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ABSTRACT

�eories for autism spectrum disorder (ASD) have been formulated at di�erent levels: ranging from10

physiological observations to perceptual and behavioral descriptions. Understanding the physiological11

underpinnings of perceptual traits in ASD remains a signi�cant challenge in the �eld. Here we show12

how a recurrent neural circuit model which was optimized to perform sampling-based inference and13

displays characteristic features of cortical dynamics can help bridge this gap. �e model was able to14

establish a mechanistic link between two descriptive levels for ASD: a physiological level, in terms of15

inhibitory dysfunction, neural variability and oscillations, and a perceptual level, in terms of16

hypopriors in Bayesian computations. We took two parallel paths: inducing hypopriors in the17

probabilistic model, and an inhibitory dysfunction in the network model, which lead to consistent18

results in terms of the represented posteriors, providing support for the view that both descriptions19

might constitute two sides of the same coin.20
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AUTHOR SUMMARY

Two di�erent views of autism, one regarding altered probabilistic computations, and one regarding21

inhibitory dysfunction, are brought together by means of a recurrent neural network model trained to22

perform sampling-based inference in a visual se�ing. Moreover, the model captures a variety of23

experimental observations regarding di�erences in neural variability and oscillations in subjects with24

autism. By linking neural connectivity, dynamics and function, this work contributes to the25

understanding of the physiological underpinnings of perceptual traits in autism spectrum disorder.26

INTRODUCTION

Autism spectrum disorder (ASD) refers to a complex neurodevelopmental condition involving27

persistent challenges in social interaction and communicative skills, and restricted/repetitive behaviors28

(Association, 2013). While some recent studies suggest that ASD could be detected during the �rst year29

of life in some children, early signs seem to be non-speci�c, with group di�erences more robustly30

found a�er children’s �rst birthday (see Ozono�, Heung, Byrd, Hansen, and Hertz-Piccio�o (2008) for a31

review).32

Almost two decades ago, John Rubenstein and Michael Merzenich suggested that many of the33

symptoms related to ASD might re�ect an abnormal ratio between excitation and inhibition leading to34

hyper-excitability of cortical circuits in ASD subjects (Rubenstein & Merzenich, 2003). Since then, a35

variety of studies have linked reduced inhibitory signaling in the brain with ASD symptoms, either36

observing how behavior typically associated with ASD emerges in animals when inhibitory pathways37

are altered, or measuring gamma-aminobutyric acid (GABA) concentration or GABA receptors in38

several brain regions (see Cellot and Cherubini (2014) for a detailed review). Further support for this39

view comes from the fact that ASD patients su�er from epilepsy with a prevalence up to 25 times that40

of the neurotypical population (Bolton et al., 2011).41

Establishing a direct link between ASD and impaired inhibition in speci�c circuits in humans has not42

been easy. Indeed, two recent in-vivo studies in humans have shown puzzling results (Horder et al.,43

2018; Robertson, Ratai, & Kanwisher, 2016). In these studies inhibition was assessed both behaviorally44
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(in visual tasks where inhibition is widely believed to play a key role in neurotypical behavior) and by45

measuring either GABA concentration (Robertson et al., 2016) or number of GABA receptors (Horder46

et al., 2018) in the brains of ASD and control subjects. Interestingly, while ASD subjects showed a47

marked de�cit in binocular rivalry, characteristic of a disruption in inhibitory signaling, GABA48

concentrations in the visual cortex were normal (Robertson et al., 2016). However, while GABA49

concentration was predictive of rivalry dynamics in controls, the same was not true within the ASD50

population, evidencing a disruption of inhibitory action. Similarly, while ASD subjects show an altered51

performance in the paradoxical motion perception task (a proxy measure of GABA signaling), GABA52

receptor availability in the brain of those participants showed no signi�cant di�erence from controls53

(Horder et al., 2018). Both studies suggest an impairment in inhibitory signaling which cannot be54

explained by coarse di�erences in GABA concentration or receptor availability at the level of brain55

areas, and which might a�ect speci�c circuits instead. To complicate ma�ers further, there is evidence56

for not only inhibitory but also excitatory disfunction in ASD, and it has been hypothesized that57

homeostatic principles might be the reason behind this seemingly contradictory result (Nelson &58

Valakh, 2015). �e idea being that if, for instance inhibition is reduced, excitatory synapses might be59

then adjusted to try to compensate for the overall change in neural activity that reduction would ensue.60

Computational modeling of local cortical circuits expressed in terms of excitation and inhibition might61

therefore provide a fruitful avenue of research to guide future experiments.62

From the point of view of perception in ASD, a variety of theories have been put forward over the63

last two decades. Highly in�uential descriptive theories include: the weak central coherence theory64

(Happé & Frith, 2006) and the enhanced perceptual functioning theory (Mo�ron, Dawson, Soulieres,65

Hubert, & Burack, 2006). Here we will focus on computational accounts of perception in ASD, and in66

particular on a Bayesian view of perception (Palmer, Lawson, & Hohwy, 2017). We will later also make67

connections to another in�uential computational theory formulated in terms of predictive coding68

(Van Boxtel & Lu, 2013; Van de Cruys et al., 2014).69

Within the Bayesian framework, inference about the external world proceeds by multiplicatively70

combining pre-existent knowledge (expressed in terms of a prior probability distribution) and current71

sensory evidence (represented in terms of a likelihood function), to form a posterior distribution which72

encapsulates our belief about the state of the world a�er having observed a given stimulus (Knill &73

–3–

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
si

nc
.u

nl
.e

du
.a

r)
R

. E
ch

ev
es

te
, E

. F
er

ra
nt

e,
 D

. H
. M

ilo
ne

 &
 I

. S
am

en
go

; "
B

ri
dg

in
g 

ph
ys

io
lo

gi
ca

l a
nd

 p
er

ce
pt

ua
l v

ie
w

s 
of

 a
ut

is
m

 b
y 

m
ea

ns
 o

f 
sa

m
pl

in
g-

ba
se

d 
B

ay
es

ia
n 

in
fe

re
nc

e"
N

et
w

or
k 

N
eu

ro
sc

ie
nc

e,
 p

p.
 1

-1
7,

 ja
n,

 2
02

2.



== D R A F T ==

Journal: NETWORK NEUROSCIENCE / Title: Bridging physiological and perceptual views of autism

Authors: Rodrigo Echeveste, Enzo Ferrante, Diego H. Milone, and Inés Samengo

Richards, 1996). Rather than expressing that belief as a single point estimate of what is most probable,74

the posterior distribution provides a richer description, naturally incorporating the associated75

uncertainty which remains a�er the observation. A growing body of evidence indicates that, at least in76

some se�ings, the brain is able to operate with probability distributions in this way to perform77

approximate Bayesian inference (see Fiser, Berkes, Orbán, and Lengyel (2010), for a review). In recent78

years it has been proposed that in ASD subjects these forms of Bayesian computations are carried out79

abnormally: overweighting sensory evidence with respect to prior information (Palmer et al., 2017;80

Pellicano & Burr, 2012). Concretely, the authors in Pellicano and Burr (2012) proposed that this is a81

consequence of chronically a�enuated priors (termed hypopriors), characterized by broader82

distributions (i.e. higher uncertainty).83

�e related theoretical framework of predictive coding proposes that the cortex is organized84

following a circuit motif where feedback connections from higher- to lower-order sensory areas signal85

predictions of lower-level responses, while feedforward connections signal errors between predictions86

and actually observed lower-level responses (Rao & Ballard, 1999). Proponents of predictive coding87

theories have rightfully pointed out that Bayesian theories by themselves (without specifying a88

concrete implementation) do not o�er a mechanistic explanation for ASD perception (Van Boxtel & Lu,89

2013), which is key to understand how physiological observations may be linked to perceptual and90

behavioral traits in ASD subjects. As has been observed by Aitchison and Lengyel (2017), Bayesian91

inference and predictive coding are not necessarily mutually exclusive: predictive coding can be seen92

as a computational motif which can implement several computational goals (one of which is Bayesian93

inference), while Bayesian inference can be seen as a computational objective which can have several94

implementations (one of which is predictive coding). Moreover, as noted in the aforementioned review,95

telling apart the use of a Bayesian predictive coding scheme from a direct variable code in an empirical96

se�ing is no trivial ma�er. Strong transient overshoots at stimulus onset, for instance, which are a97

typical signature of predictive coding, can also emerge in direct variable coding schemes (Aitchison &98

Lengyel, 2016; Echeveste, Aitchison, Hennequin, & Lengyel, 2020). Indeed, while weighting predictive99

errors more strongly by increasing synaptic gains in the motif could explain sensory hypersensitivity100

in ASD subjects (Palmer et al., 2017), a competing explanation can be provided within a direct variable101

coding scheme, as we show in the present study. We note however that while predictive coding102
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schemes can incorporate gamma oscillations (Bastos et al., 2012), it is not clear how they would account103

for the contrast-dependent frequency modulation of these oscillations (Roberts et al., 2013), or the104

stimulus-dependent modulations of neural variability (Churchland et al., 2010; Orbán, Berkes, Fiser, &105

Lengyel, 2016).106

generative model

projective
fields

latents

a c

b d

E-I network

feed-forward
receptive
fields

E / I cells

stimulus

la
te

nt
2

latent 1

posterior

ce
ll

2

cell 1

network activity

Figure 1. Sketches of the generative model, and a neural circuit implementing sampling-based probabilistic inference under that model.

a, �e Gaussian scale mixture (GSM) generative model. Under this model, each image patch is built as a linear combination of local features (projective

�elds), whose intensities are drawn from a multivariate Gaussian distribution. �is linear combination is then further scaled by a global contrast level

and subject to noise. �e features were in this case a set of localized oriented Gabor �lters which di�ered only in their orientations and were uniformly

spread between −90◦ and 90◦. �e image serving as stimulus in the �gure is for illustration only. Photo Credit: Santa Fe Bridge by Enzo Ferrante

https://eferrante.github.io/) b, 2D projection of the posterior distribution for a given a visual stimulus as computed by the Bayesian ideal

observer under the GSM. c, �e recurrent E–I neural network receives an image patch as an input, which is �ltered by feedforward receptive �elds matching

the projective �elds of GSM in a. Each latent variable in the GSM is represented by the activity of one E cell in the network. d, 2D projection of the neural

responses of E cells corresponding the same 2 latent variables shown in b. Over time, the network samples from posterior distribution corresponding to the

stimulus it receives.

107

108

109

110

111

112

113

114

115

116

A popular implementation choice for probabilistic inference is that of probabilistic population codes117

(PPCs) (Ma, Beck, Latham, & Pouget, 2006), where the posterior distribution is encoded in the average118

rates of a population of neurons. �is framework has been used in the past to link inhibitory de�cits119
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and Bayesian computations in an arti�cial neural network model consisting of two feed-forward layers120

followed by a stage of divisive normalization (Rosenberg, Pa�erson, & Angelaki, 2015). In this work, a121

probabilistic version of the model was constructed to capture the “oblique e�ect”. �is term describes122

the fact that neurotypical subjects tend to be more sensitive to cardinal than to oblique orientations in a123

visual orientation discrimination task (Westheimer & Beard, 1998). Indeed, a modulation of the divisive124

normalization factor in this model was shown to account for the observed reduction of the oblique125

e�ect in ASD subjects (Dickinson, Jones, & Milne, 2014). �e standard PPC framework requires126

constant Fano factors (no variability modulation) (Ma et al., 2006), and furthermore feed-forward127

network implementations can only capture mean rate responses, but fail to account for the dynamical128

properties of neural responses that arise from recurrent connectivity. It is hence unclear in this129

framework how altered neural variability observed in the ASD population (Haigh, Heeger, Dinstein,130

Minshew, & Behrmann, 2015; Milne, 2011) and gamma oscillations (van Diessen, Senders, Jansen,131

Boersma, & Bruining, 2015) would relate to probabilistic computations in these subjects.132

Sampling-based theories for probabilistic inference o�er an alternative mechanistic implementation133

for Bayesian inference. Within this framework, neural circuits represent posterior distributions by134

drawing samples over time from those distributions (Berkes, Orbán, Lengyel, & Fiser, 2011; Haefner,135

Berkes, & Fiser, 2016). Interestingly, sampling-based models for probabilistic inference have recently136

begun to establish direct links between cortical dynamics and perception (Echeveste et al., 2020). A137

neural circuit model of a cortical hypercolumn respecting Dale´s principle and performing fast138

sampling-based inference in a visual task displayed a suite of features which are typically observed in139

cortical recordings across species and experimental conditions. �e network showed highly variable140

responses with strong inhibition-dominated transients at stimulus onset, and stimulus-dependent141

gamma oscillations, as observed in the cortex (Haider, Häusser, & Carandini, 2013; Ray & Maunsell,142

2010; Roberts et al., 2013). �e model further evidenced stimulus-dependent variability modulations143

consistent with experimental �ndings (Roberts et al., 2013). Divisive normalization of mean responses144

(Carandini & Heeger, 2012) was also shown to emerge in this network as a result of its recurrent145

dynamics. �is is interesting since divisive normalization was precisely the starting point for the146

probabilistic model in Rosenberg et al. (2015), and in previous work linking uncertainty and neural147

variability via gain modulation (Héna�, Boundy-Singer, Meding, Ziemba, & Goris, 2020). �e148
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computational and dynamical properties of the network make it a viable candidate to test the link149

between Bayesian computations and several physiological features observed in ASD such as inhibitory150

dysfunction, as well as di�erences in neural variability and oscillations.151

In what follows we will �rstly set the basis for this work by recapitulating some of the key �ndings152

of Echeveste et al. (2020), relating probabilistic inference, and dynamics in a network model which we153

will take to describe healthy control subjects. We will then make use of the connection between154

perception and physiology established by this model and take two parallel routes to explore two155

di�erent theories for autism: a perceptual theory expressed in terms of hypopriors, and a physiological156

theory concerning impaired inhibition. �e �st path will involve modifying the probabilistic model157

under which perception takes place, and more concretely its prior, and observing the consequences of158

that choice in terms of the observer’s posteriors. �e second path will involve inducing an inhibitory159

de�cit in the neural network whose job is to sample from the corresponding posteriors, and analyzing160

the e�ect of that modi�cation in the posteriors represented by the network. We will then compare the161

results of both approaches to determine to what extent these two seemingly unrelated theories are162

compatible. Finally, we show that the induced inhibitory de�cit in the network model produces163

changes in the variability and dynamics of the network. We will evaluate these changes in the context164

of empirical observations in ASD subjects and other theoretical accounts for ASD. �ese include an165

increase in neural variability, as well as an increase in the power and frequency of gamma oscillations.166

�e network also becomes hypersensitive to intense stimuli, displaying stronger transients responses167

at stimulus onset.168
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Figure 2. Inference under the GSM and responses in the original network, here representing healthy neurotypical subjects. Replo�ed from

Echeveste et al. (2020). In all panels shades of green correspond to the ideal observer, while red corresponds to network responses, as in Figure 1. Line colors

in b and frame colors in d indicate di�erent contrast levels, which are the same as stimulus frames in a, indicating to which stimulus responses correspond.

a, Stimuli (shade of frame color indicates contrast level, split green, blue and red indicates that the same stimuli were used as input to the ideal observer

and to both neural networks). b, Covariance ellipses (2 standard deviations) of the ideal observer’s posterior distributions (green) and of the networks’

corresponding response distributions (red). Red trajectories show sample 500 ms-sequences of activities in the networks. As in the sketch of �g. Figure 1, 2D

projections corresponding to two representative latent variables / excitatory cells are shown. �ese two correspond to projective �elds / receptive �elds at

preferred orientations 42◦ and 16◦. c, Mean (top) and standard deviation (bo�om) of latent variable intensities ordered by each latent’s orientation, for each

stimulus in the training set. Le�: from the ideal observer’s posterior distribution (green). Right: E cell membrane potentials uE from the networks’ stationary

distributions (red). d, Comparison of correlation matrices. Le�: for the ideal observer’s posterior distributions (in green). Right: for the networks’ stationary

response distributions (red). Response moments in c and d were estimated from n = 20, 000 independent samples (taken 200 ms apart). Correlations in d

are Pearson’s correlations.
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RESULTS

Bayesian inference of visual features implemented by a recurrent E-I neural circuit181

�e starting point for perceptual inference within the Bayesian framework is a probabilistic model that182

describes one’s assumptions about how observed stimuli relate to variables of interest in the outside183

world. �is forward model is usually referred to as a generative model, and the role of an ideal Bayesian184

observer is to invert this probabilistic relationship to obtain posterior distributions over those variables185

of interest given the observed stimulus. �e generative model employed here is a Gaussian186

Scale-Mixture model (GSM, see Figure 1 a and Methods and Materials), which has been shown to187

capture the statistics of natural images at the level of small image patches (Wainwright & Simoncelli,188

2000). Importantly, inference under this model had already been shown to explain features of behavior189

and stationary response distributions in neural data in visual perception (Coen-Cagli, Kohn, &190

Schwartz, 2015; Orbán et al., 2016; Schwartz, Sejnowski, & Dayan, 2009). Under this version of the191

GSM, natural image patches are constructed as linear combinations of Gabor �lters of di�erent192

orientations, which are then scaled by a global contrast variable. �e goal of the inference process was193

to estimate the probability distribution of the intensity with which each Gabor �lter (each orientation)194

participated in the observed image. In turn, in order to model cortical neural dynamics, a common195

recurrent neural network model is employed: the stabilized supralinear network (SSN, see Figure 1 b196

and Methods and Materials) (Ahmadian, Rubin, & Miller, 2013; Hennequin, Ahmadian, Rubin, Lengyel,197

& Miller, 2018). Neurons in the network were arranged around a ring, according to their preferred198

orientation, under the approximation of visual inference problem being rotationally symmetric (though199

see Discussion). Moreover, neurons in the network respected Dale’s principle, with two separate200

populations for excitatory (E) and inhibitory (I) cells. �e SSN thus formulated was then optimized201

using current machine learning methods to approximate a Bayesian ideal observer under the GSM:202

when the network receives an image patch as its input, it produces samples over time with its neural203

activity so as to represent the corresponding posterior distribution (Figure 1 c–d). Examples of the204

image patches used to train the network, as well as sample neural trajectories are presented in205

Figure 2 a–b, respectively. A�er training, posterior distributions sampled by network responses match206

those prescribed by the ideal observer (see Figure 2 c, cf. green and red). Once trained, the SSN model207

thus establishes a mechanistic link between neural dynamics in terms of an E-I circuit and perception208
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formulated as sampling-based probabilistic inference. In what follows we exploit this link to take two209

complementary paths: inducing simple perturbations to the GSM to induce hypopriors, and to the SSN210

to induce an inhibitory dysfunction.211

Perturbing the generative model: the effect of hypopriors212

To illustrate and generate intuitions on the e�ect of hypopriors, we begin by employing a simpli�ed213

one-dimensional toy example (Methods and Materials). Let us assume the “true” prior, correctly214

describing the statistics of the world concerning a particular inference process, is a zero-mean215

Gaussian. Let us further assume for this toy example that the likelihood is also a Gaussian function216

whose precision is modulated by a contrast variable which expresses the degree of reliability of the217

sensory stimulus. If we vary the stimulus contrast we can compute a posterior distribution for each218

stimulus under this true prior (Figure 3 a – b, in green). If, however, we were to employ a hypoprior,219

that is a prior with a higher variance, we would obtain posterior distributions which overweight220

sensory evidence, in the sense that they more closely resemble the likelihood function (both in mean221

and variance) than they should. �is in turn results in a higher posterior mean and in higher222

uncertainty about the estimate (Figure 3 b, cf. green and blue lines).223

Let us now turn to the GSM. Also in this case, a global contrast variable regulates the reliability of224

the stimulus. However, in contrast to the 1D toy example presented before, inference in this case takes225

place in a higher dimensional space. We again modify the prior distribution to induce a hypoprior. We226

do so in the simplest possible way, by scaling the prior co-variance matrix by a constant factor larger227

than 1.0 (Methods and Materials). In Figure 3 c we compare the posterior distributions calculated under228

the true prior (in green) with those computed under the hypoprior (in blue). As expected, we again �nd229

that hypopriors result in overweighting of sensory stimuli, with higher posterior means and higher230

uncertainty about the estimates (Figure 3 d, cf. green and blue lines), consistently with the postulates of231

Pellicano and Burr (2012).232

Perturbing the network: the effect of inhibitory deficits247

We now turn our a�ention to the network model. In what follows we will refer to the original SSN248

presented in Figure 2, as the neurotypical (NT) network. As previously stated, the NT-network was249
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constructed in terms of separate excitatory and inhibitory populations. Here we target inhibitory250

connections by scaling down their e�cacy by a global constant value (Methods and Materials). In order251

to ensure that baseline activity levels are not a�ected, and following the ideas of Nelson and Valakh252

a b

c d

e f

Effect of hypopriors on posterior predictions – 1D toy example

Effect of hypopriors on posterior predictions – GSM
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Figure 3. Hypopriors and impaired inhibition. a–b : E�ect of hypopriors on posterior predictions for a 1D toy example. Priors, likelihoods and

posteriors are all Gaussian. A contrast variable regulating the likelihood precision plays the role of the perceptual reliability of stimuli. Two example

inference cases are presented: under the true (well-calibrated) prior (dashed, green) and under a wider hypoprior (dashed, blue). a �e prior (dashed, color)

and likelihood (dashed, black) are multiplicatively combined according to Bayes’ rule to form the posterior (continuous, color). b Posterior mean (top plot)

and standard deviation (bo�om plot) under the true prior (green) and the hypoprior (blue), as a function of contrast (likelihood precision). c–d : E�ect

of hypopriors on posterior predictions for the full multivariate GSM model. c Mean (top plots) and standard deviation (bo�om plots) of latent variable

intensities ordered by each latent’s orientation, for each stimulus in Figure 2. Le�: for the well calibrated ideal observer’s posterior distribution (green).

Right: under a hypoprior (blue). d Posterior mean (Top) and standard deviation (Bo�om), averaged across all latent variables, under the true prior (green)

and the hypoprior (blue), as a function of contrast. e–f : E�ect of impaired inhibition on network responses. e, Mean (top) and standard deviation (bo�om)

of latent variable intensities ordered by each latent’s orientation, for each stimulus in the training set. E cell membrane potentials uE from the stationary

response distributions for the NT-network (Le�, red), and for the ASD-network (Right, blue). f Mean (Top) and standard deviation (Bo�om) of neural

responses, averaged across all cells, for the NT-network (red) and the ASD-network (blue), as a function of contrast. Circles, and gray dots on x-axis of

panels d and f indicate training contrast levels.
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246

(2015), we also scaled excitatory connections globally in a homeostatic fashion (see Supplementary253

Fig. 1 and Methods and Materials). We will henceforth refer to the network where inhibitory de�cits254

have been induced as the ASD-network. As we did for the generative model, we then compared the255

mean and standard deviation of the posterior distributions encoded by both networks in terms of their256

response samples (Figure 3 e – f). Notably, we observed that ASD-network representations of the257

posteriors also seemed to overweight current sensory information. Indeed, posterior means were258

higher in the ASD- than in the NT-network (Figure 3 f top panel, cf. red and blue lines). In passing, we259

note that because of the original approximate inference scheme, the scaling of the mean and standard260

deviation with contrast between the original network and the posterior are similar but not identical. In261

particular, while mean responses in the generative model saturate at high contrasts, they only262

decelerate in the network model, without actually saturating. Indeed, responses in this type of network263

models do not saturate. �ey either continue to grow or ‘bounce back’ and begin to decrease264

(Ahmadian et al., 2013). Similarly, a slightly higher standard deviation is observed in the network with265

respect to the posterior at low contrast, which stems from an underestimation of the variance of neural266

responses under the Gaussian approximation during training of the network (Echeveste et al., 2020).267
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Higher uncertainty about the estimates was also found in the network (Figure 3 f bo�om panel, cf.268

red and blue lines), just as it happened for the generative model under hypopriors (compare Figure 3269

panels d and f). Interestingly, we have reached the same qualitative traits by two very di�erent270

approaches and following two theories expressed at widely di�erent levels: one perceptual, one271

physiological.272

It is important to note that sampling-based implementations of Bayesian inference establish a direct273

link between uncertainty and neural variability, since the width of the posterior distribution is directly274

related to the amount of variability. Indeed we observe that weaker inhibition leads to higher275

variability in the neural responses of the ASD-network compared to the NT-network (Figure 3 f,bo�om276

panel, cf. red and blue lines), as had been suggested in Rubenstein and Merzenich (2003), where the277

point had been made that a disruption of E-I balance leading to a hyperexcitable cortex would lead to278

increased cortical ‘noise‘. Indeed, higher neural variability has been experimentally reported in ASD279

subjects both in EEG (Milne, 2011) and fMRI (Haigh et al., 2015) studies.280

An advantage of employing a neural network model such as the SSN, which shows characteristic281

features of cortical dynamics, such as gamma oscillations and transient overshoots (including their282

contrast dependence), is that we can also explore the predictions the model makes for these features,283

now for the ASD-network.284

Firstly, we look at gamma oscillations. To that end we computed the power spectrum from the local294

�eld potential (LFP), from which we extracted the peak gamma frequency for di�erent contrast levels295

for both networks (Figure 4 a). We note that the overall frequency modulation is very similar in both296

networks, with slightly higher peak gamma frequency in the ASD-network for high contrast stimuli297

(cf. Figure 4 b, le� panel, red and blue). Previous work has reported higher peak gamma frequency in298

ASD subjects solving a visual task, which was interpreted as a sign of “increased neural inhibition”299

(Dickinson, Bruyns-Hayle�, Smith, Jones, & Milne, 2016). At �rst glance, this might seem at odds with300

the starting point for our work where we have weakened inhibitory synapses. It is worth noting301

however that total inputs (both E and I) result in a balanced recurrent network from a dynamic302

equilibrium, which may result in higher inhibitory currents, despite weaker inhibitory synapses. �is is303

precisely the case here (see Supplementary Fig. 1 d). Indeed, it has been known for decades that304

balanced networks are prone to so-called “paradoxical e�ects” (Tsodyks, Skaggs, Sejnowski, &305
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Figure 4. Transient responses and oscillations. a, LFP power as a function of frequency for stimuli of di�erent contrast levels (same stimuli and

colors as in Figure 3) in the NT-network (le�), and in the ASD-network (right). Both networks present strong gamma oscillations (see peaks in the gamma

band, indicated by empty circles). b, Comparison of oscillatory behavior in both networks. On the le�, the peak gamma frequency is presented as a function

of stimulus contrast for both networks. Very minimal di�erences are observed. On the right, the total power within the gamma band is presented as a

function of contrast for both networks. A higher gamma power is observed for the ASD network at all contrasts, with strong di�erences at low contrasts.

c, Across-trial average transient responses for stimuli of di�erent contrast levels in the neurotypical network (le�) and in the ASD network (righ). Both

networks present strong stimulus dependent transient overshoots. d, Comparison of overshoot sizes. �e maximal �ring rate is presented as a function

of stimulus contrast for both networks. We observe that the ASD network presents stronger peak responses at higher contrasts, over-reacting to intense

stimuli. NT-network results reproduced from Echeveste et al. (2020).
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McNaughton, 1997), whereby direct external inhibitory inputs to I cells, can actually lead to increased I306

rates. �is also hints at why seemingly contradictory results are o�en found regarding inhibition in307

ASD depending on what exactly is chosen as a measure of inhibition.308

Interestingly however, gamma power is higher for the ASD-network (see sharper gamma peaks in309

the spectra of Figure 4 a, and in Figure 4 b, right plot, blue vs red). An insight into the functional310

interpretation of this e�ect can be obtained from analyzing neural responses at zero contrast,311

representing what is usually termed spontaneous activity in the literature. In sampling based models,312

such as this one, spontaneous activity is postulated to encode this prior distribution (Berkes et al.,313

2011). Indeed, when the stimulus is completely uninformative, as is the case at zero contrast, the314

posterior matches the prior. �e model hence predicts higher gamma power in spontaneous activity,315
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which is in line with previous reports of higher gamma band power in resting state activity of ASD316

subjects (van Diessen et al., 2015).317

We �nally turn our a�ention to transient responses. We compared the ASD- and NT-networks in318

terms of their trial-averaged �ring rates around stimulus onset (Figure 4 c). �e model predicts higher319

maximal �ring rates (and not only mean rates) for the ASD network than for the NT network at320

intermediate and high contrasts (cf. Figure 4 d, red and blue), indicating that the ASD-network has321

become hypersensitive to intense stimuli. We note that theories of perception expressed in terms of322

predictive coding usually interpret peak rates as a measure of surprise, novelty or unexpectedness (Rao323

& Ballard, 1999), and indeed a predictive coding account of ASD perceptual traits, including abnormal324

sensory sensitivity, has been postulated by several authors in the past (Van Boxtel & Lu, 2013; Van de325

Cruys et al., 2014). Results from the ASD network, which we here interpret from a Bayesian inference326

perspective, are then not inconsistent with a predictive coding view of perceptual di�erences in the327

ASD population.328

DISCUSSION

Neural neural network models are increasingly being used as a tool to study how di�erences in neural329

architectures may be linked to symptoms in di�erent disorders (Lanillos et al., 2020). In this work we330

have employed a neural network model of a V1 cortical hypercolumn trained to perform331

sampling-based probabilistic inference in a visual task to build a mechanistic bridge between332

descriptions of ASD formulated at two very di�erent levels: a physiological level (in terms of inhibitory333

dysfunction (Rubenstein & Merzenich, 2003), neural variability (Haigh et al., 2015; Milne, 2011), and334

gamma oscillations(van Diessen et al., 2015)), and a perceptual level (in terms of hypopriors in Bayesian335

computations (Pellicano & Burr, 2012)). In what follows we describe merits of this work, limitations336

and open questions.337

Merits338

We have taken two parallel paths: in one perturbing the probabilistic generative model in order to339

induce hypopriors, and in the other perturbing the neural network model to induce an inhibitory340

dysfunction. We observed that both approaches lead to consistent results in terms of the represented341
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posterior distributions, providing support for the possibility that both views of ASD might actually342

constitute two sides of the same coin.343

Employing a neural network model such as the SSN, which not only performs inference in a344

perceptual task but also displays characteristic features of cortical dynamics while doing so (Echeveste345

et al., 2020), allowed us to make further connections between characteristic di�erences in these346

dynamics and inhibitory dysfunction in ASD subjects. Stimulus-dependent variability modulations in347

the network, and concretely the direct link between neural variability and uncertainty established by348

sampling-based implementations of inference, predicted higher variability in neural responses in the349

ASD- vs the NT-network. Indeed increased neural variability has been reported in ASD subjects both in350

EEG (Milne, 2011) and fMRI (Haigh et al., 2015) studies. Moreover, transient overshoots, usually351

interpreted in predictive coding theories to represent novelty, surprise or unexpectedness (Rao &352

Ballard, 1999), are present in the network, with higher responses for strong stimuli in the ASD-network353

vs the NT-network, indicating an oversensitivity to intense stimuli, a feature o�en reported in children354

with ASD (Kern et al., 2006).355

Furthermore, oscillations in the ASD-network displayed higher gamma-band oscillatory power,356

consistent with observations in resting-state EEG recordings of ASD subjects (van Diessen et al., 2015).357

Peak gamma frequencies were also higher in the ASD network for high-contrast stimuli, a fact which358

has indeed been observed in EEG recordings from subjects performing an orientation discrimination359

task (Dickinson et al., 2016), and which had been a�ributed to increased inhibition. We con�rmed that,360

despite having decreased the e�cacy of inhibitory synapses in our network, mean inhibitory inputs361

were indeed actually larger for high-contrast stimuli. �is observation is in line with the known fact362

that balanced E-I networks are prone to “paradoxical e�ects” regarding inhibition (Tsodyks et al., 1997),363

where average rates result from a dynamic balance of excitation and inhibition, and might explain364

apparent contradictions between studies reporting increased/decreased inhibition (Cellot & Cherubini,365

2014; Dickinson et al., 2016). �ese results also highlight the importance of neural network simulations366

to assist in the interpretation of physiological observations regarding the role of inhibition in cortical367

recordings.368

Limitations and open questions369
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Training recurrent neural networks with expansive non-linearities beyond mean responses is currently370

a challenging and computationally expensive task. �ese networks are prone to instabilities and371

current optimization for second-order moments requires either a large number of trials, or372

matrix-matrix operations which scale as n3 in the number of neurons (Hennequin & Lengyel, 2016).373

Indeed, the choice of the simple generative model played a key role in order to make the training374

problem tractable with currently available optimization techniques, but imposes some limitations. �e375

GSM produces multivariate Gaussian posteriors (which enabled training the network with currently376

available second-order moment-matching methods), and was further constructed to be rotationally377

symmetric (which drastically reduced the number of network parameters to be optimized, as well as378

the required number of training examples). A model constructed in this way, will however not be able379

to capture features of human behavior in popular tests of visual perception, such as the “oblique e�ect”,380

where neurotypical subjects seem to be more sensitive to cardinal orientations (Westheimer & Beard,381

1998), an e�ect which is reduced in ASD subjects (Dickinson et al., 2014). Tackling problems like these382

in a sampling-based se�ing will require developing tools to train more �exible networks that can383

produce richer posterior distributions. It should be noted that these limitations are however of a384

technical nature, and are not inherent to the sampling-based inference framework.385

Secondly, the model employed to explain simple, low-level perceptual computations was constructed386

in terms of a single V1 hypercolumn, and is hence only able to capture local dynamical features, such as387

locally generated gamma oscillations. Hypothetically, the ideas presented here can be extended to the388

representation of other circular variables beyond orientation of visual stimuli, such as head direction in389

rodents Skaggs, Knierim, Kudrimoti, and McNaughton (1995), motor intent in primates Georgopoulos,390

Taira, and Lukashin (1993), physical space in grid cells McNaughton, Ba�aglia, Jensen, Moser, and391

Moser (2006), or oculomotor control Seung (1998). In all these examples, highly specialized brain areas392

receive assorted inputs that carry a noisy, �ltered and distributed representation of a circular variable.393

�e recurrent activity of the network constitutes a mechanistic implementation of an inference process,394

which could be potentially executed through a sampling-based Bayesian inference strategy, as explored395

here. If that were the case, the strong reliance of ASD subjects on the likelihood could also be396

broadened beyond the realm of sensory processing. Extensions of these ideas are also conceivable to397

other one-dimensional, yet aperiodic, domains, such as sound pitch Aronov, Nevers, and Tank (2017),398
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navigation speed Krop�, Carmichael, Moser, and Moser (2015), or elapsed time Tsao et al. (2018) which,399

although still fairly narrow in their semantic content, involve some degree of higher-level processing.400

However, as we progress into still higher cognitive functions, the understanding of how401

context-dependent modulations of cortical dynamics emerge during complex perceptual tasks will402

likely require models where multiple circuits interact (Simon & Wallace, 2016). In this sense,403

hierarchical or spatially extended versions of the SSN model employed here may provide adequate404

substrates to study inference of higher level perceptual tasks where longer-range aspects of cortical405

dynamics, such as gamma synchronization, might emerge.406

�irdly, we have focused on one aspect of probabilistic inference: inferring the state of a set of latent407

variables under perceptual uncertainty. �e study of other aspects of this problem, such as inferring408

temporal transitions (Sinha et al., 2014), or causal relationships (Noel, Shivkumar, Dokka, Haefner, &409

Angelaki, 2021), and their link to altered inhibition and neural dynamics, will require the use of410

di�erent architectures and generative models and constitute worthwhile avenues of future research.411

Closing remarks412

We have shown how recurrent neural networks optimized for sampling-based inference are viable413

candidates to bridge the gap between Bayesian perceptual theories of ASD and their physiological414

underpinnings in terms of inhibitory dysfunction, neural variability and oscillations. We believe these415

results highlight the potential for the use of the emerging body of function-optimized neural networks416

(Echeveste et al., 2020; Hennequin, Vogels, & Gerstner, 2014; Orhan & Ma, 2017; Remington, Narain,417

Hosseini, & Jazayeri, 2018; Song, Yang, & Wang, 2016; Yamins et al., 2014) as models to establish418

mechanistic links between neural activity and computations in the cortex that go beyond the study of419

neurotypical perception.420

METHODS

In order to link cortical dynamics and probabilistic computations we modi�ed the parameters of the421

probabilistic and network models employed in Echeveste et al. (2020). In what follows we describe422

those changes and refer the reader to the original paper for a more detailed description of the models423

and of the original model parameters.424
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The generative model425

In this work the Gaussian scale mixture model (GSM, Wainwright and Simoncelli (2000)), is employed426

as the generative model of natural images (at the level of small patches) under which inference is427

carried out in the primary visual cortex (V1, Coen-Cagli et al. (2015); Orbán et al. (2016)). Under the428

GSM an image patch x is obtained by linearly combining a number of local features (given by the429

columns of a matrix A), which are weighted by a corresponding number of feature coe�cients given by430

y, further scaled by a single contrast variable z, and �nally corrupted by additive white Gaussian noise.431

�is forward generative model can then be summarized in terms of the likelihood function given by432

x|y, z ∼ N
(
zAy, σ2

x I
)
, (1)

together with the priors for the feature coe�cients and the contrast variable z. Local features were433

assumed to be drawn from a multivariate Gaussian:434

y ∼ N (0,C) , (2)

and the contrast was assumed to be drawn from a Gamma prior. To induce hypopriors we modi�ed the435

overall scale of the prior covariance matrix C, by taking CHP = αHPC, with αHP = 1.5. Other values436

were explored without qualitative di�erences (not shown). We note that taking αHP > 1 results in437

wider priors, as required for a hypoprior.438

�e 1D toy example model of Figure 3a–b, corresponds to a 1-dimensional GSM with prior variance439

C = 4, A = 10, and σ2
x = 100. As in the full GSM, we took αHP = 1.5.440

Network dynamics and architecture441

�e circuit model consisted of a nonlinear, stochastic network respecting Dale’s principle, with NE442

excitatory and NI inhibitory neurons. �e evolution of the membrane potential ui of each neuron i in443

this model is described by (Hennequin et al., 2018)444

τi
dui
dt

= −ui(t) + hi(t) +
∑

j Wij rj(t) + ηi(t) , (3)

where τi represents the membrane time constant for neuron i, hi its feedforward input, and ηi is the445

process noise (capturing both intrinsic and extrinsic forms of neural variability). W is the matrix of446
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recurrent connections, and hence Wij represents the strength of the synapse connecting neuron j to447

neuron i. As previously mentioned, the network is non-linear, with �ring rates448

ri(t) = kbui(t)cm. (4)

Here k and m represent the scale and exponent of the �ring rate nonlinearity (Ahmadian et al., 2013).449

Given the rotational symmetry of the problem, W itself was parametrized to be rotationally symmetric.450

Neurons in the model are arranged in a ring of pairs of E and I cells according to their preferred451

orientations (Figure 1c) where Wij was a smoothly decaying function of the tuning di�erence between452

neurons i and j (see Supplementary Fig. 1 a, top and second row). �e (stimulus-independent) process453

noise covariance was analogously parametrized (see Supplementary Fig. 1 a, third row). Following454

canonical models of V1 simple cells (Dayan & Abbo�, 2001), feedforward inputs to the network were455

computed by applying a linear �lter W� to the stimulus (the image patch) followed by a nonlinearity456

(see Supplementary Fig. 1 a, bo�om row).457

�e perturbation here employed to induce an inhibitory de�cit has a single free parameter δI which458

scales the inhibitory columns of W, WASD
I = (1− δI)W

NT
I (see Supplementary Fig. 1 a–b). In order to459

maintain the baseline level of activity, a second modi�cation is introduced (simulating homeostatic460

adaption of the excitatory connections), scaling the excitatory columns of W by a factor δE:461

WASD
E = (1− δE)W

NT
E . �is second factor was found by grid-search minimization of the homeostatic462

cost463

Ch =
∣∣µNT

s − µASD
s

∣∣ , (5)

capturing the change in mean spontaneous activity levels (µs) between the original NT- and perturbed464

ASD-network . �is adaptation procedure returns a single δE value for each δI value (Supplementary465

Fig. 1 c). We note that excitatory changes via this procedure resulted always smaller than inhibitory466

ones (cf. to identity line in Supplementary Fig. 1 c, bo�om plot). Network results presented throughout467

this paper correspond to δI = 0.1, for which δE = 0.076. Numerical experiments were repeated for468

δI = 0.05 and δI = 0.15 without qualitative di�erences (not shown).469

Numerical simulations470
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Stationary moments of neural responses to a �xed input (Figure 3e) were computed from 20, 000471

independent samples (200 ms apart) generated by le�ing neural activity in the network evolve over472

time via Equation 3 (excluding transients). Power spectra in Figure 4 a were obtained from simulated473

local �eld potentials (LFPs), computed as the average (across-cells) membrane potential. Gamma peak474

frequencies in Figure 4 b (le�) were obtained as the local maximum in the spectrum within the gamma475

range (20–80 Hz), while total gamma power in Figure 4 b (right) was computed as the integral of the476

spectrum over that same range.477

Transient responses displayed in Figure 4 c were computed as the mean (across E-cells and trials)478

�ring rates (n = 100), which are then further averaged over a 10-ms sliding window. A random delay479

time (sampled from a truncated Gaussian, with a mean of 45 ms and a standard deviation of 5 ms) was480

employed for the feedforward input to each pair of E–I cells. �ese procedures had been put in place to481

allow for a comparison to experimental data, and are here kept in order to compare the ASD-netowork482

to replo�ed results from the original (here NT-) network. Maximal �ring rates in Figure 4 d were483

obtained as the peak rates from transient �ring rate responses.484

Code availability.485

�e (Python) code to create the ASD network is provided in486

bitbucket.org/RSE 1987/inhibitory dysfunction. �e code for the numerical487

experiments can be found at:488

bitbucket.org/RSE 1987/ssn inference numerical experiments.489
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TECHNICAL TERMS

Latent variable A variable of interest to which an observer has no direct access and hence needs to493

infer it from an observation of other related variables.494
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Prior Probability distribution encapsulating an observer’s knowledge about the latent variables495

before observing the stimulus.496

Likelihood function Function describing the conditional probability of an observation for each497

state of the latent variables.498

Posterior Conditional probability over the latent variables a�er observing a given stimulus.499

Hypoprior A chronically a�enuated prior, whose uncertainty is higher than implied by the statistics500

of stimuli.501

GABA Main inhibitory neurotransmi�er.502

Gamma Oscillations Rhythmic pa�erns of activity with a frequency between 20 and 80Hz.503

Transient overshoot Excursion in neural responses that exceeds mean responses over a brief504

period of time a�er the onset of the stimulus.505

Divisive normalization Process by which the responses of single neurons are divisively modulated506

by the responses of other neurons.507

508
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Héna�, O. J., Boundy-Singer, Z. M., Meding, K., Ziemba, C. M., & Goris, R. L. (2020). Representation of visual uncertainty553

through neural gain variability. Nature communications, 11(1), 1–12.554

Hennequin, G., Ahmadian, Y., Rubin, D., Lengyel, M., & Miller, K. (2018). �e dynamical regime of sensory cortex: stable555

dynamics around a single stimulus-tuned a�ractor account for pa�erns of noise variability. Neuron, 98(4), 846–860.556

Hennequin, G., & Lengyel, M. (2016). Characterizing variability in nonlinear recurrent neuronal networks. arXiv preprint557

arXiv:1610.03110.558

Hennequin, G., Vogels, T., & Gerstner, W. (2014). Optimal control of transient dynamics in balanced networks supports559

generation of complex movements. Neuron, 82(6), 1394–1406.560
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