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1 Introduction

Gene products or proteins are sophisticated molecules that play many functional roles essential for life
on Earth. Protein functions are generally described by using the Gene Ontology (GO) that is amenable
for being processed by computers [Consortium, 2019]. Technically, the GO consists of a structured and
controlled vocabulary of about 40,000 terms that represent biological entities suited for describing protein
functions. The structure of the ontology consists of terms graphically represented as nodes, which are
hierarchically organized into three directed acyclic graphs or sub-ontologies called Cellular Component
(CC), Biological Process (BP) and Molecular Function (MF). This structure encodes different types of
hierarchical relations between GO terms, such that ancestors nodes represent more abstract entities than
their descendants. Two common hierarchical relationships are is a and part of. For example, if term
a is a term b, then term a is a subtype of term b; while if term a is part of term c then term a is
part of a whole defined by term c. Here, terms b and c are the ancestors of term a. Note that, in this
example, the ancestors of term a are defined by two different types of hierarchical relationships: is a and
part of. Considering only the ancestor of either of these relationships may exclude a significant piece of
information to correctly interpret the biological meaning of term a.

The topological structure induced by these hierarchical relationships provides the foundation to com-
pare the semantic similarity between terms, which is fundamental for assessing the functional similarity
between proteins according to their GO annotations. However, how to perform such comparisons is still
an open research area, because there is not yet an effective method for quantifying the semantic informa-
tion of terms [Pesquita et al., 2009, Zhao and Wang, 2018]. The semantic similarity is usually calculated
by using the information content (IC), estimated from the term frequencies observed in a corpus of anno-
tated gene products [Sousa et al., 2020, Guzzi et al., 2012, Mazandu et al., 2017]. The Resnik similarity
measure is a well known IC method [Resnik, 1995, 1999], but better performances are achieved by newer
IC methods, such as AIC [Song et al., 2014] and the one proposed in Wang et al. [2007].

More recent, IC methods have been significantly outperformed by methods based on neural net-
works [Ristoski and Paulheim, 2016, Zhong et al., 2019, Ali et al., 2019, Kulmanov et al., 2021, Alshahrani
et al., 2021]. These methods find vector representations, or embeddings, of terms in a low-dimensional
Euclidean space, in such a way that the similarity of two terms is encoded by the Euclidean distance of
their corresponding embeddings. The use of vector representations has shown dramatic improvements on
diverse biological tasks [Sabando et al., 2021, Liu et al., 2021] but especially in semantic comparisons of
terms [Smaili et al., 2018a,b] and predicting protein-protein interactions [Zhong et al., 2019, Duong et al.,
2020, Zhao et al., 2020]. However, some structural features of the GO are not yet fully encoded by existing
embeddings. This is the case of the ancestors hierarchy of a term, a crucial structural feature for semantic
similarity tasks [Song et al., 2014, Zhao and Wang, 2018, Wang et al., 2007, Mazandu and Mulder, 2012,
Zhang et al., 2018]. For example, Onto2Vec embeddings are built only using direct relationships between
terms [Smaili et al., 2018a], thereby a single embedding is incapable of capturing the whole ancestry of
its term. Similarly, the stochasticity of random-walk techniques, such as GO2Vec [Zhong et al., 2019],
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Figure 1: The GO and the architecture of anc2vec. A) Structure of the GO. It is composed of three sub-
ontologies: BP, CC and MF. Colored nodes show the ancestors of a GO term. B) Anc2vec architecture.
The GO term is encoded as a vector x and transformed into a vector h, which is mapped into three
vectors used to optimize anc2vec weights.

makes a single embedding to capture, only, some arbitrary ancestral relations rather than the full set of
such relationships.

In this work, we propose anc2vec as a novel protocol based on neural networks for constructing
embeddings of terms exclusively using the GO structure. Unlike existing methods, anc2vec uses three
structural features of a GO term: its ontological uniqueness, its ancestors hierarchy and its membership
to sub-ontologies. Experiments show that anc2vec is effective in capturing these features, allowing it to
achieve better performance than existing embeddings on diverse biological tasks involving large-scale,
real-world data annotated with GO terms.

2 Building anc2vec embeddings

To encode the three proposed structural features, we define a protocol for building embeddings of
GO terms such that: 1) they are as unique as their corresponding terms are within the gene ontology,
and 2) their distances reflect the semantic similarity between their corresponding GO terms. We define
the semantic similarity using the GO structure such that two terms are similar if they belong to the
same sub-ontology and also share similar ancestors. The true path rule, also known as the annotation
propagation rule, is used to find the ancestors of a given term, as illustrated in Fig. 1A. Unlike some
previous works, the true path rule used here not only includes is a relations but also part of, regulates,
negatively regulates, positively regulates, occurs in, ends during and happens during relations. As it will
be demonstrated in the experimental section, the use of these additional relations allows anc2vec to
capture more structural features.

To build such embeddings, we designed a neural network architecture called anc2vec, which is schemat-

2

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
si

nc
.u

nl
.e

du
.a

r)
A

. E
de

ra
, D

. H
. M

ilo
ne

 &
 G

. S
te

gm
ay

er
; "

A
nc

2v
ec

: e
m

be
dd

in
g 

ge
ne

 o
nt

ol
og

y 
te

rm
s 

by
 p

re
se

rv
in

g 
an

ce
st

or
s 

re
la

tio
ns

hi
ps

"
B

ri
ef

in
gs

 in
 B

io
in

fo
rm

at
ic

s,
 f

eb
, 2

02
2.



ically shown in Fig. 1B. It receives an input term x that is transformed into an embedding h. Next,
three vectors are built from the embedding h for model weight optimization, which attempts to match
them as well as possible with the proposed structural features of the input term.

This architecture is formalized as follows. Let x ∈ {0, 1}nx denote a one-hot vector representing an
input term. A weight matrix W ∈ IRnh×nx is used to transform x into an embedding Wx = h ∈ IRnh .
By defining nh � nx, the resulting embedding is low-dimensional and the size of W is also drastically
reduced. The vector h is then used for building the three vectors for weight optimization

ŷr = φ(Rh + r)

ŷs = φ(Sh + s)

ŷa = φ(Ah + a),

where R ∈ IRnx×nh , S ∈ IR3×nh ; and A ∈ IRnx×nh are additional weight matrices with their correspond-
ing bias vectors r, s and a, respectively. The softmax function φ(·) guarantees that vectors represent
probability distributions.

The total number of weights of anc2vec is 3nxnh + 3nh + 2nx + 3, where 3nxnh accounts for the
weights of W , R and A, 3nh for S and 2nx + 3 for the biases r, a and s. These weights are optimized by
minimizing the following loss function

Loss = −
nk∑
i

xi log(ŷri )−
3∑
j

ysj log(ŷsj )−
nk∑
k

yak log(ŷak),

where ys ∈ {0, 1}3 is a vector encoding the sub-ontology of the input term (BP, CC or MF) and the binary
vector ya ∈ {0, 1}nx represents the true ancestor terms of x. Subscripts indicate vector components.

This loss function uses three cross-entropy losses aimed to preserve the three structural features of
a term x. The first cross-entropy loss focuses on the ontological uniqueness information by comparing
how similar the term ŷr is with the input term x. The second cross-entropy loss focuses on the sub-
ontology membership information by measuring the similarity between the predicted sub-ontology ŷs

and the expected sub-ontology ys. The third cross-entropy loss focuses on the ancestors information by
comparing how similar the predicted ancestors ŷa are with respect to the expected ancestors ya. Supp.
Fig. 1 illustrates the optimization of this loss function for embeddings with nh = 2 dimensions.

To further understand the contribution of preserving ancestors, we carried out ablation experiments
by designing a method named neigh2vec. To construct neigh2vec embeddings, vectors ya simply encode,
instead of ancestors, immediate neighbors, which are defined as the union of the children and parents of
a term.

3 Data processing

Gene ontology. We used the release 2020-10-061 of the GO as reference. It was processed to remove
terms tagged as obsolete while alternative terms were replaced by their primary ID. This processing
resulted in a total of N = 44, 261 GO terms, where 8,888, 11,177, and 4,196 of them belonged to BP, MF,
and CC, respectively. A dataset was created from this ontology to train anc2vec. Each of the nx terms
was included in the dataset and labeled with its corresponding ancestor terms and sub-ontology. A similar
dataset was prepared for neigh2vec, where terms were labeled with neighbors (instead of ancestors).

Ancestors. Using the reference gene ontology, a dataset of ancestor relationships was created. It
contained 1,767,518 pairs of GO terms. Half of the pairs were labeled as related whereas the other half
as unrelated. Related pairs were generated by pairing each GO term with each of its ancestor terms
defined by the true path rule. Unrelated pairs were generated by pairings GO terms randomly such that
the resulting pairs were not among the related pairs.

1
http://geneontology.org/page/download-ontology
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Protein function. This dataset contained GO annotations for proteins from diverse species available
in the SwissProt and TrEMBL UniProtKB release 2021 022. GO annotations were extracted from the GO
annotation file [Huntley et al., 2014] v2003 when having EXP, IDA, IMP, IGI, IEP, TAS, or IC evidence
codes, as recommended by the Critical Assessment of Functional Annotation (CAFA) [Zhou et al., 2019].
Although TAS and IC are not experimental evidence codes, results are not significantly affected when
excluded. In addition, GO terms found as obsolete under the reference ontology were excluded, and those
found as alternative were replaced by their corresponding primary terms. The resulting dataset contained
130,957 entries containing one or more GO terms representing protein annotations.

STRING. Interacting protein pairs from diverse species were extracted from the STRING database
v11.0 [Szklarczyk et al., 2018] whenever their protein sequences appeared in SwissProt and TrEMBL
UniProtKB release 2021 02, and also had annotations in the protein function dataset. A total of 3,742,248
protein pairs were extracted, encompassing 70,081 unique proteins, and labeled as positives. An equal
number of pairs labeled as negative were generated by randomly pairing the 70,081 proteins such that
the resulting pairs were not positive. Following the same procedure, we additionally created five species-
specific datasets of protein-protein interactions for the top-5 species with the largest numbers of inter-
acting protein pairs: Arabidopsis thaliana (3702), Danio rerio (7955), Drosophila melanogaster (7227),
Homo sapiens (9606) and Mus musculus (10090).

4 Experimental setup

4.1 GO term embeddings

The embeddings of GO terms were constructed by optimizing the weights of anc2vec (and neigh2vec)
using the reference gene ontology (training details are fully provided in the publicly available source code).
The weights obtained in the best train loss were used for embedding construction, as is usually done in
similar approaches [Mikolov et al., 2013]. As a trivial baseline for the proposed method, the terms were
also represented as one-hot encoding vectors in {0, 1}nx .

Onto2Vec [Smaili et al., 2018a] and GO2Vec [Zhong et al., 2019] were selected as fair, representative
competitor methods, because they build embeddings of terms exclusively using the GO structure without
additional data sources. For example, some approaches use the “textual descriptions” of GO terms as
additional data source, whose words are represented with vectors previously built from a large corpus of
biomedical abstracts [Smaili et al., 2018b]. For Onto2Vec, we used its public source code4, and included
its variant [Smaili et al., 2018a] named here as Onto2Vec*. This variant simply enlarges the GO by
including new terms representing sets of GO terms and relations between them and each of the terms in
their sets. These new terms were defined using the protein function dataset. No source code is available
for GO2Vec, hence this method was implemented following authors indications which consist in adapting
the publicly available node2vec5. Following common choices of dimensionality [Smaili et al., 2018a],
and to ensure a fair comparison with the other methods, all the embeddings used in this study were
200-dimensional and were built using the same reference GO.

Anc2vec is fully implemented on Python 3.6 using TensorFlow 2. The source code, along with
installation requirements, examples and the datasets employed in this study, are publicly available6.

4.2 Semantic similarities

To compare two terms, a and b, the cosine similarity between their corresponding vector representations,
ha and hb, was calculated by

scos(a, b) =

〈
ha,hb

〉
||ha||||hb||

.

2
ftp.uniprot.org/pub/databases/uniprot/current release/knowledgebase

3
https://www.ebi.ac.uk/GOA/downloads

4
https://github.com/bio-ontology-research-group/onto2vec

5
https://github.com/aditya-grover/node2vec

6
https://github.com/aedera/anc2vec
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Figure 2: Anc2vec embeddings of GO terms in the three sub-ontologies. A) Points depict embeddings
of terms. B) Distribution of depths. Colors plot the depth of each term in the GO hierarchy. C) The
Jaccard index and the semantic similarity between the embeddings of terms. D) Correlation between
one-hot inputs and their representations from anc2vec embeddings.

The numerator is a dot product, and || · || is the Euclidean norm. The similarity scos(a, b) ∈ [−1, 1], where
−1 and 1 indicate low and high semantic similarity, respectively.

The semantic similarity between GO terms can be also calculated by the aggregated information
content (AIC) [Song et al., 2014]:

AIC(a, b) = 2

∑
t∈{anc(a)∩anc(b)} sw(t)

sv(a) + sv(b)
,

where anc(a) returns a set containing all the ancestors of term a, including the term a itself. AIC is
the sum of the semantic weight sw(t) of the common ancestor t of a and b. This sum is normalized by
the sum of the semantic values of the terms defined as: sv(a) =

∑
t∈anc(a) sw(t), where the semantic

weight of a term is sw(a) = 1/(1 + exp(−1/IC(a))). Here, IC(a) = − log p(a) is the information content,
where p(·) is calculated from a corpus and is the frequency of a term and its descendants divided by the
frequency of its root term. AIC ranges from 0 to 1.

In contrast to AIC, Wang et al. Wang et al. [2007] calculates the semantic similarity exclusively using
the structure of the gene ontology:

SimWang(a, b) =

∑
t∈{anc(a)∩anc(b)} sca(t) + scb(t)

si(a) + si(b)
.

This metric estimates the semantic information of terms a and b, defined as si(a) =
∑
t∈anc(a) sca(t),

where sca(·) is the semantic contribution of an ancestor t on the term a. We used the implementation of
this similarity available in Goatools [Klopfenstein et al., 2018]. Recently, SimWang has been extended in
a metric named GOGO Zhao and Wang [2018], in which the number of children of a term is additionally
included. We used in experiments the publicly available implementation of GOGO.

To compare the semantic similarity between two sets of GO terms, the best match average (BMA) is
one of the most widely used methods [Azuaje et al., 2005, Pesquita et al., 2008]. Let A and B be two
sets of GO terms, BMA calculates the average of two sums

BMA(A,B) =
1

2|A|
∑
a∈A

max
b∈B

sim(a, b) +
1

2|B|
∑
b∈B

max
a∈A

sim(a, b).

Each sum is over the semantic values for each term in one input set and a term in the other set selected to
yield maximum similarity. In our experiments, AIC and SimWang were used as sim(a, b), since GOGO
works for sets of GO terms.

4.3 Protein-protein interaction

To assess semantic performance, embeddings of terms were used to predict interacting protein pairs in
the STRING dataset. For this task, a protein was represented by summing the embeddings corresponding
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to each annotated GO terms. Two experimental scenarios were designed to make such predictions. In the
first scenario, the cosine similarity between embeddings representing proteins were used to discriminate
between interacting and non-interacting pairs.

In the second scenario, a neural network classifier was used to make predictions. It was constructed
from pairs of embeddings representing proteins. Given two embeddings, this classifier linearly transforms
them into a single score normalized in the range from 0 (no interaction) to 1 (interaction), by using a
sigmoid activation function. A standard binary cross-entropy loss was used for training, and the best
parameters were selected using a validation set randomly drawn from the training set. A 3-fold cross
validation was used to assess classifier performance.

4.4 Performance metrics

Jaccard Index. Let A and B be two sets of GO terms, the Jaccard index is J(A,B) = |A∩B|/|A∪B|.
It measures the degree of match between the two sets, as the ratio of the number of GO terms shared by
both sets to the number of all terms in both sets. To calculate this index, terms were propagated with
the true path rule.

1-Wasserstein distance. It is often used to measure the dissimilarity between two discrete distri-
butions p ∈ IRm and q ∈ IRn [Kolouri et al., 2017]:

W1(p, q) = min
γ∈IRm×n

+

∑
i,j

γi,j |pi − qj |,

where γ is a matrix where the sum of its rows and columns are equal to the input empirical distributions,
respectively. The sum is over the absolute distance between elements of the empirical distributions. The
optimum value of the Wasserstein distance is found by solving a linear programming problem [Bassetti
et al., 2020]. The higher the 1-Wasserstein distance, the more different the distributions are.

Predictive performance metrics. To assess the performance of predictive methods, we used the
precision-recall and receiver operating characteristic (ROC) curves, for imbalanced and balanced datasets
respectively [Saito and Rehmsmeier, 2015]. The precision-recall curve shows the tradeoff between the
precision p and recall or sensitivity r when varying a threshold (or cutoff) to binarize method outputs into
negative and positive predictions. The precision measures how many positive predictions are true positives
whereas the recall measures how many true positives are correctly retrieved by predictions. Formally,
p = TP/(TP + FP ) and r = TP/(TP + FN), where TP, FP and FN are the number of true positives,
false positives and false negatives, respectively. The F1 value is equal to 2(r ·p)/(r+p) and its maximum
value (F1-max) is often used to summarize a precision-recall curve into a single value. By contrast, the
ROC curve shows the tradeoff between the recall and the false positive rate: 1− (TN/(TN + FP )), and
is often summarized by calculating the area under it (AUROC).

5 Results

5.1 Exploring the embeddings space topology

To assess whether the embeddings built by anc2vec are able to encode the proposed structural features,
we studied how they were arranged in their vector space by non-linearly projecting them onto a 2-D
space with UMAP [McInnes et al., 2018]. The projected embeddings were well separated into two large
clusters, corresponding to the BP and CC sub-ontologies, plotted as black and blue points in Fig. 2A,
respectively. In addition, the projected embeddings also formed a less defined cluster corresponding to
terms of the MF sub-ontology (red points). This result shows that anc2vec embeddings are capturing
very well the three sub-ontologies of the GO. Notably, the MF and BP clusters showed some regions
overlapped, indicating that some of the embeddings belonging to MF (red) could be sharing information
with others belonging to BP (black). A further analysis of the GO structure revealed that about 47% of
the MF terms have, at least, one ancestor in BP, supporting the observed overlapping between the BP
and MF clusters. Interestingly, the majority of these relationships between BP and MF terms are of the
type occurs in. This demonstrates that the use of additional ontological relationships is advantageous for
capturing further structural features of the GO.
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Figure 3: Sub-ontology membership preserved by embeddings. Violin plots distributions of relative
numbers of neighboring terms sharing the same sub-ontology of the central term. Horizontal line segments
show the medians of distributions.

The projected embeddings were also distributed according to the depths of their terms, measured as
the length of the longest path between a term and the root of the sub-ontology. Visualizing depth infor-
mation along with the projected embeddings showed a radial-like pattern resembling the tree-structure
of the GO (Fig. 2B). Here, hierarchically shallow embeddings (blue) were frequently surrounded by em-
beddings encoding their ancestors (yellow), indicating that hierarchical relationships are being encoded.
To further assess this finding, the original vector space built by anc2vec was also analyzed. To this end,
each GO term was paired with 500 randomly sampled terms to calculate the cosine similarity of their em-
beddings and the Jaccard index of their propagated terms. An important correlation was found between
the cosine similarity and the Jaccard index (Fig. 2C), suggesting that semantically similar embeddings
generally share similar ancestors.

To analyze whether the ontological uniqueness was correctly encoded, one-hot inputs were qualita-
tively compared with their reconstructions built by anc2vec. By projecting these two vectors onto a
1-dimensional space with PCA, a strong linear correlation was found (Fig. 2D), indicating that anc2vec
embeddings encode enough information to uniquely identify their terms.

When further investigating the semantic of anc2vec embeddings, an extremely high cosine simi-
larity was found between the embeddings corresponding to the terms “ER ubiquitin ligase complex”
(GO:0000835) and “Hrd1p ubiquitin ligase ERAD-M complex” (GO:0000838). Note that GO:0000835
is the grandfather of GO:0000838. The consistence of this semantic similarity was assessed by solving
the following word analogy task [Mikolov et al., 2013]: “GO:0000835 is to GO:0000838 as v1 is to v2”,
where vi are other two terms. When using “mannan polymerase I complex” (GO:0140498) as v1, the
embedding of the term “mannan polymerase complex” (GO:0000136) was found as v2, which is actually
the parent of GO:0140498. This shows that the embedding pair (GO:0000136, GO:0140498) closely re-
sembles the relation between the embedding pair (GO:0000835, GO:0000838). This demonstrates that
anc2vec embeddings are able to capture fine-grained hierarchical structure.

5.2 Sub-ontology membership encoded by embeddings

To further evaluate whether the sub-ontology of each term was captured by the embeddings, we first
analyzed if terms from the same sub-ontology were actually embedded close to each other. To this end, we
estimated for each embedding the relative number of neighbors in the vector space belonging to the same
sub-ontology. Neighbors were defined as those embeddings within a hypersphere in which the embedding
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Figure 4: Discriminating ancestors. Violin plots
semantic similarities between pairs of terms related
(or not) by ancestors. Methods not using embed-
dings are on the right. 1-Wasserstein distances are
shown on the top.
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Figure 5: Decomposability of embeddings. Col-
ored lines depict precision-recall curves and gray
iso-curves show F1 values. Points indicate F1-max
values.

of a given term was situated at the center. The radius of this hypersphere was the distance between
the center and the farthest embedding corresponding to one of the children or parents of the term at
the center. Then, the sub-ontology membership of terms in each neighborhood was used to calculate the
proportion of embeddings that had the same sub-ontology as the central term.

The results are shown in Fig. 3 where anc2vec shows the highest performance with a median around
1.0. This indicates that anc2vec embeds terms close to each other when they share the same sub-ontology.
In comparison to neigh2vec, the performance of anc2vec is higher, indicating that ancestors information
is beneficial for capturing the sub-ontology structure. By contrast, the performance of Onto2Vec is much
lower and very similar to that of the one-hot encodings. Since the latter are orthonormal vectors in the
nonnegative orthant, all the one-hot encodings are equidistant, and thus their distances and positions
completely lack sub-ontology information. The absence of the sub-ontology structure is also reflected
in the shapes of the distributions of values of Onto2Vec and one-hot encodings, both following the
uneven distribution of GO terms among the three sub-ontologies (∼65, ∼25, and ∼10% of the 44,261
terms belong to BP, MF, and CC, respectively). Taken together, these results demonstrate that the
sub-ontology structure of the gene ontology is being captured by the embedding space built by anc2vec.

5.3 Discriminating ancestors

We evaluated whether ancestors relationships can be discriminated from the embeddings of term pairs
in the ancestors dataset. The performance of our propose was compared against existing embeddings and
three well-known ontology-based metrics used as baselines: AIC, SimWang and GOGO. For calculating
the information content values used by AIC, the entire protein function dataset was used as a corpus.

The resulting semantic similarities are shown in Fig. 4. For each method, these values are grouped in
two distributions according to whether the term pairs are either related (blue) or not (gray) by ancestors.
Unlike the other embeddings, anc2vec obtains almost not overlapped distributions, as shown by the
difference between their medians (horizontal segments). In addition, the median of related terms is
higher than that of unrelated ones. These results indicate a good ancestors discrimination because term
pairs are more semantically similar when they are related by ancestors. By contrast, the distributions of
neigh2vec and Onto2Vec are much more overlapped, resulting in a worst discrimination. In particular,
the distributions of the one-hot encodings are totally collapsed in zero, reflecting the fact that their
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Figure 6: Semantic similarity of GO terms on
protein-protein interactions. Violin plots distribu-
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and non-interacting proteins. Numbers in the top
indicate 1-Wasserstein distances.
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Figure 7: Average performance on predict-
ing protein-protein interactions. Lines plot
the performance of methods assessed by
their ROC curves using 3,740,874 interac-
tions and 70,081 proteins of diverse species.

orthogonality results in null (cosine) similarities. On the other hand, since the ontology-based metrics
have complete access to the GO structure when calculating semantic similarities, their distributions are
more separated. However, note that these metrics are totally unable to construct vector representations.

It is worth noting that Fig. 4 also shows that the median of the distribution of anc2vec is slightly
higher than that of neigh2vec for unrelated terms, as shown by the horizontal lines in the gray areas. This
indicates that anc2vec is finding some pairs of unrelated terms more semantically similar than neigh2vec.
Given how both models were defined, this difference could be caused by the use of the information of
ancestors. A further analysis confirmed this showing that the majority of the pairs of unrelated terms
indeed share a certain number of common ancestors. Because the embeddings built by neigh2vec encode
only immediate neighbors, they are unable to capture such higher order relationships between terms,
resulting in semantic similarities less than zero. In contrast, since terms sharing common ancestors result
in anc2vec embeddings encoding similar information (Fig. 2C), the semantic similarities of anc2vec are
larger than zero for such cases, shifting the median for unrelated terms upward. This illustrates the
representational advantages of exploiting ancestor information for building embeddings of GO terms.

To assess more quantitatively the discriminative performance of each method, the 1-Wasserstein dis-
tance was calculated between its distributions. Larger distance means better discrimination. The resulting
distances are shown on the top of Fig. 4. The 1-Wasserstein distances show that anc2vec (0.28) is better
that the other embeddings (0.00-0.11) and it is also as discriminative as the ontology-based metrics are
(0.28-0.30). This demonstrates the benefits of building embedings encoding ancestors information, and
also shows that anc2vec embeddings are able, on its own, to discriminate ancestors.

5.4 Decomposability of embeddings

In practice, numerous bioinformatics applications assess the functional similarity between two proteins
by comparing the semantic similarity of their GO annotations. Since proteins may carry out multiple
functions, a single protein is often annotated with multiple terms. When representing terms as vectors,
a simple approach for representing multiple terms is by summing their corresponding embeddings. This
approach is straightforward when using a simple one-hot encoding. Because these encodings are orthog-
onal vectors, they lead to no information degradation when used for composing and decomposing sets of
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terms. However, we wondered whether the use of low-dimensional embeddings for representing sets of
terms could lead to information degradation, impeding the correct identification of the individual terms
in a set. Therefore, we evaluated embeddings for their decomposability by predicting the individual terms
present in embeddings constructed by aggregating the vector representations of multiple terms.

For this evaluation, we used the protein function dataset, which contains 130,957 proteins annotated
with multiple terms experimentally validated in practice. Each protein was represented as the sum of the
embeddings corresponding to their annotated GO terms. Alternatively, a protein was also represented
by averaging the embeddings of its terms. We used cross validation on this dataset (70-30% train-test)
to build and evaluate a simple classifier to predict which terms were aggregated in an input embedding.
This classifier linearly transforms an input embedding and then uses a sigmoid function to obtain an
output vector in [0, 1]nx .

The performances of the classifiers are shown in Fig. 5 as precision-recall curves. This figure also
shows gray iso-curves showing the F1 values, and points depicting the F1-max values. Here, the F1-max
values of anc2vec and neigh2vec are very similar to each other but substantially better than those of
GO2Vec, Onto2Vec and Onto2Vec* when using embeddings aggregated by either the sum (solid curves)
or the average (dashed curves). Notably, the performance of all methods is increased when using the sum
instead of the average. This is because the sum preserves information about the number of individual
terms.

5.5 Predicting protein-protein interactions

Different studies have shown that proteins found in similar cellular locations or participating in re-
lated biological processes are more likely to interact with each other [Kanehisa et al., 2020]. The basic
hypothesis is that such protein-protein interactions should be reflected as relationships between the GO
terms annotating the involved proteins. We used this to evaluate embeddings for their ability to discrim-
inate proteins as interacting and non-interacting. This evaluation was performed on two experimental
scenarios using the STRING dataset (details in Experimental Setup section). It should be highlighted
that STRING represents not only physical but also functional interactions between proteins.

The results of the first experimental scenario are shown in Fig. 6. It shows violins plotting the resulting
semantic similarities calculated from protein pairs. For each method, these values are grouped into two
distributions according to whether protein pairs are interacting (blue) or not (gray). In comparison to
all the methods, the results show that anc2vec exhibits the best discriminative power, as indicating by
the gap between the medians of the interacting and non-interacting distributions. Similar to the results
with unrelated terms in Fig. 4, the anc2vec median for non-interacting pairs is slightly higher than that
of neigh2vec. This may suggest the presence of interacting pairs among the non-interacting ones, because
the last ones were synthetically generated. Nevertheless, anc2vec is substantially better than neigh2vec
for discriminating interacting pairs (blue areas), which are experimentally validated. To quantitatively
assess the discriminative power, the 1-Wasserstein distance between the distributions is shown on the top
of Fig. 6. The resulting distances show that anc2vec achieves the best performance (0.21), as compared to
neigh2vec (0.15), Onto2Vec (0.03), Onto2Vec* (0.10) and GO2Vec (0.12), as well as the baseline methods
(0.17, 0.17 and 0.19). Note that anc2vec (0.21) is also better than neigh2vec (0.15). This indicates that
ancestors information plays an important role for this task.

Fig. 7 shows the results of the second experimental scenario. Here, the ROC curves show the average
predictive performance of classifiers trained upon the embeddings for discriminating interacting protein
pairs. The highest AUROC indicates the best prediction performance that is achieved by anc2vec (0.91)
and is followed by neigh2vec (0.90). In contrast, existing embeddings showed lower AUROC values:
GO2Vec (0.74), Onto2Vec NN (0.73) and Onto2Vec NN* (0.72). Note that the classifier trained with the
Onto2Vec(*) embeddings is the method known as Onto2Vec NN in [Smaili et al., 2018a]. The ontology-
based metrics also achieved lower AUROCs: SimWang (0.74), AIC (0.73) and GOGO (0.71). In order
to analyze the influence of embedding dimension on the performance, anc2vec was also tested for nh ∈
{10, 50, 100, 200, 300, 400, 500, 1000}. As expected, its discriminative performance improved for higher
dimensions up to a point where a large increase in dimension is required to obtain relatively small
improvements in performance (Supp. Fig. 2). In addition, similar results were obtained when making
predictions by exclusively using protein pairs annotated with specific STRING scores or number of GO
terms (Supp. Fig. 3). Likewise, anc2vec outperformed competitors when using the dataset released by the
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authors of Onto2Vec [Smaili et al., 2018a] (Supp. Fig. 4) as well as when using binary interactomes for well
and not-so-well characterized organisms (Supp. Fig. 5) available in the curated database APID [Alonso-
López et al., 2019]. These results demonstrate the advantages of using anc2vec embeddings for predicting
protein-protein interactions.

Finally, the second experimental scenario was further explored by evaluating the predictive perfor-
mance of individual classifiers when trained with the five species-specific datasets of protein interactions.
The resulting AUROC values are shown in Table ??. Regardless species, the highest AUROC values are
obtained by anc2vec, followed again by neigh2vec. Interestingly, this result shows that protein-protein
interactions can be reliably predicted with “generic” embeddings, that is, not encoding any type of species-
specific information. Note that, in comparison to neigh2vec, the higher AUROC values of anc2vec point
out that the contribution of ancestors information is very important for predicting protein interactions,
particularly for species whose protein-protein interactions are well characterized, such as Homo sapiens
(9606). Taken together, the superior predictions obtained by anc2vec support the semantic relevance of
the three structural features proposed here for constructing embeddings of GO terms.

6 Conclusions

A novel neural network model named anc2vec is presented, for constructing embeddings of GO terms.
Anc2vec preserves three structural features of the GO in the embedding of a term: the uniqueness
of the term, its ancestors and the sub-ontology to which it belongs. Anc2vec has proven useful for
data visualization, sub-ontology prediction, inference of structurally related terms, retrieval of terms
from aggregated embeddings, and prediction of protein-protein interactions. Results on large-scale, real-
world data show that anc2vec embeddings can encode much more semantic information than existing
embeddings.
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11 Key points

• A novel neural network model named anc2vec is presented, for constructing embeddings of GO
terms.

• Anc2vec preserves three structural features of the GO in the embedding of a term: the uniqueness
of the term, its ancestors and the sub-ontology to which it belongs.

• Anc2vec has proven useful for data visualization, sub-ontology prediction, inference of structurally
related terms, retrieval of terms from aggregated embeddings, and prediction of protein-protein
interactions.

• Results on large-scale, real-world data show that anc2vec embeddings can encode much more se-
mantic information than existing embeddings.
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