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Abstract. Towards the end of 2020, as people changed their usual behavior due 

to end of year festivities, increasing the frequency of meetings and the number of 

people who attended them, the COVID-19 local epidemic’s dynamic changed. 

Since the beginnings of this pandemic, we have been developing, calibrating and 

validating a local agent-based model (AbcSim) that can predict intensive care 

unit and deaths’ evolution from data contained in the state electronic medical 

records and sociological, climatic, health and geographic information from pub-

lic sources. In addition, daily symptomatic and asymptomatic cases and other 

epidemiological variables of interest disaggregated by age group can be forecast. 

Through a set of Hidden Markov Models, AbcSim reproduces the transmission 

of the virus associated with the movements and activities of people in this city, 

considering the behavioral changes typical of local holidays. The calibration and 

validation were performed based on official data from La Rioja city in Argentina. 

With the results obtained, it was possible to demonstrate the usefulness of these 

models to predict possible outbreaks, so that decision-makers can implement the 

necessary policies to avoid the collapse of the health system. 

Keywords: agent-based models, Hidden Markov models, COVID-19, epidemi-

ology, virus transmission, holyday behavior. 

1 Introduction 

In late 2019, a new coronavirus variant, Sars-Cov-2, was identified and the pathology 

it caused was named Covid-19. Due to the rapid spread of the virus, a pandemic was 
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declared in March 2020 and since then, more than 200 million cases and 4 million 

deaths have been reported [1, 2]. 

Various outbreaks of this disease in different regions of the world have been studied 

and their epidemiological analysis has been useful to develop models, mainly mathe-

matical, intending to track and predict the spread of epidemics [3-6]. In this context, 

the present work is conceived to provide an alternative that includes some realistic fac-

tors and predicts the effects of various social and health policies. 

This pandemic has some specific characteristics that differentiate itself from others, 

such as a high basic reproduction number (R0) of up to 2.79 [7], the seasonality [8] and 

the asymptomatic infectious [9]. Besides, age range, comorbidities and other variables 

affect the probability of becoming infected, going to ICU (intensive care units) or dying 

[10-12]. Furthermore, local climate, social behaviour, and health habits have been 

demonstrated to affect the dynamics of the epidemic [13-15].  

Therefore, this work proposes a new approach, more complex and realistic than the 

traditional mathematical model, by considering the multiplicity of factors. An agent-

based model (ABM) is used to incorporate local information and specific characteristics 

for each area of study, namely social, cultural, geographical and climatological varia-

bles related to the dynamics of COVID-19 [16-18]. Moreover, ABM allows taking into 

account the intrinsic randomness of the system and monitoring the space-time charac-

teristics of the simulation runs, even though this kind of model is more computationally 

expensive and requires more data [19]. 

The newly developed model is called the Agent-based local model for COVID19 

Simulation or AbCSim [20] and allows modelling groups of people with COVID19, 

either symptomatic or asymptomatic, together with those considered susceptible or 

cured. The model also considers the complexity of pathology dynamics and the inter-

personal relationships within the populations, along with geographical and climatolog-

ical information relevant to the pandemic [21]. Additionally, it implements a host trans-

mission block based on a set of Hidden Markov Models (HMMs), which reflect the 

main aspects of agents´ mobility and social activities [22-24]. 

Access to local specific population information from La Rioja is provided by the 

Argentinian Public Health Research on Data Science and Artificial Intelligence for Ep-

idemic Prevention (ARPHAI) [25]. This is a project whose main objective is to develop 

technological tools based on artificial intelligence and data science applied to electronic 

health records (EHRs). Information extracted from the Acuario database of La Rioja 

medical records, among other public information, was used.  

This work presents a case study, allowing the evaluation of the dynamics for festive 

dates to make possible the prediction of the effect of gatherings and parties. Therefore 

decision-makers can implement relevant health and social policies based on this infor-

mation. 

This document is organized as follows: material and methods are presented in Sec-

tion 2, followed by a brief description of the model in Section 3. Section 4 details the 

case study. The results and discussion are shown in Section 5. Finally, Section 6 in-

cludes the conclusions and future work. 
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2 Material and Methods 

2.1 The Agent-Based Model. 

Agent-based modelling (ABM) is a knowledge-based modelling technique and a useful 

method for representing biological systems that are irreducibly heterogeneous, where 

randomness plays a major role and which contain numerous interactions between com-

ponent subsystems and with the environment [26-27]. 

One of the reasons why ABM became popular is because it can simulate and help 

analyze complex organizations or self-organizing systems. This means that the ABM 

paradigm can represent “large” systems, which are produced by the interaction of many 

“small” sub-systems (or agents) that can learn or change their behaviour over time [28] 

These characteristics of ABMs make them very versatile and have made them im-

pactful in many areas, including epidemiology. Some of the first works that employed 

ABMs in public health were used to address infectious diseases. However, over time 

its uses have expanded to other areas such as chronic disease research and social epi-

demiology. The use of ABMs has been greatly favoured by the ease with which this 

modelling strategy allows the integration of individual behaviour into frameworks that 

view health as the product of the interaction of biological, social and environmental 

factors [29-30].  

In this work, the AbCSim model [20] is used to predict how social behaviours related 

to end of year festivities impact the epidemiology of COVID-19.    

2.2 Markov Models in AbCSim. 

Hidden Markov Models (HMMs) are a proper foundation for creating probabilistic 

models of linear sequence labelling problems. They deliver a conceptual toolkit for 

complicated models from a simple intuitive graphical representation. They are at the 

heart of a diverse range of programs, widely used in the biological field [31]. 

HMMs have been used in many areas, such as automatic speech recognition [32], 

analysis of electrocardiographic signals [33], analysis of epileptic seizure frequency 

[34], and DNA sequence analysis and alignment [35]. Some investigations apply this 

model to different distributions of epidemiological data (binomial, Gaussian, Poisson) 

and particularly in the analysis of population surveillance [36-37]. 

In AbCSim people's mobility events are modelled in discrete time steps with transi-

tion probabilities from one state to another that occur during the day in uniform time 

periods. A transition probability depends only on the state in which the individual is at 

a given time. There is a particular HMM for each human agent Ha, based on age range 

(e), neighbourhood (l) and the time slot (h) corresponding to simulation time. As shown 

in the state graph in Figure 1, all these HMMs have four states. Each state represents a 

different type of location or activity, namely: Home (C), Work (T), Leisure (E) and 

Others (O). In turn, each HMM has its own transition matrix, which represents state 

change probabilities, that is, to move from one type of location (j) to another (i); a 

matrix showing output probabilities for each state (for the k possible places where Ha 

could go in the state j) and a vector of initial location probabilities. Vector is always 
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(1,0,0,0) for the beginning of the day, as it is assumed that all citizens start the day at 

home.  

In another way, a Markov model applied to the progression of the illness in a host 

(within-host progression), can be defined as a stochastic model in which the patient is 

assumed to be always in one of a finite number of health states (called Markov states), 

which must be exhaustive (i.e., all possible) and mutually exclusive (an individual can-

not be in two states at the same time) [38]. In this way, popular epidemiological com-

partmental models first formulated by Kermak & Mac Kendrik [39] can be seen as 

Markov chain models, as well. As can be seen in Figure 2, in AbCSim a modification 

of the compartmental model proposed by Arenas [40] is used to simulate the in-host 

virus propagation dynamics. 

 

Fig. 1. State graph of a Hidden Markov sub-model. The four states circled, represent C: House; 

T: Work; E: Leisure; O: Others. Rectangular blocks show possible outputs for each state, i.e., 

each waypoint. States C and T have only one possible output (defined in the attributes of each 

human agent, see [21]), therefore, that output has a probability 1 of being chosen. States E and O 

have different possible outputs selected from a list with locations that depend on the human 

agent’s neighbourhood. 

 

Fig. 2. Spread sub-model with seven states: S: susceptible; E: latent or exposed; I: symptomatic 

infectious; A: asymptomatic infectious; R: recovered; D: dead, and H: hospitalized. Modified 

from Arenas et al [40] 
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2.3 Data Sources 

The model takes information from several data sources. The first source was Acuario 

[41], the informatics system used in the province of La Rioja for the registration of 

outpatient care. It has a relational database with more than 200 tables that gather infor-

mation on 268,000 individuals treated in the province’s public health system. The in-

formation used from Acuario was mainly three variables: the initial number of people 

infected, the proportion of people in each age range, and comorbidities in the popula-

tion. Also, sociological data [42–47], such as the unsatisfied basic needs index and the 

existence of a drinking water network were used to characterize the different neigh-

bourhoods that are represented in the model. 

The data used were de-identified before leaving state headquarters and were stored 

and processed at the Centre for High-Performance Computing (CCAD) under strict se-

curity and access rules. In addition, all data handlers were required to present the Good 

Clinical Research Practices certification issued by the National Institute on Drug Abuse 

(NIDA) in collaboration with the Center for Clinical Trials (CCTN), as well as an in-

dividual confidentiality commitment.  

On the other hand, several public sources were consulted for different purposes, such 

as: Google Mobility [48]; Google Maps [49]; Google Places [50]; National Weather 

Service (SMN) [51]; official government pages [52] and different local demographical 

literature. 

3 Model Description 

AbCSim is implemented in Java and runs on the computational simulation platform: 

Repast [53]. This is a platform with a set of open-source modelling and simulation tools 

based on agents, that runs on different operating systems. 

The general scheme of the model is presented in Figure 3, where its different blocks 

and implementation levels are identified. The top-level shows the model in its most 

abstract stage, as a black box, indicating the initial conditions, inputs and outputs. The 

intermediate level shows the two main blocks that make up the model: one block dedi-

cated to the simulation of the spread of the virus within each host and another dedicated 

to the transmission of the disease between hosts. Finally, at the lower level, the different 

sub-models are indicated with their own parameters (Infectivity, Epidemiological char-

acterization, Interpersonal contact, Location and Mobility/Activity, Transport and In-

fectious trail). In the following sections, they will be properly characterized and detailed 

individually (together with their contributing modules). 
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Fig. 3.  AbCSim block diagram: General model (black block) with inputs, outputs (horizontal 

solid line arrows) and initial conditions (curved arrows); main functional blocks (blue left and 

right-side blocks) and the corresponding sub-models for each block (green and magenta blocks). 

Vertical solid line arrows represent the relationships between various model elements, and verti-

cal dotted line arrows, the corresponding parameters [21]. 

As an agent-based model, a fundamental part of the system is the implementation of 

human agents (Ha), which possess specific characteristics and attributes of risk factors 

and co-morbidities. In addition, they can contract and transmit the virus, change their 

health status and symptoms, and modify their behaviour accordingly. 

The relationship between the different human agents with each other and with the 

environment is also depicted, as the distance between agents, the use of masks, the 

respect for the place’s capacity and the different rules and protocols, are key in model-

ling the transmission of the virus.  

The behaviour of each agent depends on their age group, habits and the neighbour-

hood where they live, which are randomly assigned at the beginning of the simulation 

according to the population statistics of La Rioja city. 

The mobility of each agent is linked to the transition states matrices (activi-

ties/places) implemented by means of a set of HMMs (see Section 2.2). Each of the 

HMMs corresponds to an area where the agent lives, the age group to which it belongs 

and the time zone in which it is at the time of the simulation. 

As already mentioned, AbCSim has two main blocks, the first one is about virus 

propagation within the host, and includes the infectivity sub-model, considering epide-

miological characterization (see Section 2.2). The second one is about host-to-host 

transmission and covers the different virus transmission mechanisms between hosts (in-

fectious trail, direct contact or droplet-to-face) in different spaces (home, office, recre-

ation, public transport), and specific circumstances (place’s capacity, ventilation, tem-

perature).  

Due to the stochastic nature of the epidemiological phenomenon and the model used 

to try to reproduce it, several "complete" runs must be carried out to obtain the final 

results, requiring the use of a computer cluster. si
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4 Case Study: End of Year Festivities 

At the end of the year festivities, people tend to get together for dinner and celebrations, 

and young people go out partying, increasing the number of personal contacts. A par-

ticular analysis of this situation is carried out in this work. Parameters of AbCSim were 

established to reflect the local characteristics of the city of La Rioja and its inhabitants. 

For more details, including parameters setting and estimation methodology, the reader 

is referred to [21].   

In order to use the AbCSim as a what-if model, different scenarios were proposed, 

where the regulatory force varied from minor to major. Based on the impact the differ-

ent scenarios would have on the number of ICU beds, health decision-makers can es-

tablish the level of regulation to implement.  

For this, some aspects were considered, on the one hand, dinners were represented 

for the nights of December 24 and 31, where families are considered to gather to cele-

brate. The duration and attendance of dinners were varied for the different scenarios. In 

addition, parties attended mainly by young people were also considered. Finally, since 

on festive dates people visit stores and entertainment venues frequently, the capacity of 

these places was varied, with differences among the tested scenarios. 

Three scenarios were proposed and analyzed:  

• High Regulated: due to regulatory constraints that would be proposed, it is assumed 

that 70% of the population would meet at Christmas and New Year's Eve, in gather-

ings of 10 people for a period of two hours. Additionally, 20% of young people go 

out partying, both indoors and outdoors. Also, the minimum distance between people 

of one and a half meters is respected in every place.  

• Medium Regulated: it is assumed that 80% of the population would gather at 

Christmas and New Year's Eve, in meetings of 15 people each for a period of two 

hours. In addition, 20% of young people would go out partying afterwards, both 

indoors and outdoors. Finally, the minimum distance between people of one and a 

half meters would not be respected in shops.  

• Low Regulated: it is assumed that 90% of the population would meet at Christmas 

and New Year's Eve, in gatherings of 20 people for a period of two hours and a 40% 

of young people go out partying also, both indoors and outdoors. In addition, the 

minimum distance between people of one and a half meters would not be respected 

in shops, leisure and other venues. 

5 Results and Discussion 

For each scenario, bed occupancy (Figure 4), number of symptomatic cases (Figure 5) 

and number of accumulated deaths per Covid-19 (Figure 6) until the end of February 

were analyzed. In addition, the number of symptomatic versus non-symptomatic cases 

was compared (Figure 7). 
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(A) 

 
(B) 

    
(C) 

 

Fig. 4. ICU beds occupied by positive COVID-19 patients in the period under study: (A) corre-

sponds to the High Regulated scenario; (B) corresponds to the Medium Regulated scenario and 

(C) corresponds to the Low Regulated scenario. ICU beds for Covid-19+ surveyed by the official 

data are shown in black, with the interpolation from field data in green, the dispersion of the 

corresponding model output in light blue; and in blue its central tendency.  si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
si

nc
.u

nl
.e

du
.a

r)
C

. E
ng

le
r,

 C
ar

lo
s 

M
. P

ai
s,

 S
. S

aa
ve

dr
a,

 E
. J

ua
re

z 
&

 H
. L

. R
uf

in
er

; "
Pr

ed
ic

tio
n 

of
 th

e 
Im

pa
ct

 o
f 

th
e 

E
nd

 o
f 

ye
ar

 F
es

tiv
iti

es
 o

n 
th

e 
L

oc
al

 E
pi

de
m

io
lo

gy
 o

f 
C

O
V

ID
-1

9 
U

si
ng

 A
ge

nt
-B

as
ed

 S
im

ul
at

io
n 

w
ith

 H
id

de
n 

M
ar

ko
v 

M
od

el
s"

C
om

pu
ta

tio
na

l S
ci

en
ce

 a
nd

 I
ts

 A
pp

lic
at

io
ns

 -
- 

IC
C

SA
 2

02
2,

 p
p.

 6
1-

75
, 2

02
2.



 

(A) 

 
(B) 

 
(C) 

 

Fig. 5. Daily COVID-19 cases (symptomatic + asymptomatic) estimated by the model in the 

period under study: (A) corresponds to the High Regulated scenario; (B) corresponds to the Me-

dium Regulated scenario and (C) corresponds to the Low Regulated scenario. Light blue shows 

the dispersion of the model output and blue, its central tendency. The interpolation from field 

data is shown in green. si
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Fig. 6. Accumulated number of deaths due to COVID-19 estimated by the model in the period 

under study: (A) corresponds to High Regulated scenario; (B) corresponds to the Medium Reg-

ulated scenario and (C) corresponds to the Low Regulated scenario. Light blue shows the disper-

sion of the model output and blue its central tendency. The interpolation from field data is shown 

in green.  si
nc
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Fig. 7. Daily COVID-19 cases estimated by the model in the period under study for the low 

regulated scenario. Symptomatic cases are in purple and asymptomatic cases are in red. 

It can be seen from the results presented that in the low regulated scenario, where there 

are more meetings than in the other scenarios, there is a relative increase in cases, ICU 

bed occupancy and deaths due to Covid-19, from January 20th onwards.  

This is in line with expectations, as the effect is not immediate, but due to the in-host 

illnesses and contagion progression, the impact is expected to be seen two to three 

weeks after the festivities. Also, it can be seen comparing the subplots in Figure 4 that 

as much more gatherings are attended, the effect of the festivities generates a stronger 

impact on ICU bed occupancy. A similar phenomenon can be seen in the number of 

daily cases and accumulated deaths. 

There is no field data available for the analysis of symptomatic versus non-sympto-

matic patients. However, AbCSim shows that in the low regulated scenario, where there 

were more contacts with young people who went partying, and therefore more conta-

gion, the number of asymptomatic patients increased, if it is compared to previous 

months. This may be because most of the contacts are among young people, and due to 

their age range, they tend not to show symptoms. 

A detail to be considered when interpreting these results is that at that time only 

alpha and delta variants were circulating, and mass vaccination had not yet begun in 

Argentina country. In addition, the model contemplates the ventilation of homes and 

buildings, which reduces the rate of contagion, because during the holidays it is summer 

in the southern hemisphere. 
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Finally, in retrospect and qualitatively compared with the field data, it is considered 

that the high regulated scenario is the most representative of what really happened in 

La Rioja city. This is a good corollary since this scenario is precisely the one that the 

government proposed for the end of the year festivities. Although it is an a posteriori 

analysis, it makes it clear that the tool offers the possibility of using the information 

provided by the simulations to propose some type of restriction, contemplating how 

much impact it would have, for example, on the increase in ICU beds, compared to the 

cost of implementing these restrictions. 

6 Conclusion and Future Works 

In this work, the impact of the end of year festivities on the local epidemiology of 

COVID-19 was predicted and analyzed using agent-based model simulations with 

AbCSim. It can be concluded that AbCSim works well as a “what-if model”, allowing 

the analysis of different scenarios and providing decision-makers with a useful tool to 

properly select the social and health policies they implement.  

These models require large amounts of data and calculation power, but on the other 

hand, they are almost totally explicit and allow a detailed proposal and analysis of par-

ticular local situations. In this case for example, it is expected that the model for a rel-

atively small city with this geographical location, such as La Rioja, will behave very 

differently from the model for a country capital such as Buenos Aires. 

In future works, other case studies will be presented, including the impact of venti-

lation, vaccination, immunity time and school protocols on the dynamics of Covid-19. 
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