
GAGGION et al.: HYBRIDGNET 1

Improving anatomical plausibility in medical
image segmentation via hybrid graph neural

networks: applications to chest x-ray analysis
Nicolás Gaggion, Lucas Mansilla, Candelaria Mosquera, Diego H. Milone and Enzo Ferrante

Abstract— Anatomical segmentation is a fundamental
task in medical image computing, generally tackled with
fully convolutional neural networks which produce dense
segmentation masks. These models are often trained with
loss functions such as cross-entropy or Dice, which as-
sume pixels to be independent of each other, thus ig-
noring topological errors and anatomical inconsistencies.
We address this limitation by moving from pixel-level to
graph representations, which allow to naturally incorpo-
rate anatomical constraints by construction. To this end,
we introduce HybridGNet, an encoder-decoder neural ar-
chitecture that leverages standard convolutions for image
feature encoding and graph convolutional neural networks
(GCNNs) to decode plausible representations of anatom-
ical structures. We also propose a novel image-to-graph
skip connection layer which allows localized features to
flow from standard convolutional blocks to GCNN blocks,
and show that it improves segmentation accuracy. The
proposed architecture is extensively evaluated in a variety
of domain shift and image occlusion scenarios, and au-
dited considering different types of demographic domain
shift. Our comprehensive experimental setup compares
HybridGNet with other landmark and pixel-based models
for anatomical segmentation in chest x-ray images, and
shows that it produces anatomically plausible results in
challenging scenarios where other models tend to fail.

Index Terms— Graph convolutional neural networks,
anatomically plausible segmentation, landmark based seg-
mentation, graph generative models, localized skip connec-
tions

I. INTRODUCTION

DEEP convolutional neural networks (CNNs) have
achieved outstanding performance in anatomical seg-

mentation of biomedical images. Classical approaches employ
standard encoder-decoder CNN architectures [1] that predict
the desired segmentation at pixel-level by learning hierarchical
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features from annotated datasets. Casting image segmentation
as a pixel labeling problem is desirable in scenarios where
topology and location do not tend to be preserved across
individuals, like lesion segmentation. However, organs and
anatomical structures usually present a characteristic topology
that tends to be regular. Since deep segmentation networks
are typically trained to minimize pixel-level loss functions,
such as cross-entropy or soft Dice [2], their predictions are
not guaranteed to reflect anatomical plausibility, due to the
inherent lack of sensitivity that these metrics have with respect
to global shape and topology [3] (i.e. many different shapes
can lead to the same score). Artifacts such as fragmented
structures, topological inconsistencies and islands of pixels
[4] are common for such models, especially when faced with
challenging real-world clinical scenarios like image occlusions
and inter-center domain shift. Incorporating prior knowledge
and shape constraints [5] to avoid these artifacts becomes fun-
damentally important when considering the downstream tasks
where segmentation masks are used, like disease diagnosis,
therapy planning and patient follow-up.

As an alternative to dense pixel-level masks, anatomical
segmentation can be tackled using other approaches like
statistical shape models [6] or graph-based representations
[7], which provide a natural way to incorporate topological
constraints by construction. Such representations make it eas-
ier to establish landmark correspondences among individuals,
especially important in the context of statistical shape analysis.
In particular, graphs appear as a natural way to represent
landmarks, contours, and surfaces. By defining the landmark
position as a function on the graph nodes, and encoding the
anatomical structure through its adjacency matrix, we can eas-
ily constrain the space of solutions and encourage topological
correctness. With the emergence of geometric deep learning
[8], CNN extensions to non-euclidean domains like spectral
graph convolutions [9], [10] and neural message passing [11]
enabled the construction of deep learning models on graphs.
This allowed for the creation of discriminative models that
can make predictions based on graph data, as well as deep
generative models [12], [13], which can be used to produce
realistic graph structures under a certain distribution.

Contributions: In this work, we explore how landmark-
based segmentation can be modeled by combining standard
convolutions to encode image features, with generative models
based on graph neural networks (GCNNs) to decode anatom-
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ically plausible representations of segmented structures. We
introduce the HybridGNet architecture, which takes images as
input, process them with standard convolutions and then gener-
ates landmark-based segmentations by sampling the bottleneck
latent distribution, re-shaping and convolving in the graphs do-
main. We also present the “image-to-graph skip connections”
(IGSC) module, which follows the same spirit of UNet skip
connections, where feature maps at equivalent resolutions flow
from encoder to decoder by-passing the model bottleneck.
We propose to extract feature map patches from the image
encoder path, and concatenate them with the node features in
the GCNN graph decoder to improve accuracy by recovering
details from localized high-resolution representations.

A preliminary version of this work was presented at MIC-
CAI 2021 [14]. In this journal extension we include: 1) The
novel IGSC module, which combined with graph unpooling
operations, allows localized features at equivalent image/graph
resolutions to flow from standard convolutional blocks to
GCNN blocks. This is accompanied with new experiments
which demonstrate the improvements produced by IGSC when
compared to the vanilla HybridGNet and other baselines; 2)
A new domain shift study based on two additional datasets,
namely the Montgomery and Shenzhen datasets, showing the
robustness of HybridGNet to multi-centric domain shift; 3)
A new publicly available dataset of landmark annotations
with node correspondences generated with HybridGNet for
the databases which did not include this type of annotation
originally; 4) A new robustness study which includes real
X-ray image occlusion from the Padchest dataset caused by
pacemakers; 5) A new experimental study to assess the impact
of demographic domain shift (in particular, the train/test age
distribution) in model performance; 6) Additional experiments
to assess the behaviour of the model for pathological anatomy;
and 7) A new clinical use-case study where we show how
HybridGNet can be used to compute clinically meaningful
indices like the cardiothoracic ratio.

II. RELATED WORK

Landmark-based segmentation: Since the early 1990’s, vari-
ations of point distribution models (PDMs) have been pro-
posed [15] to segment anatomical structures using landmarks.
PDMs are flexible shape templates describing how the relative
location of important points can vary. Techniques based on
PDMs, like active shape models (ASM) [15], [16] and active
appearance models (AAM) [17] became the defacto standard
to deal with anatomical segmentation at the end of the century.
Subsequently, the development of more powerful and ro-
bust image registration algorithms [18] positioned deformable
template matching algorithms as the choice of option for
anatomical segmentation and atlas construction [19]–[21]. In
this scenario, contours (for 2D images) and meshes (for 3D
images) have been used as deformable templates to solve
landmark-based segmentation. However, these methods do
not leverage the power of deep neural networks which have
dominated image segmentation during the last decade.

More recently, with the advent of deep fully convolutional
networks [1], [22], major efforts were made to incorporate

anatomical constraints into such models [23]–[25]. The rich-
ness and robustness of the hierarchical features learned by
CNNs allowed them to achieve highly accurate results. Un-
fortunately, most of these methods work directly on the pixel
space, producing acceptable dense segmentation masks, but
without landmark annotations and connectivity structure. On
the contrary, structured models like graphs can easily represent
landmarks, contours and surfaces. In line with this idea, recent
studies [26]–[28] have integrated standard CNNs with different
representations of landmark structures. These methods employ
low-dimensional shape representations like Principal Com-
ponent Analysis (PCA) decomposition of the original shape
space [26], [27] or performed on more sophisticated particle
distribution models [28]. In this work, inspired by previous
studies on graph generative models [13], we propose to replace
such embeddings by more powerful non-linear representations
based on hierarchical graph convolutional [8] decoders.

Graph generative models: We want to exploit the generative
power of graph variational autoencoders [29] to decode plau-
sible anatomical segmentations from low dimensional embed-
dings. Of particular interest for our work is the convolutional
mesh autoencoder proposed in [13]. The authors constructed
an encoder-decoder network using spectral graph convolutions,
and trained it in a variational setting using face meshes. By
sampling the latent space, they are able to generate new
expressive faces, never seen during training. We build on
top of this idea by keeping the graph convolutional decoder,
but replacing the graph encoder with a standard CNN-based
encoder that takes images as inputs. This hybrid architecture
learns a variational distribution conditioned on image data,
from which we can sample graphs representing anatomically
plausible segmentations.

Image-to-graph localized skip connections: Last but not
least, we are interested in producing accurate landmark-based
segmentation for high-resolution 2D images. In that sense,
propagating features learned at different hierarchical levels
from encoder to decoder through skip connections has shown
to be an effective mechanism not only to improve segmentation
accuracy, but also to increase convergence speed and enable
training of very deep networks [30]. Previous approaches
incorporated different types of skip-connections in the context
of mesh extraction from images. Pixel2Mesh [31] introduces
a perceptual feature pooling layer designed to work with 3D
meshes and 2D images, thus projecting 3D vertices to the
image plane using camera intrinsics, which does not apply
for our case where input image and output graph live in
the same 2D space. Closer to our approach is Voxel2Mesh
[32], a model designed to operate on images and graphs
living in the same dimension. Voxel2Mesh employs a learned
neighborhood sampling layer which pools image features in
locations indicated by the node coordinates. However, both
Voxel2Mesh and Pixel2Mesh build on the idea of deforming
an initial sphere mesh template, thus limiting its applica-
bility to certain topologies and single object segmentation.
Another approach based on template refinement is Curve-
GCN [33], an algorithm that can be used to perform automatic
or interactive 2D landmark-based segmentation, which relies
on the deformation of an initial ellipsoid template contour.
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Fig. 1: HybridGNet architecture. (a) The proposed HybridGNet architecture combines standard convolutions for image feature
encoding (cyan) with graph spectral convolutions (green) to decode plausible anatomical graph-based representations. After
the input image is processed by the image encoder, we sample a 1 dimensional vector from the VAE latent distribution (with
n.f components) which is then reshaped into a 2D matrix of size n × f representing the initial node features. Thus, the 1D
sampled latent code must have n.f components, so that it can be reshaped into a 2D node features table of dimensions n× f .
The Image-to-Graph skip-connection (IGSC) module provides localized features to the intermediate graph representations. (b)
Illustrative visualization of the RoIAlign sampling and concatenation of features inside the IGSC module.

Curve-GCN operates based on an iterative approach where the
contour node displacements are successively inferred and used
to deform an initial template. In this case, only localized image
features are sampled from the corresponding node positions.
On the contrary, our model employs a generative approach
which samples a global embedding from a variational latent
distribution, which is then used to directly decode the node
positions in a single forward pass. Other approaches resort to
refining meshes obtained from voxel predictions [34]. Here we
adopt a different approach where output graphs (2D contours
in our case) do not correspond to a deformed template, but
instead are directly sampled from a latent distribution learnt
during training. We also propose a new image-to-graph skip
connection (IGSC) layer based on the well-known RoIAlign
module [35], which enables end-to-end learning of localized
features guided by intermediate node coordinates.

III. ANATOMICAL SEGMENTATION VIA HYBRID GRAPH
NEURAL NETWORKS

A. Preliminaries

Problem setting: Let us have a dataset D =
{(I,G)n}0<n≤N , composed of N images I and their
corresponding landmark-based segmentation represented as
a graph G = ⟨V,A,X⟩ (see Section IV-A.1 for a detailed
description of the graph construction for the heart and lungs
structures used in this study). V is the set of nodes for
M landmarks, A ∈ {0, 1}M×M is the adjacency matrix
indicating the connectivity between pairs of nodes (aij = 1
indicates an edge connecting vertices i and j, and aij = 0
otherwise) and X ∈ RM×s is a function (represented as
a matrix) assigning a feature vector to every node. In our

case, it assigns a 2-dimensional spatial coordinate (the
landmark position) to every node (s = 2). In the context of
landmark-based segmentation and point distribution models,
it is common (and useful) to have manual annotations with
a fixed number of points. Therefore, we assume that V and
A are the same for all the images in the dataset, the only
difference among them is given by the spatial coordinates
defined in X. This assumption enables us to follow the work
of [10], [13] and use spectral graph convolutions to learn
latent representations of anatomy. Please note that, following
the literature of landmark-based segmentation in medical
imaging [14], [36], we use the term landmark to denote points
that can be uniquely identified in a set of shapes. However,
these are also called pseudo-landmarks as not all of them are
actual anatomical points, but they are landmarks lying on the
contour of a shape, determining its geometry [19].

Spectral graph convolutions: Spectral convolutions are built
using the eigendecomposition of the graph Laplacian matrix L,
exploiting the property that convolutions in the node domain
are equivalent to multiplications in the graph spectral domain
[37]. The graph Laplacian is defined as L = D − A, where
D is the diagonal degree matrix with dii =

∑
j aij . The

Laplacian can be decomposed as L = UΛUT , where U ∈
RM×M = [u0,u1, . . . ,uM−1] is the matrix of eigenvectors
(Fourier basis) and Λ = diag(λ0, λ1, . . . , λM−1) is the matrix
of eigenvalues (frequencies of the graph). By analogy with the
classical Fourier transform for continuous or discrete signals,
the graph Fourier transform of a function X defined on the
graph domain can be obtained as X̂ = UTX, while its inverse
is given by X = UX̂. Based on this formulation, the spectral
convolution between a signal X and a filter gϕ = diag(ϕ) is
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defined as gϕ ∗X = gϕLX = gϕ(UΛUT )X = UgϕΛUTX,
where ϕ ∈ Rn is a vector of coefficients parameterizing the
filter. We follow the work of Defferrard et al [10] and restrict
the class of filters to polynomial filters with the form gϕ =∑K

k=0 ϕkΛ
k. Polynomial filters are strictly localized in the

vertex domain (a K-order polynomial filter considers K-hop
neighborhoods around the node) and reduce the computational
complexity of the convolutional operator. Such filters can
be well approximated by a truncated expansion in terms
of Chebyshev polynomials, computed recursively. Following
[10], [13] we adopt this approximation to implement the
spectral convolutions. Note that a spectral convolutional layer
will take feature matrices Xℓ as input and produce filtered
versions Xℓ+1, similar to what standard convolutions do with
images and feature maps.

B. HybridGNet: Image-to-graph extraction via hybrid
convolutions

The proposed neural network takes images as input and
produces graphs as output, combining standard with spec-
tral convolutions in a single model that is trained end-to-
end. The current HybridGNet formulation follows the same
principles introduced in our original MICCAI publication
[14], but incorporates new elements like image-to-graph skip
connections, graph unpooling operations and variations in the
training strategy, that will be later highlighted. Let us start by
defining the basic architecture, which resembles a variational
autoencoder (VAE) [38] (see Figure 1) in the sense that the
latent space models a variational distribution parameterized as
a multivariate Gaussian.

Autoencoders are neural networks designed to reconstruct
their input. They follow an encoder-decoder scheme, where
an encoder z = fe(I) maps the input image I to a lower
dimensional latent code z, which is then processed by a
decoder fd(z) to reconstruct the original input. The bottleneck
imposed by the low-dimensionality of the encoding z forces
the model to retain useful information, learning powerful
representations of the data distribution. The model is trained
to minimize a reconstruction loss Lr(I, fd(fe(I))) between
the input and the output reconstruction. To constrain the
distribution of the latent space z, we add a variational term to
the loss function, resulting in a variational autoencoder (VAE)
[38]. We assume that the latent codes z are sampled from a
distribution Q(z) for which we will impose a unit multivariate
Gaussian prior. In practise, during training, this results in the
latent codes z being sampled from a distribution N (µ, σ) via
the reparametrization trick [38], where µ, σ are deterministic
parameters generated by the encoder fe(I). Given a sample
z, we can generate (reconstruct) the corresponding data point
by using the decoder fd(I). This model is usually trained by
minimizing a loss function defined as:

La = Lr(I, fd(z)) + w KL (N (0, 1)||Q(z|I)) , (1)

where the first term is the reconstruction loss, the second term
imposes a unit Gaussian prior N (0, 1) via the KL divergence
loss and w is a weighting factor.

In our previous work [14], HybridGNet was constructed
by first pre-training two independent VAEs with the same

latent dimension: one to reconstruct images using standard
convolutions fI(I) = fI

d (f
I
e (I)) and another one to recon-

struct graphs via spectral convolutions fG(G) = fG
d (f

G
e (G)).

Once both models were trained, we decoupled their encoders
and decoders, keeping only the image encoder fI

e (I) and
graph decoder fG

d (z). The HybridGNet was then constructed
by connecting these two pre-trained networks as fH(I) =
fG
d (f

I
e (I)) and re-training until convergence by minimizing:

LH = Lr(G, fG
d (z)) + w KL (N (0, 1)||Q(z|I)) , (2)

where Lr(G, fG
d (z)) is the graph-reconstruction loss com-

puted as the mean squared error (MSE) of the predicted node
positions, and Q is the variational distribution parameterized
by fI

e (I).
Here we simplify the training strategy by eliminating the

pre-training stage and directly training fH(I) from scratch,
since we observed that pre-training only helps to achieve faster
convergence, but does not produce significant improvements
in terms of segmentation accuracy. This simplified end-to-end
training process directly learns a single latent space relating
images and graphs.

Graph unpooling: We included a fixed graph unpooling
layer in the graph decoder fG

d (z), to learn representations at
multiple resolutions [13]. We adopted a simple strategy where
all graphs G in our dataset are pre-processed to produce lower
resolution graphs Gk by reducing to half the number of nodes
k times, replacing pairs of consecutive neighboring nodes with
a single one, whose position is computed as their average. The
unpooling layer is defined so that it reverses this operation by
duplicating the number of nodes and interpolating the features
between them. The unpooling layer was included after the 3rd
GCNN layer of the decoder as shown in Figure 1.

Localized image-to-graph skip connections (IGSC) and deep
supervision: Under the hypothesis that local image features
may help to produce more accurate estimates of landmark
positions, we designed a localized Image-to-Graph Skip Con-
nection (IGSC) layer (see Figure 1.a,b). IGSC uses the well-
known RoIAlign module [35] to sample localized features
for each node from a specific encoder level given a certain
location, which in our case is specified by intermediate node
positions learned via deep supervision [39]. This layer is
parameterized by a window size, indicating the area that will
be sampled for every node. It receives a tensor of feature maps
and a list of node positions which indicate the spatial location
from where the feature map will be sampled, and returns the
corresponding regions of interest (RoIs) of the given window
size centered at the node positions. In our model, an internal
GCNN layer learns intermediate node positions via deep-
supervision, resulting in extra loss terms LDS which compute
the mean squared error between the ground truth node position
(for both graph resolutions) and the intermediate predictions.
The desired window input size was set to 3x3, while the
output size was set to 1x1, so it only returns a single value
per feature-map, which is calculated using average pooling.
Then, this array of features is concatenated with the original
node features and an augmented graph is obtained as shown
in Figure 1.b).
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IV. EXPERIMENTAL SETUP

A. Database description
We evaluated the proposed model in a variety of tasks

involving chest x-ray image segmentation. In what follows,
we describe the databases used to perform these experiments.

1) JSRT Database: The Japanese Society of Radiologi-
cal Technology (JSRT) Database [40] consists on 247 high
resolution x-ray images, with expert landmark annotations
(120 landmarks per image) for lung and heart [41]. The
image resolution was 1024x1024 px, with a pixel spacing of
0.35x0.35 mm. The dataset was randomly split into 70%-10%-
20% partitions for training, validation and test, respectively.

Given the mask contour for the structures of interest, several
anatomical landmarks in the lung and heart were manually
identified (e.g. the lung apex): 4 for the right lung, 5 for the
left lung, and 4 for the heart [41]. The other intermediate
points were interpolated across the mask contour providing a
final set of 44, 50 and 26 points respectively. The number of
interpolation points between anatomical landmarks was fixed
for all subjects, resulting in a one-to-one correspondence of the
distinctive points between subjects. The graphs described in
Section III-A were then constructed by taking each landmark
as a node, defining edges between neighboring nodes, and
the (x, y) positions of each landmark were set as the node
features. The adjacency matrix was then pre-computed to
represent the connectivity structure of the aforementioned
graph. By having the same number of landmarks with one-
to-one correspondences, the adjacency matrix was the same
for all graphs.

2) Montgomery County and Shenzhen Hospital x-ray sets:
Two public chest x-ray datasets with dense lung segmentation
masks were used as external test sets to evaluate inter-dataset
DS. The Montgomery County dataset (138 images) [42]
was acquired from the tuberculosis control program of the
Department of Health and Human Services of Montgomery
County, MD, USA. The Shenzhen dataset (566 images) [43]
was collected as part of the routine care at Shenzhen No.3
Hospital in Shenzhen, Guangdong providence, China.

3) Padchest dataset: Consists of 160,868 chest x-ray im-
ages from 67,000 patients [44] including labels for 174 ra-
diological findings, 19 diagnostic labels, and 104 anatomic
locations. Although this dataset does not contain segmentation
masks, a subset of 137 images with cardiomegaly diagnosis
label were manually segmented by two radiologists who
delineated the lungs and heart as dense masks, to evaluate
our method in a real clinical task, namely cardiothoracic
ratio estimation. From these images, 20 included pacemakers
and 45 also included an aortic elongation label. The images
with pacemakers were used to evaluate the robustness of the
proposed model to occlusions produced by external artifacts.

B. Baselines models
Our work builds on the hypothesis that encoding connec-

tivity information through graph structures can provide richer
representations than standard landmark-based point distribu-
tion models. To evaluate this hypothesis, we build standard
point distribution models from the graph representations by

considering landmarks as independent points. For a given
graph G = ⟨V,A,X⟩, we construct a vectorized represen-
tation by concatenating the rows of X in a single vector as
ρ = [x0,0, x0,1, x1,0, x1,1, . . . , xM−1,0, xM−1,1].

1) PCA: We first consider a single baseline similar to
[26], [27], by performing principal component analysis (PCA)
to transform the vectorized representation ρ into lower-
dimensional embeddings. We then optimize the CNN encoder
fI
e to estimate the PCA coefficients, reconstructing the land-

marks as a linear combination of the principal components.
2) FC: The second baseline combines the CNN encoder fI

e

with a fully connected (FC) decoder that directly reconstructs
the vectored representations ρ.

3) Multi-atlas: The third baseline implements a multi-atlas
segmentation approach [45], [46], which employ several la-
beled atlases (i.e. pairs consisting of an image and its associ-
ated landmark-based segmentation) to delineate the structures
of interest. Given a target image to be segmented, the 5
atlases most similar to the target image (based on the mu-
tual information metric) are obtained from the training set.
Then, we perform pairwise non-rigid registration (with affine
initialization) using SimpleElastix [47]. Registration allows to
transfer the landmarks of each selected image into the target
space. The final landmark-based segmentation is obtained by
averaging the position of the set of candidate landmarks.

4) UNet: Finally, a UNet [1] model was also included
to benchmark our approach against a standard pixel-level
segmentation method. We used the CNN encoder fI

e and
decoder fI

d with standard skip-connections via concatenation,
to guarantee comparable complexity.

5) Post-DAE Postprocessing:: UNet results were post-
processed using a denoising autoencoder following [24], which
was trained to obtain plausible segmentations from noisy dense
segmentation masks.

6) nnUNet: a state-of the art nnUNet [48] was included,
which consists of a self-configuring pipeline of automatic pre-
processing, hyperparameter search, training, ensembling and
post-processing following a 5-fold cross validation scheme.
This 5-fold set is then treated as a ensemble model, averaging
the predictions and incorporating standard post-processing
techniques.

C. Implementation and training details
All models were implemented in PyTorch [49], using Py-

Torch Geometric [50] for the spectral GCNN layers1. Every
model and baseline shares the same CNN encoder fI

e , with 6
residual blocks [51] interleaved with max-poolings as shown in
Figure 1. For the GCNN decoders, we use 6 layers of Cheby-
shev convolutions with Layer Normalization [52] and ReLU
nonlinearities. We set the k-hop neighbourhood parameter for
the graph convolutions at 6. This hyperparameter was chosen
performing an ablation study on the validation data, which is
not included for space restrictions, but it is available in our

1Source code is publicly available at https://github.com/
ngaggion/HybridGNet. The experiments are saved on Jupyter notebooks
and extra information on statistical significance is also available in the repos-
itory. The Multi-atlas implementation is available at https://github.
com/lucasmansilla/multiatlas-landmark.
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TABLE I: Landmark-based anatomical segmentation results for JSRT dataset. Mean (std). HD in millimeters.

Type

Landmark
Methods

Pixel-level
Methods

Model MSE Dice Lungs HD Lungs Dice Heart HD Heart
PCA 340.024 (243.549) 0.945 (0.014) 17.445 (9.669) 0.906 (0.037) 14.602 (5.400)
FC 332.197 (242.379) 0.945 (0.017) 17.535 (10.352) 0.910 (0.038) 15.020 (5.785)
MultiAtlas 492.262 (298.138) 0.944 (0.013) 20.317 (9.344) 0.886 (0.056) 16.780 (6.839)
HybridGNet (without IGSC) 294.621 (274.497) 0.952 (0.013) 15.642 (10.922) 0.913 (0.038) 13.658 (5.548)

Layer 3 277.536 (298.725) 0.954 (0.014) 14.565 (11.441) 0.917 (0.037) 13.401 (5.376)
Layer 4 288.597 (272.538) 0.956 (0.013) 16.054 (11.284) 0.916 (0.038) 14.153 (6.038)
Layer 5 258.413 (245.724) 0.963 (0.010) 13.662 (11.107) 0.915 (0.039) 13.738 (5.181)1 IGSC

Layer 6 250.123 (232.032) 0.960 (0.011) 14.378 (9.262) 0.924 (0.030) 12.339 (4.844)
Layers 4-3 263.973 (262.700) 0.963 (0.011) 14.942 (10.589) 0.921 (0.036) 13.198 (5.514)
Layers 5-4 246.845 (230.235) 0.968 (0.009) 13.692 (10.984) 0.924 (0.040) 13.417 (6.144)2 IGSC
Layers 6-5 200.748 (211.080) 0.974 (0.007) 12.089 (9.344) 0.933 (0.031) 11.613 (5.581)

UNet − 0.981 (0.008) 21.839 (26.291) 0.942 (0.030) 25.176 (34.570)
UNet + Post-DAE − 0.965 (0.010) 17.969 (14.457) 0.935 (0.029) 15.444 (14.283)
nnUNet − 0.984 (0.005) 9.615 (7.874) 0.952 (0.023) 9.782 (5.006)

Ground Truth MultiAtlas PCA FC HybridGNet 1-IGSC Layer 6 2-IGSC Layers 6-5 UNet UNet+PostDAE nnUNet
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Fig. 2: Landmark-based anatomical segmentation. Qualitative analysis for the JSRT test set. Results reflect the improvement
in anatomically plausibility obtained when using the HybridGNet with IGSC.

repository. For HybridGNet models, we evaluated the inclusion
of 1 and 2 IGSC modules, extracting features from layers 3
to 6 of the encoder. We also evaluated the incorporation of a
third IGSC module (consequently adding another graph down-
sampling level), but it resulted in slightly worse performance
(due to the low resolution of the downsampled graphs). Thus,
we decided to stick to 2 IGSC modules.

1) Data augmentation: Online data augmentation was used
to train all the models (i.e. baselines and HybridGNet) in-
cluding: i) bright augmentation using a Gamma correction
with random gamma between 0.60 and 1.40; ii) random
image rotations between -3 and 3 degrees; iii) vertical and
horizontal random scaling, ensuring that landmarks remain
inside the visible area; iv) cropping or padding the images
randomly if the shape was different to the expected input shape
(1024× 1024).

2) Model training: All models were trained for 3000 epochs
using Adam optimizer, with a learning rate of 1e-4, a batch
size of 4, a weight decay of 1e-5, and a KL divergence weight
factor w =1e-5. To prevent overfitting, learning rate decay was
set to reduce it by 0.9 every 100 epochs (for IGSC models)
and by 0.9 every 50 epochs (for HybridGNet model). We used
the MSE in pixel space over the vectored landmark location as
loss function for landmark models, and a combination of Dice
and cross-entropy for the UNet. Checkpoints were selected
based on validation loss.

V. EXPERIMENTS AND DISCUSSION

We performed a series of experiments to compare the
proposed HybridGNet and its variants with the aforementioned
baselines, and evaluate their performance in a variety of
scenarios and tasks.

1) Model comparison: First, we compared HybridGNet with
the baselines using the JSRT dataset, and assessed the effect
of skip connections by evaluating alternative HybridGNet
architectures. We used metrics that can be derived from
graph representations, including landmark MSE and Hausdorff
distance (HD, in millimeters). To benchmark our methods
against pixel-level methods, we filled the organ contours to
obtain dense masks from graph representations, and computed
the Dice coefficient.

Table I reports metrics on the test set of JSRT dataset
(bold numbers indicate the best performance for methods
of the same type, i.e. landmark and pixel-level methods).
All differences are significant according to the Wilcoxon test
(except for the 1-IGSC Layer 6 model that has no significant
difference in HD Heart with the 2-IGSC L6-5 model). First,
it is worth noting that when comparing HybridGNet models
with and without skip connections, there is a big difference
in terms of MSE and HD in favor of the model with 2 IGSC
(Layers 6-5), implying that localized features help to improve
landmark prediction accuracy. Moreover, the HybridGNet 2
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GAGGION et al.: HYBRIDGNET 7

TABLE II: Inference times for each model per input image.

Model Time (s)
HybridGNet 2-IGSC 0.53

UNet 0.60
UNet + Post-DAE 1.54

nnUNet 2.76

IGSC (Layers 6-5) outperforms the landmark-based baselines
on MSE, Dice, and HD, confirming our main hypothesis that
incorporating graph connectivity structure helps in producing
more realistic segmentations.

For the sake of completeness, we also included pixel-
level segmentation baselines. HybridGNet surpasses UNet and
UNet+PostDAE baselines by a large margin in terms of HD
and it is competitive with the nnUNet in that regard. On the
contrary, the UNet model and the self-configuring nnUNet
outperform the HybridGNet variants in Dice, what is somehow
expected since dense predictions are not directly optimized in
our models. In that vein, while Dice is agnostic to topological
errors and islands of pixels (in the sense that wrong predictions
are penalized independently of their location), due to its
formulation HD is more sensitive to them, better reflecting
anatomical plausibility, which is the main interest of this
work (see [3] for a complete discussion about the limitations
of image segmentation metrics). Figure 2 shows qualitative
results for 3 exemplar cases and Table II shows inference
times for HybridGNet and pixel-based models on an NVIDIA
Titan Xp with 12GB RAM. The lower inference time of the
HybridGNet is mainly due to the fact that the number of
parameters in the graph decoder is much lower than that of
the standard convolutional decoder.

As an important remark, although we include state-of-the-
art pixel level segmentation methods like UNet, nnUNnet and
Post-DAE for completeness, we highlight the fact that our
method is a landmark-based segmentation approach which
produces structured predictions in the form of graphs (not
pixel-level masks), enabling the extraction of additional infor-
mation like anatomical landmark locations and inter-patient
node correspondences, which cannot be obtained with stan-
dard pixel-level segmentation methods. Thus, for a more fair
comparison of the HybridGNet results, the reader should focus
on the landmark-based MSE which can only be computed for
landmark-based segmentation methods like FC, PCA, Multi-
atlas and the different variants of the HybridGNet model,
which share the same output representation.

2) Generating landmark-based representations from dense
segmentations: In this work we considered landmark-based
segmentations with a fixed number of points, that enable
establishing correspondences across images. This hinders the
applicability of our method to tasks like brain tumor seg-
mentation, where the shape of the structures of interest is
not regular. Nonetheless, this is desirable in scenarios like
population shape analysis, where we are interested in under-
standing how certain anatomical keypoints vary for different
individuals. Unfortunately, in most segmentation datasets, only
pixel-level annotations are available. In these cases, one could
ask expert medical doctors to manually annotate specific
landmarks in the mask contour (see Section IV-A.1 as an

TABLE III: Results for generating landmark annotations from
dense segmentations in the jsrt dataset. Mean (std). HD in
millimeters.

Model MSE Dice Lungs HD Lungs Dice Heart HD Heart
PCA 77.2 (133.7) 0.978 (0.009) 6.02 (3.46) 0.97 (0.007) 4.37 (1.61)
FC 105.3 (173.2) 0.970 (0.014) 7.82 (3.96) 0.96 (0.014) 5.78 (2.94)
Multi-atlas 236.3 (244.8) 0.991 (0.004) 10.98 (8.53) 0.99 (0.006) 4.64 (2.48)
HybridGNet 96.9 (145.0) 0.970 (0.009) 7.65 (3.75) 0.96 (0.013) 6.02 (2.77)
1 IGSC: L6 70.5 (144.9) 0.983 (0.005) 5.54 (5.30) 0.97 (0.011) 4.02 (2.24)
2 IGSC: L6-5 55.1 (113.4) 0.991 (0.003) 3.92 (4.42) 0.99 (0.005) 2.58 (1.59)

TABLE IV: Domain shift results for landmark-based anatom-
ical segmentation from JSRT dataset to Montgomery and
Shenzhen. Mean (std). HD in pixels.

Model
Montgomery Shenzhen

Dice Lungs HD Lungs Dice Lungs HD Lungs
PCA 0.906 (0.082) 60.08 (36.89) 0.894 (0.054) 79.12 (47.73)
FC 0.897 (0.087) 60.02 (35.77) 0.895 (0.051) 77.11 (48.15)
Multi-alas 0.909 (0.080) 61.77 (31.62) 0.900 (0.054) 88.13 (48.94)
HybridGNet 0.909 (0.070) 55.97 (35.70) 0.901 (0.047) 72.13 (47.40)
1 IGSC: L6 0.930 (0.062) 48.22 (33.43) 0.914 (0.044) 67.39 (48.53)
2 IGSC: L6-5 0.954 (0.043) 45.50 (32.48) 0.935 (0.038) 64.46 (51.53)
UNet 0.944 (0.068) 127.72 (97.76) 0.933 (0.055) 220.89 (102.94)
UNet+PostDAE 0.907 (0.102) 119.53 (85.10) 0.906 (0.083) 135.05 (97.32)
nnUNet 0.955 (0.068) 44.79 (60.31) 0.949 (0.055) 61.31 (67.97)

example) or perform automated estimation of landmarks from
dense segmentations using HybridGNet. Our model can be
trained to recover landmark-based representations from dense
segmentation masks in a natural way. Thus, we trained our
best performing models and baselines with dense segmentation
masks as input (instead of images), to perform landmark
estimation. Table III shows the results on the JSRT test set:
the proposed HybridGNet 2 IGSC (Layers 6-5) outperforms
the other baselines and architectures, proving useful in the
building of shape models with landmark correspondences
from pixel-level masks. Multi-atlas showed no differences in
Dice with respect to our HybridGNet 2 IGSC (according to
Wilcoxon’s test), but we observed that it loses track of the
point-to-point correspondences as it is exhibited by the higher
MSE error, which is computed for pairs of matching points.

HybridGNet was used to create landmark annotations for
the Montgomery, Shenzhen and Padchest datasets, which
originally did not include this type of segmentations. We are
publicly releasing these new annotations2 hoping that they
will serve for future studies where point correspondences
across individuals are required.

3) Domain shift (DS) evaluation: DS refers to a variation
in the target (test) domain concerning the source (training)
domain [53]. In most cases, such DS drops performance sig-
nificantly as supervised learning assumes that training samples
have the same distribution as the test samples. DS can be
caused by multiple factors including changes in acquisition
parameters, medical center or population demographics. We
compared the effect of DS by measuring segmentation per-
formance on datasets captured at different medical centers,
i.e. training in the JSRT dataset and testing with Shenzhen
and Montgomery. Table IV shows how HybridGNet model

2Annotations available at: https://github.com/ngaggion/
Chest-xray-landmark-dataset
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Fig. 3: Assessing the impact of domain shift by age
distribution on lung segmentation. Scatter plot of the lung
Dice coefficient vs. age of patient for every individual in both
(a) Montgomery and (b) Shenzhen datasets. Histograms show
the age distribution for test (blue) and training sets (orange).

greatly outperforms most baselines in terms of HD and Dice,
and it is competitive with the self-configuring nnUNet (bold
numbers indicate the best performance for methods of the
same type, i.e. landmark and pixel-level methods). Differences
between the two best performing methods (nnUNet and 2
IGSC: L6-5) and all other baselines are significant according
to Wilcoxon test. On the contrary, differences between nnUNet
and 2 IGSC: L6-5 are not significant, except for Dice Lung in
the Shenzen dataset. These results confirm the generalizability
of the proposed model across medical centers.

Moreover, recent studies on fairness in machine learning
have shown that under-representation of certain demographic
groups in the training data (e.g. in terms of gender [54] or
ethnicity [55]) may result in biased models which present un-
equal performance in minority groups. Here we are interested
in evaluating if the same holds for chest x-ray segmentation,
in particular when considering age distribution shifts between
training and test patients. To perform this analysis, we take our
best performing model (HybridGNet 2 IGSC Layers 6-5) and
build a scatter plot (see Figure 3) depicting the Dice coefficient
for lung segmentation vs patients age. When observing the
age histograms between training and test sets, we note that
young patients are highly underrepresented in the training
set. Interestingly, we found that model performance drastically
drops for patients between 0-18 years old in both Montgomery
and Shenzen datasets, what can be attributed to the lack of
young people on the JSRT database. Since the size of the
organs tends to be smaller for younger patients (in particular
we observed significant differences for the lung area), this
can bias the learning process if this subpopulation is not well
represented. This experiment highlights the importance of per-
forming disaggregated analysis to detect potential subgroups
where the model may under-perform.

4) Robustness to image occlusions (IO): IO are common
in chest x-rays, for example due to patient de-identification,
that is covering protected information with black patches, or
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Fig. 4: Artificial occlusions study. (a) Dice and (b) HD
distance for increasing block size in artificial occlusions. (c)
Shows qualitative results.

devices such as pacemakers, tubes, cables, or electrodes that
can cover important parts of organs or other structures of
interest. This is a common situation found in clinical centers,
especially in images from hospitalized patients. We designed
two experiments to assess the robustness of HybridGNet to
artificial and real IO that were not represented in the training
set, and compare it with the other baselines.

First, we simulated artificial occlusions by overlapping a
random black box on every image. We applied boxes of
different sizes over the JSRT test set on random positions.
Figures 4 (a) and (b) show Dice and HD distance for lungs
and heart segmentation (averaged) as the occlusion block
size increases. Although both nnUNet and UNet slightly
outperform HybridGNet in Dice for very small oclussions,
its performance drops with a steeper slope than HybridGNet
as we increase the size of the occlusion block. Figure 4 (c)
shows some qualitative results for three cases with different
occlusion levels. Both quantitative and qualitative results show
that HybridGNet is more robust to IO than pixel-level models.

Robustness to real occlusions produced by external devices
was also assessed. To this end, we used 20 segmented images
with pacemakers from Padchest as test set. To evaluate solely
the occlusion effect on performance and alleviate DS issues
due to intensity differences across different medical centers,
we retrained the models (both HybridGNet and baseline) with
an extended training dataset that includes Padchest images
(without pacemakers). In Figure 5 we can see how our model
outperforms the UNet both on Dice and Hausdorff distance,
while having no significant differences when compared to the
nnUNet but producing more anatomically plausible images
qualitatively.

5) Model behaviour on pathological anatomy.: We are also
interested in analyzing the behaviour of HybridGNet in the
context of pathological anatomy. To this end, we followed
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Fig. 5: Real occlusions study. (a) Dice and (b) HD distances
for the pacemaker Padchest subset. Wilcoxon test showed no
significant differences between HybridGNet and nnUNet, the
best two performing models. However, qualitative results (c)
show how HybridGNet results in more anatomically plausible
segmentations than nnUNet for complex cases.

the experimental setup introduced in [24] where a subset
of patients from the Shenzhen database diagnosed with tu-
berculosis was considered. These patients have a collapsed
lung and therefore a reduced air cavity. Every image was
annotated by two expert radiologists following two different
approaches to delineate the lungs (as discussed in [56]). The
first approach was to segment only the air cavity of the lung
field, i.e. segmenting only the dark areas (regions of lucency)
and ignoring areas of increased attenuation (opacities), which
correspond to infected lung tissue. Following [24] we call
them air masks. In the second approach, annotators delineated
the expected anatomy of the lung, including opaque areas
following a comparative approach, mirroring the normal lung
field onto the abnormal one. We call these anatomy masks.

We compared the segmentation performance of HybridGNet
and UNet considering both types of annotations as ground-
truth, when trained on JSRT (which contains only masks of
non-pathological lungs). Quantitative results shown in Fig-
ures 6 (a) and (b) confirm that HybridGNet obtains results
that are much closer to the anatomy masks than to the air
masks, obtaining a higher Dice coefficient and a lower HD.
Wilcoxon’s test showed that the difference between the means
on both metrics was indeed significative. Conversely, this
tendency is less pronounced for UNet predictions, suggest-
ing that HybridGNet encourages more anatomically plausible
predictions, while UNet focuses on local texture patterns.
Figure 6 (c) shows examples of air and anatomy masks, and
qualitative results of both methods for three different images.
Regarding clinical utility, this opens the door for applications
that combine both architectures: for example, the severity

of tuberculosis infection could be estimated by measuring
the difference between the UNet mask, representing the non-
infected lung regions, and the HybdriGNet mask, representing
the healthy lung area if there was no lung collapse.

6) Cardiothoracic ratio estimation clinical use-case: A rele-
vant intended use for lung and heart segmentation in chest
x-rays is the detection of heart diseases, by identifying an
enlargement of the cardiac silhouette. In radiology, this is done
by measuring the CTR on a posteroanterior chest x-ray. This
is calculated as the ratio between the (maximal) horizontal
diameters of the heart and the thorax (inner edge of ribs/edge
of pleura), which are manually measured by radiologists [57].
A normal CTR lays between 0.42 and 0.50, while a CTR > 0.5
is considered an abnormal finding. For example, in young
patients it might indicate a heart disease, such as cardiomegaly
or pericardial effusion.

Manual calculation of CTR introduces observer variation
and it is time consuming. Thus, here we evaluated the per-
formance of HybridGNet for CTR estimation using a testing
subset of 100 images from Padchest: 50 images with a
cardiomegaly label, and 50 without this label. Two radiology
specialists from Hospital Italiano de Buenos Aires collaborated
in our study by manually calculating the CTR for this subset.
The mean CTR among them was considered as ground-truth.
To reduce the DS due to the change of medical center and the
lack of pathological anatomy, we constructed an augmented
training set by merging the JSRT images with a subset of
117 images from Padchest with cardiomegaly label. Since
Padchest did not originally include landmark annotations, in
this augmented set we used the ones generated from dense
segmentations in the experiment described in section V-.2.

We compared model performance when training solely
with JSRT images and when training with the augmented
dataset. The predicted CTR was calculated automatically from
HybridGNet outputs by measuring the maximum horizontal
distance between lung borders and the maximum horizontal
diameter of the heart mask. We found that the Pearson correla-
tion coefficient between ground-truth CTR and predicted CTR
increased when the model was trained with the augmented
dataset. For the images with a ground-truth CTR < 0.5
(normal cardiac silhouette) correlation increased from 0.80
to 0.88 when target-domain images where included during
training. This improvement was even stronger for abnormal
cases (CTR > 0.5), increasing from 0.70 to 0.85. Figure 7
shows a scatter plot of the 100 test images as data points,
where the diagonal represents a perfect agreement between the
CTR measurement of HybridGNet and physicians. We can see
how the model trained solely with normal cardiac silhouette
cases (JSRT) tends to underestimate the CTR, while the model
trained with target-domain cases improves CTR calculation
on abnormal hearts. These results suggest that even when
using models which encourage anatomically plausibility, the
construction of diverse databases (i.e. including representative
samples of the target population) is still needed so that
performance is maintained in real clinical scenarios.
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Fig. 6: Model behaviour on pathological anatomy. Top
boxplots show Dice coefficient (a) and HD (b), taking the air
mask as ground truth (green) and taking the anatomy mask as
ground truth (orange) for the HybridGNet and UNet models.
* indicates significant differences between means according
to Wilcoxon’s test (p-value < 0.05). (c) Visual examples
for the air and anatomy masks, and outputs given by both
models. Results shows that our model tends to predict masks
that follow the expected shape of the organs, while UNet
predictions resamble the visible air section of the lungs.

VI. CONCLUSIONS

In this paper we introduced HybridGNet, a new method to
perform landmark based anatomical segmentation via hybrid
graph neural networks with image-to-graph localized skip
connections. Our study confirms that incorporating connectiv-
ity information through the graph adjacency matrix helps to
improve anatomical plausibility and accuracy of the results
when compared with other landmark-based and pixel-level
segmentation models. We also showcased several application
scenarios for HybridGNet in the context of chest-x ray image
analysis, and assessed its robustness with respect to different
types of domain shift and image occlusions. When compared
with dense pixel-level prediction models, we observed that
HybridGNet achieves faster inference time, is much more
robust to strong image occlusions and produces more anatom-
ically plausible results in these contexts. We also evaluated the
clinical utility of our model in the context of cardiothoracic
ratio estimation and audited potential biases that may appear
due to under-representation of certain demographic groups or
pathologies. Our results go in line with the evidence reported
in recent studies on fairness in biomedical image segmentation,

Fig. 7: CTR study. Ground-truth CTR vs HybridGNet CTR
when training with JSRT dataset only (left) and the dataset
augmented with cardiomegaly images from Padchest (right).
The vertical line indicates the boundary between normal and
abnormal CTR.

highlighting the importance of constructing diverse databases
which include representative demographic samples from the
targeted population. In the future, we plan to extend the
proposed HybridGNet model to volumetric images, where
graphs can be used to represent meshes instead of contours.
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