark),
and that have gained new annotations in this sub-ontology during
the growth period.
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Figure 1: Schematic representation of protein classification for BP. Proteins are
firstly grouped according to whether they had, or not, GO annotations at the
reference time tn−1 (n = 0 for training and n = 1 for benchmark). The proteins
having GO terms are defined as limited-knowledge (LK), and proteins whose
annotation did not change between tn−1 and tn, are named No Change (NC).
Meanwhile, unannotated proteins are called no-knowledge (NK ). Focusing on
the aimed sub-ontology, the LK/NC set is splitted into two groups: LK/NC for
GO BP and LK-NK. From the first group, proteins that had BP terms at tn−1

and that gained BP terms during the growth period (new annotations at tn)
define the LK-S subset. Similarly, LK-NK proteins without BP terms at tn−1

but gaining at least one BP annotation at tn are LK-NK for BP. Complemen-
tary, NK proteins are filtered to identify which of them were annotated with
BP terms between tn−1 and tn, referred as NK for GO BP.

• LK-NK : Proteins without annotations in a particular GO sub-ontology
at the reference time, but that have been annotated in this sub-
ontology during the growth period (that is, the same as CAFA3 LK
proteins).

• NK : CAFA3 NK proteins, that is, without GO annotations at the
reference time, but that have been annotated during the growth
period.

• Negatives: Proteins without annotations in a particular GO sub-
ontology at the reference time and that do not have gained annota-
tions during the growth period.

• No Change: Proteins do not change their annotations during the
growth period for a particular GO sub-ontology.

Taking into account this classification, three prediction problems for
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Table 1: Types of input data used for training DeeProtGO for the three types
of proteins, NK, LK-NK and LK-S.

PSD Emb Taxon InterPro GORef GOCo1 GOCo2
NK X X X X

LK-NK X X X X
LK-S X X X X X

each GO sub-ontology were considered: 1) providing annotations for NK
proteins, from which only the sequence and the taxon is the current in-
formation; 2) predicting annotations for LK-NK proteins, from which
only the sequence and the annotations in other GO sub-ontologies are the
current information; and 3) adding annotations for LK-S proteins, from
which the sequence, the annotations in the other GO sub-ontologies, and
the GO terms at the reference time in the sub-ontology to predict are
the available information. In addition, in order to reduce the complexity
of models, prokaryotic and eukaryotic proteins were modeled separately.
Therefore, for each of the three prediction problems, we have developed
two separate models (prokaryotic and eukaryotic) for each of the three GO
sub-ontologies: BP, CC and MF. That makes a total of 18 AFP models.

2.2 Protein knowledge representation

Protein information contained in amino acid sequences, organism taxa,
InterPro annotations, and GO annotations, were used here as a source of
knowledge for AFP (see Table 1).

For NK models, sequence information was represented by means of
two strategies. On the one hand, the SeqVec model (Heinzinger et al.,
2019) was used for obtaining sequence embeddings (Emb) of length 1,024.
On the other hand, sequence similarity between proteins of interest and
the set of annotated proteins for each GO sub-ontology, was computed
as the complement of the pairwise sequence edit distance (PSD) (Leven-
shtein, 1966; Raad et al., 2020). In addition, organism taxa and InterPro
annotations were represented using one-hot-encoding vectors. For all pre-
diction tasks, GO annotations gained during the growth period, that is the
prediction targets, were represented by using one-hot-encoding vectors.

For LK-NK and LK-S problems, in addition to PSD and Emb se-
quence information, the GO knowledge relating each annotated protein
with the other ones was represented by means of normalized co-occurrence
vectors. For example, when predicting protein annotations for BP, there
are two possible vectors of co-occurrence (GOCo1 and GOCo2) with re-
spect to other proteins in MF and CC. These vectors indicate the number
of terms in common between proteins at the reference time. In addition,
the GO annotations at the reference time (GORef) of LK-S proteins were
represented by a one-hot-encoding vector.
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2.3 Architecture and training

DeeProtGO is based on a feed-forward deep neural network that predicts
the set of terms of a GO sub-ontology, by integrating several information
sources with features built from the sequence and functional annotations
of a protein (see Figure 2). Depending on the specific prediction task, NK,
LK-NK, or LK-S, different numbers and types of inputs are considered.
Thus, for providing the ability to learn specific features from each input,
the model has several encoding sub-networks, one for each data type.
Each of these sub-networks receives its corresponding input data and en-
codes them into a learned feature space. Each encoding sub-network has
two fully connected layers with exponential linear units (ELU) as activa-
tion functions (Clevert et al., 2016), batch normalization and dropout for
model regularization. The output here is the set of learned features for the
particular protein-knowledge input. These features are then concatenated
into a single vector used as input for the classification sub-network.

The classification sub-network has six fully-connected layers aimed to
predict the full set of new GO terms for the protein under analysis. To
take into account the ontology hierarchy, the last four layers are com-
bined with sigmoid activation functions for modelling the output vector,
being actually the deepest GO terms represented by the last output layer.
That is, given the full set of output GO terms to be predicted, they are
ranked according to the number of parents each term has. Then, the
quartiles of this ranking are used to split the full set of GO terms into
four hierarchically-related vectors, used for training the last four layers.
This configuration is shown in Figure 2 where the top-level predictions
are colored in orange, the intermediate GO terms are indicated with pink
and purple, and the deepest GO terms, that come out from the last out-
put layer of the model, are shown in blue. All the hidden layers of the
classification sub-network also involve ELU activation functions, batch
normalization and dropout.

DeeProtGO is trained in an end-to-end fashion using a cost function
that is the sum of the loss of each layer representing the GO terms. To
reduce the complexity of the hyperparameters optimization process, the
optimizers and the loss functions were evaluated in first place only on
a single model. The Adam optimizer (Kingma and Ba, 2015) is used
and the loss at each layer is measured by using the binary cross-entropy
classification loss,

lBCE =
1

N

N∑
i=1

[yi log xi + (1− yi) log (1− xi)] (1)

where yi is the target label and xi is the predicted score for the i-th term
in the output set of the N GO annotations.
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Figure 2: DeeProtGO schematic representation. Several possible types of inputs
are shown at the left, with their corresponding encoding sub-network. The mid-
dle part shows the classification model architecture, including the hierarchical
layer architecture to model the outputs. The hierarchical structure of outputs
are depicted at the right, indicated with different colors.

3 Data and experimental setup

3.1 Data sources and datasets analysis

Data used for building and evaluating our models were obtained from
different knowledge databases for the proteins of the CAFA3 challenge
(https://www.biofunctionprediction.org/cafa/). Namely, a total of 66,841
proteins compose the training set, from which 58,717 belong to eukary-
otic organisms and 8,124 to prokaryotic species; a total of 3,328 proteins
compose the benchmark set, 2,398 from 11 eukaryotic organisms and 345
belonging to nine prokaryotic species. Sequence and organism data were
downloaded from UniProtKB/SwissProt (version 2016 08). GO annota-
tions at the three time-points defined in CAFA3 (Zhou et al., 2019) were
obtained from UniProt-GOA (version 158, 162, and 172 for t−1, t0, and
t1, respectively). Since manual curation or experimental validation are
usually considered as highly reliable (Cruz et al., 2017), only annotations
with evindence codes EXP, IDA, IPI, IMP, IGI, IEP, TAS, and IC were
kept. These annotations were then propagated from the deepest terms to
the top of the corresponding sub-ontology with GOATools (Klopfenstein
et al., 2018).

Since CAFA3 training set only provides proteins that have experimen-
tal annotations at t−1 in order to obtain NK proteins for training, GO
annotations at t0 and t−1 for all UniProtKB/SwissProt proteins were com-
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Figure 3: Detailed analysis of the CAFA3 challenge datasets for training and
testing the DeeProtGO models. The training set involved 49,875 and 7,028
proteins from eukaryotic and prokaryotic organisms, respectively; the amount of
proteins in the CAFA3 benchmark dataset is 2,983 (eukarya) and 345 (prokarya).
The relative proportion of each type of protein (in percentage) in these datasets
is shown along the y-axis.

pared. Thus, those proteins that did not have experimental annotations
in any of the GO sub-ontologies at t−1, but have accumulated at least
one GO term with experimental evidence at t0, were also considered for
training. In addition, proteins that had not changed their annotation in
any sub-ontology were removed. As a result, the training set was com-
posed of 49,875 eukaryotic and 7,028 prokaryotic proteins with all their
experimental GO annotations.

In order to define the training and benchmark datasets for each par-
ticular prediction task, the annotations for both train and benchmark
CAFA3 proteins were analyzed. The Figure 3 shows, for each taxonomic
kingdom and each GO sub-ontology (from left to right, BP, CC and MF,
respectively), the percentage of LK-S, LK-NK, and NK proteins, as well as
of those No Change proteins, and those remaining as unannotated (Nega-
tive proteins). As it can be observed, splitting the prediction problem into
the three sub-ontologies reveals the high percentage of No Change pro-
teins (pink bars). Moreover, for all sub-ontologies in both prokarya and
eukarya, the distribution of the different types of proteins highly differs
between train and benchmark sets. This imbalance can affect not only
the training process, but also the generalization capability of the learned
model, when the distributions are very different between the two datasets.
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3.2 Data augmentation and model tuning

Since DeeProtGO is aimed to predict new annotations acquired during a
time gap, only those proteins gaining GO terms during the growth pe-
riod represent Positive cases, while those that remain unannotated for a
particular sub-ontology are those called Negatives. With this nomencla-
ture, a protein could be for instance a Positive for the NK task in BP
but a Negative for the NK task in CC. In addition, No Change proteins
do not provide useful information for the model in terms of gaining new
annotations. However, they can be strategically used for increasing the
number of Positive proteins for some particular prediction cases, as a data
augmentation strategy aimed to reduce the imbalance differences between
train and benchmark sets. In the case of the NK model for a given sub-
ontology, training proteins marked as No Change for that sub-ontology,
and Negatives for the other two sub-ontologies, were used as NK. That
is, these No Change proteins were considered unannotated at t−1 while
their annotations were supposed to be assigned during the growth period
for model training [t−1 → t0] for the sub-ontology of interest.

For each LK-NK model, Positive cases were augmented considering
those proteins that are No Change not only for the target GO sub-ontology
but also for, at least, one of the two other sub-ontologies. This criteria
was established for ensuring the obtention of non-negative co-occurrences
vectors that will be then used as inputs for these models. Thus, and like
for NK augmented data, annotations of these No Change proteins used
as Positives were ignored at t−1 and assumed to be assigned during the
growth period for model training [t−1 → t0].

Although these strategies helped to increase the Positive cases, the
percentage of Negative proteins was still higher in training than in bench-
mark for most prediction tasks. Thus, subsampling of Negative cases was
also performed. The number of proteins finally kept as Positives and Neg-
atives for each model is listed in Supplementary Material, Table S1, as
well as the number of GO terms to predict for each prediction task. It is
worth to highlight these annotations cover all the GO terms available for
the set of proteins of each prediction task, without any restriction related
to term depth and/or representativity in the training sets.

DeeProtGO is implemented in PyTorch, in a user-friendly way to al-
low considering from one to six different inputs (code available at
https://github.com/gamerino/DeeProtGO). The size of each input vector
as well as of the output vector can be easily adapted for considering differ-
ent data sources and modelling the different prediction tasks. Moreover,
the implementation allows for optimizing hyperparameters such as the
number of neurons in hidden layers, dropout probability, batch size, and
learning rate, contributing to both the model scalability and the tuning
process.

For each of the 18 prediction tasks, several alternatives using different
sources of inputs were considered. Given the resulting size of the hyper-
parameter search space and since prokarya models are simpler than the
eukaryotic ones, an extensive search for the number of neurons in hidden
layers, dropout and batch size was performed for these models. Then, a
smaller grid of these hyperparameters and only for the best combination
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of inputs were evaluated for eukarya models.
To standardize the setting of the units in the two hidden layers of the

encoding sub-networks, proportions (ratios) with respect to the size of the
input layer were used. Similar procedure was done for the first two hidden
layers of the classification sub-network. For these hyperparameters, pro-
portions ranging from 0.25 to 1.2 were evaluated. For each model and in
combination with the proportions previously mentioned, the batch size,
learning rate and dropout probability were also fine-tuned, considering
values in the sets {8, 16, 32, 64, 128, 256, 512, 1024}, {0.001, 0.005, 0.01,
0.05} and {0.25, 0.5, 0.75}, respectively. All parameters were optimized
for model performance on the test set of a cross-validation (CV) proce-
dure considering 70%, 10% and 20% of data for training, validation and
testing, respectively, within the time frame [t−1 → t0]. In addition, the
number of epochs was selected by using early stopping monitoring the loss
in the validation sets, with a patience of 10 epochs.

3.3 Performance measures

The performance of DeeProtGO was assessed by using the standard CAFA
evaluation metrics. The Fmax, a protein-centric F-measure computed
over the set of prediction thresholds, was used as the main performance
indicator. For obtaining it, precision and recall for the i-th protein at the
t-th threshold should be firstly obtained with

pi(t) = (
∑
f

I(f ∈ Pi(t) ∧ f ∈ Ti))/
∑
f

I(f ∈ Pi(t))

and

ri(t) = (
∑
f

I(f ∈ Pi(t) ∧ f ∈ Ti))/
∑
f

I(f ∈ Ti),

where I(·) is the identity function returning 1 if the condition is true and
0 otherwise, f is a GO term, Pi(t) is the set of predicted terms for the
protein i at the threshold t, and Ti is the set of true annotations of protein
i.

Average precision and recall are then obtained as

p̃(t) =

∑m(t)
i=1 pi(t)

m(t)
; r̃(t) =

∑n
i=1 ri(t)

n
(2)

where m(t) is the number of proteins with at least one predicted GO term,
and n is the total of proteins with true annotations. Fmax is computed as

Fmax = max
t

{
2p̃(t)r̃(t)

p̃(t) + r̃(t)

}
(3)

considering t ∈ [0, 1] with a step size of 0.01 (Radivojac et al., 2013).
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4 Results and discussion

4.1 Hyperparameters analysis

DeeProtGO has been trained for solving the 18 tasks defined by the com-
bination of the three GO sub-ontologies (BP, CC and MF), the three types
of protein sets (NK, LK-NK, and LK-S), and the two taxonomic groups
(prokarya and eukarya). The average performance measures were calcu-
lated on the test partition within a 3-fold CV process in order to obtain an
internal evaluation of hyperparameters for the proposed model. The opti-
mization of hyperparameters involved training around a thousand models.
The effect of the hyperparameters in the DeeProtGO performance was in-
dividually explored, evaluating the Fmax in each case. A detailed analysis
of the effect of batch size, dropout probability and the number of neurons
in the hidden layers of the classification sub-network is presented in the
Section Hyperparameters analysis of the Supplementary Material.

One of the main hypotheses of DeeProtGO is that integrating het-
erogeneous protein knowledge can lead to a better and more effective
annotation process. Figures S1A and S2A reveal that this hypothesis is
fulfilled for predicting BP and CC terms for NK proteins, where mod-
els integrating different types of data reached the highest Fmax scores,
in comparison with other single and unintegrated types of inputs. For
both eukaryotic and prokaryotic proteins, when integrating Emb-Taxon
DeeProtGO performs almost as well as when it uses PSD-Emb-Taxon as
input. Thus, this indicates that the information useful for GO prediction
represented by PSD may be contained in the Emb. Similarly, adding the
input representing InterPro annotations did not have a great impact on
the model performance, probably because domains information is already
included in the sequence embedding representations. Thus, the increase
in the number of parameters without adding new training examples leads
to similar performance scores than those previously obtained without this
new feature. Interestingly, for those proteins, the Emb data alone was
enough for DeeProtGO to predict MF GO terms. For LK-NK model,
combining Emb with the co-occurrence of GO annotations (GOCo1 and
GOCo2) as model input led to the highest performances in both, eukary-
otic and prokaryotic proteins (see Figures S1B and S3A, respectively).
Interestingly, combining PSD to these inputs led to poorer performance
in the eukaryotic model for BP, the largest model in terms of the number
of GO terms to be predicted (see Table S1). Since adding a fourth en-
coding sub-network implies significantly increasing the number of input
dimensions and model parameters to be learned, it is possible that the
number of training proteins was not enough for allowing DeeProtGO to
reach the performance achieved when Emb, GOCo1, and GOCo2 were
integrated. For LK-S, using annotations at the reference time (GORef)
combined with PSD and Emb was enough for proteins from prokaryotic
organisms (see Figure S4A). Meanwhile, adding GOCo1 and GOCo2 im-
proved the DeeProtGO performance for the eukaryotic case (see Figure
S1C). Thus, in summary, the more heterogeneous protein information
DeeProtGO integrates, the more effective the prediction of GO terms
is. In addition, one of DeeProtGO advantages is its flexibility for easily
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changing its inputs. For example, instead of the protein embeddings from
SeqVec, embeddings obtained with newer methods such as ProtT5 (El-
naggar et al., 2021) can simply be used, which was in fact recently tested
reaching a slight improvement in the DeeProtGO performance.

4.2 Performance on the training set

The performance measures of DeeProtGO on test partitions of the training
dataset are depicted in Figure 4 and fully reported in Supplementary Table
S2. The figure shows, for each prediction task (NK, LK-NK and LK-S)
and each sub-ontology, the performance of DeeProtGO for each taxonomic
kingdom. Filled bars represent the 3-folds average Fmax reached by each
model, with different colors indicating the best input integration. Within
each filled bar, the black and blue boxes indicate the corresponding re-
call and precision, respectively. In addition, the Fmax scores achieved by
using baseline methods are also shown with circle (Naive) and diamond
(BLAST) marks. These methods were implemented considering as predic-
tor the subset of proteins with GOA that are in each training set defined
in Section 2.1.

Results obtained with DeeProtGO for predicting annotations in NK
proteins showed a pattern consistent with the state-of-the-art, where the
highest scores were achieved for CC and MF sub-ontologies (Figure 4A).
In the case of BP, the Fmax were 0.486 and 0.386 for prokarya and eukarya
models, respectively, with precisions higher than recall in both cases. For
predicting CC terms, observed Fmax were higher than 0.700 being, as in
the BP case, higher for prokaryotic organisms. The Fmax found for the
MF prediction was up to 0.823 for eukaryotic proteins and almost 0.642
for the prokaryotic ones. Interestingly, for both BP and CC, models reach-
ing the best performance received information from sequence and taxon
as input whereas MF models only used sequence data represented with
embeddings. Furthermore, and for the three sub-ontologies, DeeProtGO
outperformed baseline methods.

This same experiment was repeated in order to evaluate how the hi-
erarchical structure of GO contributes to the model performance. A flat-
tened version of DeeProtGO, that is, having a single output layer, was
trained and tested in these six NK problems. Comparing the obtained
scores (listed in Supplementary Table S3) against those previously re-
ported (first rows in Supplementary Table S2) revealed that in NK mod-
els for BP in prokarya, and MF in prokarya and eukarya the Fmax scores
dropped up to 9% mainly because precision was reduced up to 16%. In the
other three cases, although the Fmax values were similar to those reached
using DeeProtGO in its original version, precision dropped between 2%
and 8%.

Observed Fmax scores in LK-NK proteins for DeeProtGO in each
sub-ontology (Figure 4B) were closer to those previously described, be-
ing the best models those having input information about GO terms co-
occurrences. For these proteins, predicting BP terms for both, prokarya
and eukarya, is the most complex task because it requires training models
able to learn how to assign more than 3,600 and 15,000 GO terms, respec-
tively. Indeed, for the eukarya prediction, the best model (Fmax=0.328)
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Figure 4: Performance of DeeProtGO and baseline methods during evaluation
in a 3-fold cross-validation scheme when predicting GO terms for A) NK, B)
LK-NK, and C) LK-S proteins. Filled bars represent achieved Fmax by DeeP-
rotGO; black and blue colored bars depict the recall and precision achieved at
the Fmax, respectively. Colors filling the Fmax bars indicate the input data com-
bination used. Circles and diamonds indicate the Fmax of Naive and BLAST,
respectively.

used input information from PSD, Emb, and GO co-occurrences, alto-
gether. Whereas, the Fmax score of DeeProtGO for the prokarya predic-
tion was almost below 0.541, but reaching a precision score up to 0.600.
Similarly to NK models, the prediction scores for CC terms were higher
for prokaryotic proteins than for the eukaryotic ones. Particularly, the
best performance of DeeProtGO for LK-NK proteins was achieved in
predicting this sub-ontology (Fmax up to 0.743 and 0.665 for prokarya
and eukarya, respectively). In addition, higher scores were reached when
predicting MF terms for eukaryotic proteins. In the three sub-ontologies it
was also observed that DeeProtGO achieved higher precision than recall
for both prokarya and eukarya cases. Same as for NK proteins, DeeP-
rotGO outperformed baseline methods for most models.

In all LK-S tasks, shown in Figure 4C, the best DeeProtGO model
integrates the annotation that LK-S proteins already have at the time
of reference (GOref) with sequence information. Moreover, the Fmax

reached here is higher than those found in the NK and LK-NK prob-
lems, as it can be expected precisely due to this additional information.
DeeProtGO performed very well for predicting BP terms of prokaryotic
proteins, achieving an Fmax up to 0.804 with a very high precision (0.900).
Although the Fmax was slightly lower than 0.700 of eukaryotic proteins,
the corresponding precision was 0.769. Interestingly, the scores reached for
predicting CC and BP terms for both eukaryotic and prokaryotic proteins
were very similar, even revealing an extremely high precision up to 0.936.
The best performance of DeeProtGO was reached when predicting MF
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terms, being the Fmax almost 0.900 and 0.800 for prokarya and eukarya,
respectively. Interestingly, for these groups of proteins, the Naive method
outperformed BLAST in the three sub-ontologies although both reached
lower scores than DeeProtGO. The high scores for the Naive method are
due to the fact that this 3-fold cross validation setup is within training
data, thus the train and test partitions have very similar distributions of
GO annotation.

Our results confirmed that when the prediction problem is very com-
plex, that is, with less available information and, at the same time, a high
number of GO terms to predict, the data integration process proposed
by DeeProtGO is more effective and has a high impact on performance.
In addition, consistently throughout the three sub-ontologies, it can be
stated that DeeProtGO always exhibited a higher precision than recall,
indicating its ability to assign true GO terms with fewer false positives.
This is particularly important in the case of those proteins that have not
been previously annotated, for helping the discovery of truly new knowl-
edge.

4.3 DeeProtGO performance on CAFA3 bench-
mark data

The DeeProtGO model was also evaluated on the CAFA3 benchmark
obtaining the results detailed in Table 2. The table shows, for each sub-
ontology, and within it for each type of protein prediction problem and
kingdom, the precision, recall and Fmax obtained. Comparing DeeProtGO
performance on benchmark with the achieved for the test partition in the
3-fold CV, the smallest drops were found in BP, the most challenging
sub-ontology. Analyzing BP predictions revealed that the Fmax ranged
between 0.308 to 0.454. For NK proteins, the achieved Fmax decreased
in 35% and 10% in comparison with the scores observed for prokarya and
eukarya, respectively, in the test set of the 3-fold CV experiments (shown
in Figure 4A). These results indicate that DeeProtGO is still good for pre-
dicting annotations for NK, mainly for eukaryotic proteins. Computing a
weighted average by the amount of proteins in each subset (according to
the taxonomic kingdom) led to an overall Fmax of 0.344 for NK proteins.
Interestingly, the performance score observed for the eukarya LK-NK sub-
set was higher in benchmark (Fmax=0.454) than in the CV test partition
(Fmax=0.328, see Figure 4B). A possible explanation for this result is that
DeeProtGO for LK-NK has been trained using the proposed augmented
data, which could have had a distribution of GO terms more similar to
that of real LK-NK in the benchmark dataset. Moreover, note that given
the very low number of true LK-NK proteins for BP (16 for prokarya and
652 for eukarya), training a model without data augmentation would have
been practically impossible. Therefore, DeeProtGO was quite good at
predicting the real subset of these annotations in the benchmark proteins.
Interestingly, the largest drop of DeeProtGO performance was observed
for LK-S models, where data augmentation was not performed. Thus,
this results also supports our proposal of using data aumentation strat-
egy to reduce the differences in the distribution of GO terms between the
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Table 2: Performance of DeeProtGO models in the CAFA3 benchmark dataset

GO sub-ontology Model Kingdom Recall Precision Fmax

BP

NK
Prokarya 0.270 0.383 0.317
Eukarya 0.322 0.378 0.348

LK-NK
Prokarya 0.303 0.372 0.334
Eukarya 0.390 0.543 0.454

LK-S
Prokarya 0.213 0.362 0.327
Eukarya 0.257 0.383 0.308

CC

NK
Prokarya 0.326 0.324 0.325
Eukarya 0.609 0.553 0.580

LK-NK
Prokarya 0.369 0.541 0.439
Eukarya 0.561 0.619 0.588

LK-S
Prokarya 0.736 0.412 0.529
Eukarya 0.543 0.489 0.514

MF

NK
Prokarya 0.455 0.554 0.500
Eukarya 0.480 0.649 0.552

LK-NK
Prokarya 0.384 0.585 0.463
Eukarya 0.473 0.584 0.523

LK-S
Prokarya 0.402 0.734 0.520
Eukarya 0.456 0.649 0.536

CAFA3 training and benchmark datasets. It is worth highlighting that
the DeeProtGO precision for BP GO terms prediction was always greater
than the recall, as it was observed during model evaluation in the test set
of the 3-CV.

In the case of CC predictions for eukarya, involving the largest amount
of NK proteins, DeeProtGO performed very well, exhibiting an Fmax

closer to 0.600. Although the model performance for prokaryotic proteins
(only 156 in the benchmark dataset) was 0.325, the weighted overall Fmax

for the full set of NK proteins was 0.546. Since true NK proteins for CC
were not found during the training set construction for prokarya, DeeP-
rotGO was purely trained with augmented data for this task. Although
this could lead to the annotation of more terms than expected for a growth
period like the one used for the CAFA3 benchmark, without data augmen-
tation this task cannot be learned with a supervised approach. Similarly
to the observed in BP terms prediction, the Fmax drop between model
evaluation in testing and benchmark was lower for models of the biggest
set of proteins (eukarya) than for the smallest one (prokarya) in the three
prediction groups, NK, LK-NK and LK-S. This is due to the large im-
balance existing in CAFA3 training data regarding these kingdoms: there
are very few examples (around one order of magnitude less) of prokaryotic
proteins than eukaryotic ones, requiring a data augmentation strategy to
train a predictor for such cases.

The best performance of DeeProtGO was for predicting MF GO terms.
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Figure 5: Performance comparison of DeeProtGO, top CAFA3 methods and
baseline tools (Naive and BLAST predictors) when predicting GO annotations
of NK proteins of the CAFA3 benchmark dataset.

As it was previously found for most cases in the other two sub-ontologies,
the scores reached for eukaryotic proteins were higher than those found for
prokaryotic models. Thus, revealing DeeProtGO performance was good
for predicting MF GO terms for most benchmark proteins achieving Fmax

higher than 0.520. Interestingly, the best DeeProtGO performance was
found for predicting annotations of the hardest problem, represented by
NK proteins. Evenmore, the high score achieved for eukaryotic proteins
led to an overall Fmax equal to 0.545 for the full set of NK proteins in the
CAFA3 benchmark.

4.4 Comparison with state-of-the-art methods

The overall Fmax scores reached by DeeProtGO for NK proteins are shown
in Figure 5. As it was previously mentioned, this Fmax has been aver-
age weighted according to the number of proteins in each kingdom. In
the same figure, for each sub-ontology, the performance is reported for
baseline methods and the top models of the CAFA3 (Zhou et al., 2019).
Since several of the CAFA3 top models achieved the same scores, they
were grouped under a single Fmax value. Results reveal DeeProtGO has
clearly outperformed the two baselines and it has performed in the top 5
CAFA3, achieving a score very similar to the one reached by the challenge
competitors for BP. Predicting BP GO terms is still the most challenging
problem in the AFP context, with the highest score barely exceeding 0.400
and with baseline predictions hovering around 0.300. Interestingly, only
four of the top 10 methods in CAFA 3 achieved precision higher than re-
call at the Fmax, indicating their reliability to assign true GO terms with
fewer false positives. This is especially important for predicting annota-
tions of NK proteins. Meanwhile, DeeProtGO reported an Fmax of 0.344,
with precision up to 0.390 exceeding the recall (average value of 0.315).

For CC sub-ontology similar results were obtained when comparing
DeeProtGO (overall Fmax=0.546) and CAFA3 top methods. Moreover,
the score achieved by DeeProtGO for eukaryotic proteins (Fmax=0.580)

17

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
si

nc
.u

nl
.e

du
.a

r)
G

. M
er

in
o,

 R
. S

ai
di

, D
. H

. M
ilo

ne
, G

. S
te

gm
ay

er
 &

 M
. M

ar
tín

; "
H

ie
ra

rc
hi

ca
l d

ee
p 

le
ar

ni
ng

 f
or

 p
re

di
ct

in
g 

G
O

 a
nn

ot
at

io
ns

 b
y 

in
te

gr
at

in
g 

pr
ot

ei
n 

kn
ow

le
dg

e"
B

io
in

fo
rm

at
ic

s,
 a

ug
, 2

02
2.



is very close to those shown in the Figure 5 of the CAFA3 report (Zhou
et al., 2019) (Fmax of Top models for eukaryotic species between 0.600 and
0.630). Although this sub-ontology is the smallest one, the reason why
one could think that predicting CC terms would be a very simple task,
it has been described that CC is more complex than MF in terms of its
graph structure (Peng et al., 2018). This could explain, for instance, why
both CAFA3 and DeeProtGO performances are similar and even closer to
the score reached by the Naive approach.

The Fmax reached by DeeProtGO in MF is 0.545, being it the second-
best method when predicting MF terms of NK proteins in CAFA3 bench-
mark dataset. Interestingly, only two of the top CAFA3 models reported
precision higher than 0.600 for these predictions. Meanwhile, DeeProtGO
achieved a precision of 0.636, even higher than the corresponding re-
call (0.478). These results suggest that DeeProtGO outperformed most
CAFA3 tools for AFP of MF terms in NK proteins, ensuring predictions
with low rate of false positives. In addition, all the results presented here
would have made DeeProtGO one of the five best predictors for NK in
BP and CC in CAFA3.

DeeProtGO was also compared against recent DL models published
after the CAFA3 challenge. In order to perform a fair comparison, among
several published methods only those reporting their performance sep-
arately for NK proteins of the CAFA3 were selected. Thus, the scores
achieved by DeepGOPlus (Kulmanov and Hoehndorf, 2020), DEEPred
(Rifaioglu et al., 2019) and goPredSim (Littmann et al., 2021) were ex-
tracted from their respective publications. For BP, the reported Fmax are
0.390, 0.320, and 0.370, respectively. Thus, comparing them with the over-
all score for DeeProtGO (Fmax=0.344), our tool outperformed DEEPred,
reaching an Fmax closer to that obtained by goPredSim. A similar result
was found for CC, being the reported Fmax values 0.614 for DeepGO-
Plus, 0.340 for DEEPred, 0.570 for goPredSim, and 0.546 for DeeProtGO.
Meanwhile, for predicting MF terms, DeeProtGO (Fmax=0.545) outper-
formed both DEEPred (Fmax=0.490) and goPredSim (Fmax=0.500). It
is worth noting that both DeepGOPlus and DEEPred models present an
important restriction, differently from DeeProtGO, since they do not al-
low predicting the full set of GO terms of a particular sub-ontology. These
models were developed for predicting only those terms annotated in more
than 50 and 30 training proteins, respectively. Thus, aiming the models
to focus only on those well-represented terms in the training dataset, per-
haps makes them to miss very specific and precise GO terms describing a
detailed protein functioning. Differently, it must be noticed that our pro-
posal does not have such restrictions since DeeProtGO allows predicting
all the terms in each sub-ontology that are present in the training dataset,
which is a much harder problem.

Following the procedure used by DEEPred and DeepGOPlus, DeeP-
rotGO was re-trained limiting the number of GO terms being learnt during
training of NK models. Only those terms that are at least represented in
5% of proteins of the training dataset were considered. This restriction
led to predict 80, 17 and 15 GO terms for BP, CC, and MF, respectively,
in prokaryotic proteins. While, the number of GO terms to predict for
eukarya models was 331, 116 and 79, for BP, CC and MF, correspond-
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Table 3: Performance of DeeProtGO in the NK CAFA3 benchmark dataset
predicting all GO terms when training with terms present in more than 5% of
training proteins. The overall Fmax represents the score weighted-average by
the number of proteins in each subset (156 for prokarya, and 1024 for eukarya).

GO sub-ontology Kingdom Recall Precision Fmax Overall Fmax

BP
Prokarya 0.337 0.324 0.330

0.355
Eukarya 0.321 0.407 0.359

CC
Prokarya 0.339 0.425 0.377

0.564
Eukarya 0.559 0.628 0.592

MF
Prokarya 0.500 0.518 0.509

0.547
Eukarya 0.476 0.660 0.553

ingly. After exploring a small hyperparameter space using the training
dataset, the reduced models were evaluated on the CAFA3 benchmark
obtaining the performance scores listed in Table 3. Interestingly, this
simplest version of DeeProtGO reached overall Fmax higher than those
previously reported in Table 2. Moreover, the improvement was larger for
prokarya than for eukarya models, and for BP and CC sub-ontologies. For
predicting BP terms, the new overall Fmax is slightly lower than the score
achieved by goPredSim but still higher than the reported by DEEPred.
Evenmore, the Fmax reached for eukaryotic proteins (Fmax=0.359) is sim-
ilar to the values reported for the best CAFA3 models predicting all
the proteins from this taxonomic kingdom (Fmax from 0.360 to 0.400).
The highest increase in the DeeProtGO performance when restricting the
model output was observed when predicting CC terms for prokaryotic pro-
teins. In fact, the new Fmax for this NK subset is now in the range of the
scores reported for the best models for prokaryotic organisms in CAFA3
(Fmax from 0.380 to 0.460). The DeeProtGO performance observed for
eukarya (Fmax=0.592) is also similar to those reported for CAFA3 top
methods. Furthermore, the overall Fmax resulted even higher than the
ones reported by both DEEPred and goPredSim in this sub-ontology. For
the MF sub-ontology, DeeProtGO still overperforms both DEEPred and
goPredSim, achieving an Fmax of 0.553 in eukaryotic proteins and an over-
all Fmax of 0.547. Evenmore, DeeProtGO reached the score reported by
DeepGOPlus in this sub-ontology (Fmax=0.557). Therefore, this exper-
iment limiting the set of predicted terms, confirms DeeProtGO as one
of the top predictors for BP, CC and MF terms of CAFA3 NK proteins
outperforming both some of the top methods of CAFA3 and also some
recent state-of-the art methods.

5 Conclusion

In this work we have presented DeeProtGO, a deep learning (DL) model
aimed to predict Gene Ontology (GO) terms by integrating heterogeneous
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protein knowledge. Our model has been trained for solving 18 differ-
ent automatic function prediction (AFP) problems, defined by the GO
sub-ontologies (biological process, BP; cellular components, CC; molec-
ular function, MF), the type of proteins (No-knowledge, NK ; Limited-
knowledge-NK, LK-NK ; and LK-Subset, LK-S), and the taxonomic king-
dom (Prokarya and Eukarya). Data from the third Critical Assessment
of Function Annotation challenge (CAFA3) was exhaustively processed in
order to define adequate training sets for each problem and data augmen-
tation was used for increasing training cases in less represented groups.
DeeProtGO has shown to improve its performance by successfully inte-
grating heterogeneous protein information currently-available. Moreover,
and differently from other approaches, our proposal demonstrated to be
easily adaptable for the 18 tasks, the different types of protein knowl-
edge available, any number of terms from any of the GO sub-ontologies,
without restrictions on the number of terms or annotated proteins and
providing high coverage of protein functions.

Our experiments confirmed that the approach proposed here improves
prediction results: the more protein information is integrated into DeeP-
rotGO, the more effective the prediction of GO terms is. We demonstrated
here the usefulness of DeeProtGO for predicting GO annotations for pro-
teins. Evenmore, our model has achieved scores even higher than those
reported by state-of-the-art methods for NK proteins. DeeProtGO has
proved to be able to reliably predict likely annotations for proteins, with
high precision, and without any restriction, enhancing the discovery of
new functions. To improve the DeeProtGO performance, more experi-
ments considering different protein knowledge such as protein domains
and protein-protein interaction networks, and even implementing other
DL architectures, for instance convolutional networks and transformers,
will be carried out.
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