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Abstract—Skid-steer vehicles are one of the most popular
configuration of autonomous ground vehicles (AGVs). Their
mechanical simplicity provides researchers and developers with
an easy to build vehicle that can perform complicated tasks either
in outdoor or indoor scenarios. However, the process of building
an AGV usually requires to spend a lot of time solving problems
that are already solved. This work focuses on the process required
to make a working AGV –the Hibachi– compatible with Robot
Operating System (ROS). We mainly describe and explain the
tasks of developing the required software and device drivers to
implement ros_control on the existing hardware, allowing
easier sensor integration and providing a standarized testbed for
AGV research.

Index Terms—autonomous ground vehicle, robot operating
system, robotics, Raspberry Pi, Arduino

I. INTRODUCTION

In recent years, there has been a lot of development and con-
struction of AGVs and the interest in this field has undergone
tremendous improvement lately with a growing interest in pre-
cision agriculture [1]–[4]. However, while trying to accomplish
the task to make an AGV work autonomously, developers and
researchers usually spend a lot of time solving problems that
are already solved, such as vehicle kinematics, PID control,
among others. Since its conception in 2009, ROS [5], [6]
has become the de facto standard framework for robotics
software development. The core of ROS is licensed under the
standard three-clause BSD license, which is a very permissive
open license that allows for reuse in commercial and closed
source products. It is a flexible framework for writing robot
software, a collection of tools, libraries, and conventions that
aim to simplify the task of creating complex and robust robot
behavior across a wide variety of robotic platforms. It has a
wide variety of packages that are available and well tested.
Many efforts have been made by researchers to create low-
cost ROS compatible ground vehicles [7], [8], quadcopters
[9], submarines [10] and even bring FPGA integration [11].

In this work, we describe the steps taken to make a working
skid-steer vehicle –the Hibachi– compatible with ROS. The
skid-steer configuration was chosen because of its mechanical
simplicity and high maneuverability particularly in outdoor
applications [12]. To make the Hibachi ROS compatible, we
needed to develop certain software and drivers that allowed the
AGV to behave as a ROS node. The main challenge was to
implement ros_control, which is the software that glues
the low-level embedded system software with the high-level
ROS software running in the on-board computer. This is the
reason why this work aims to focus on how to bridge the gap

between the existing hardware and ROS, allowing the research
group to start focusing on interesting problems specific to our
AGV or application, instead of reinventing the wheel.

II. HARDWARE CONFIGURATION

The main objective for the Hibachi was to make a fairly
easy to build and easy to fix AGV. Because of that, the skid-
steer configuration seemed to be quite obvious. The hardware
election was based on existing parts on our laboratory. The
Hibachi is made of the following components:

• Raspberry Pi 3 model B+: This is a single board
computer that runs Raspbian and ROS. The Raspberry
is connected to an Arduino Due to retrieve the wheel
odometry information and the Navio2 to retrieve the IMU
and GPS values.

• Emlid Navio21: This is an autopilot HAT designed for
the Raspberry Pi. This hardware device has a Global
Navigation Satellite System (GNSS) module that is ca-
pable of tracking GPS, GLONASS, Beidou, Galileo and
SBAS satellites. It also offers a dual Inertial Measurement
Unit (IMU) setup, providing accelerometers, gyroscopes
and magnetometers for orientation and motion sensing.
Finally, it exposes various interfaces (ADC, I2C and
UART) for extra sensors and radios.

• Arduino Due controller: This Arduino board is based on
the Atmel SAM3X8E ARM Cortex-M3 CPU. It provides
54 digital input/output pins, 12 analog inputs, 2 DAC and
2 CAN. This board is used to control the motors’ speed
and to save the odometry information. It receives each
of the motors velocity setpoints and four embedded PID
controllers ensure those setpoints are met. It also sends
the encoder data back to the Raspberry Pi for odometry
calculation.

• DC gear motors with quadrature encoders: Since our
robot uses a skid-steer configuration, we have to drive
four motors. Each motor is operated in 12 V. The motor
shaft is attached to a quadrature encoder, which can
deliver a maximum count of 3290 counts per revolution
of the gearbox’s output shaft. Motor encoders are one
source of odometry of robot.

• L298 dual H-Bridge motor drivers: Each of the two H-
Bridge installed allows full control of two DC motors. It
receives PWM signals from the Arduino Due and outputs
the DC motor voltage accordingly.

1https://navio2.emlid.com/
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Fig. 1. Hibachi chassis with onboard computer in the middle and sensors
mounted on top.

• RPLidar A1: is a low cost 2D LIDAR solution. It
can scan 360◦ environment within 12 meter radius. The
output of this sensor is very suitable to build map or do
SLAM.

All these components are installed onto a 5 mm acrylic
plate, allowing rapid prototyping and an easy mechanical setup
(see Fig. 1). The Navio2 could be replaced with any GNSS
module and IMU, since up to this day, these are the only parts
being used.

III. HIBACHI ROS PACKAGES

One of the main benefits of diving into the ROS ecosystem
is that we can take advantage of the availability of a large num-
ber of widely tested packages, so developers and researchers
do not have to do all the heavy lifting to get a robot up and
running. In order to make ROS compatible robot, we need
to develop the required software to turn it into a ROS node
so it can interact and exchange information with other nodes
and packages [8]. To achieve ROS compatibility, Hibachi must
publish its geometric information using the Unified Robot
Description Format (URDF), publish all the relevant sensor
and odometry data as ROS topics and be capable of receive
control actions from other nodes. Another requirement is to
fullfill some of the ROS Enhancement Proposals (REP), such
as REP-103 [13]: “Standard Units of Measure and Coordinate
Conventions”, which provides a reference for the units and
coordinate conventions used within ROS; and REP-105 [14]:
“Coordinate Frames for Mobile Platforms”, which specifies
naming conventions and semantic meaning for coordinate
frames of mobile platforms used with ROS. The following
list of ROS packages were developed for Hibachi, allowing
the robot to interact with other ROS packages:

• hibachi_description: Hibachi URDF description
which provides a code-independent, human-readable way
to describe the geometry of the robot and its parts.

• navio2_ros: Provides a direct ROS interface for some
of the Navio2 sensors. Currently it exposes the IMU and
the GNSS module.

• hibachi_firmware: Provides the Arduino firmware
for the Hibachi. It handles the communication with the
Raspberry Pi, controls the velocity of the motors and
sends the motor encoder information.

• hibachi_base: Hibachi hardware interface node,
which holds the robot hardware abstraction. It has the
definition of each of the Hibachi joints and its control
interfaces.

• hibachi_gazebo: Hibachi simulation package. It se-
tups a simulated robot in a virtual world. The robot def-
inition is obtained from the hibachi_description
URDF and then Gazebo is responsible for the physics
simulation.

IV. IMPLEMENTING ROS_CONTROL ON THE HIBACHI

The mission of ros_control is to lower the entry barrier
for exposing hardware to ROS, and to promote the reuse
of control code in the same way that ROS has allowed for
higher-level code. The ros_control framework provides
the capability to implement and manage robot controllers
with a focus on both real-time performance and sharing of
controllers in a robot-agnostic way [15]. Being a mature frame-
work, ros_control is widely applied to not only to the
production of robots but also into numerous research platform
robots and comes with ready to use controllers. Controllers
expose standard ROS interfaces for out-of-the box third party
solutions to robotics problems like manipulation path planning
and autonomous navigation [16]. This is the most important
issue, because once the Hibachi is ROS compatible, there will
be no need to write any additional code for many common
robotics tasks, only configuration files.

As stated in “ROS Control, An overview” [17], to implement
a custom robot using ros_control, one must inherit from
the Robot Hardware Interface and Resource Manager class
(hardware_interface::RobotHW). This class is meant
to be used as a base class for abstracting custom robot hard-
ware. After that, we need to setup the individual controllers
each robot needs. In our case, we need to manage each of the
four joints used to describe the four motors of the Hibachi.
So we need the following:

• hardware_interface::
JointStateInterface to support reading the state
of the joints

• hardware_interface::
VelocityJointInterface for commanding the ve-
locity of the joints.

Listing 1 shows a snippet of C++ code that registers the four
joints representing the Hibachi wheels. First, we define the
same names as in the URDF and then we iterate over that list
of names in order to create a JointStateHandles that
holds each of the defined joints state (name, position, velocity,
effort). After that, the JointHandle is used to read and
command each joint.

Listing 1. Registering Hibachi joints in the hardware interface.

void HibachiHardware ::
registerControlInterfaces () {
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ros ::V string joint names =
boost :: assign ::list of("front left wheel")

("front right wheel")
("rear left wheel")
("rear right wheel ");

for ( unsigned int i = 0;
i < joint names.size ();
i++) {

hardware interface :: JointStateHandle
joint state handle(joint names[i],

&joints [i]. position ,
&joints [i]. velocity ,
&joints [i]. effort );

joint state interface .
registerHandle (joint state handle );

hardware interface :: JointHandle joint handle(
joint state handle ,
&joints [i]. velocity command );

velocity joint interface .
registerHandle (joint handle );

}
registerInterface (&joint state interface );
registerInterface (&velocity joint interface );
}

The joint_ variable is a Joint structure (see Listing 2) which
allows us to easily access each joint state and command. This is
hooked to ros_control InterfaceManager, to allow control via
diff_drive_controller.

Listing 2. Joint struct.
struct Joint {

double position ;
double position offset;
double velocity ;
double effort ;
double velocity command;
int16 t encoder pulses;
Joint () :

position (0) , velocity (0) ,
effort (0) , velocity command (0) ,
encoder pulses (0)

{ }
}

After the robot setup we need to implement the read() and
write() methods. These methods communicate the Raspberry Pi
with the Arduino Due. In the Hibachi case, the read() method
obtains the motor encoder position and it is responsible to calculate
and populate the joint position in radians and velocity in radians per
seconds (see Listing 3). The write() method obtains each of the
wheel velocity setpoint from the ROS higher level controllers (mainly
the diff_drive_controller) and sends them to the Arduino
via serial port, which has to ensure each of the wheels reaches the
desired velocity setpoint with a PID controller running on the board
(see Listing 4).

Listing 3. Hibachi read() method.

void HibachiHardware::read(
const ros::Duration &duration)
{
hibachi base::GetFourWheelEncoder

getFourWheelEncoder;
serialPort.sendMessage(&getFourWheelEncoder);

auto fourWheelEncoderData =
(FourWheelEncoderData∗) serialPort.waitMessage(

FourWheelEncoderData::MESSAGE TYPE, 1.0);

if (fourWheelEncoderData != NULL)
{
int16 t encoder pulses front left prev =

joints [FRONT LEFT].encoder pulses;
int16 t encoder pulses front right prev =

joints [FRONT RIGHT].encoder pulses;
int16 t encoder pulses rear left prev =

joints [REAR LEFT].encoder pulses;
int16 t encoder pulses rear right prev =

joints [REAR RIGHT].encoder pulses;

joints [FRONT LEFT].encoder pulses =
(int16 t)fourWheelEncoderData−>getFrontLeftPulses();

joints [FRONT RIGHT].encoder pulses =
(int16 t)fourWheelEncoderData−>getFrontRightPulses();

joints [REAR LEFT].encoder pulses =
(int16 t)fourWheelEncoderData−>getRearLeftPulses();

joints [REAR RIGHT].encoder pulses =
(int16 t)fourWheelEncoderData−>getRearRightPulses();

int16 t delta front left =
joints [FRONT LEFT].encoder pulses −
encoder pulses front left prev;

int16 t delta front right =
joints [FRONT RIGHT].encoder pulses −
encoder pulses front right prev;

int16 t delta rear left =
joints [REAR LEFT].encoder pulses −
encoder pulses rear left prev;

int16 t delta rear right =
joints [REAR RIGHT].encoder pulses −
encoder pulses rear right prev;

joints [FRONT LEFT].position +=
ticksToAngle(delta front left);

joints [FRONT RIGHT].position +=
ticksToAngle(delta front right);

joints [REAR LEFT].position +=
ticksToAngle(delta rear left);

joints [REAR RIGHT].position +=
ticksToAngle(delta rear right);

joints [FRONT LEFT].velocity =
ticksToAngle(delta front left) / duration.toSec();

joints [FRONT RIGHT].velocity =
ticksToAngle(delta front right) / duration.toSec();

joints [REAR LEFT].velocity =
ticksToAngle(delta rear left) / duration.toSec();

joints [REAR RIGHT].velocity =
ticksToAngle(delta rear right) / duration.toSec();

}
else
{
ROS ERROR("No valid encoder data received");
}
}

Once the Hibachi ros_control stack is ready, we can see that
the four joints information (position, speed, effort, control command)
corresponding to each of the wheels is available for the higher level
software to be employed.

Listing 4. Hibachi write() method.

void HibachiHardware :: write ()
{
double diff speed front left =

(joints [FRONT LEFT ]. velocity command );
double diff speed front right =

joints [FRONT RIGHT ]. velocity command;
double diff speed rear left =

joints [REAR LEFT]. velocity command;
double diff speed rear right =

joints [REAR RIGHT]. velocity command;

hibachi base :: SetSkidSteerMotorSpeed
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SetSkidSteerMotorSpeed (diff speed front left ,
diff speed front right ,
diff speed rear left ,
diff speed rear right);

serialPort. sendMessage (
& SetSkidSteerMotorSpeed );

}

V. SETTING UP A DIFFERENTIAL DRIVE CONTROLLER FOR
HIBACHI

As stated in the previous sections, we want to use ROS to save
some time while designing and developing our robot. Once each of
the Hibachi wheels are capable of receiving control commands, we
can set up the ready to use ROS diff_drive_controller. This
package works with wheel joints through a velocity interface. It takes
Twist messages that contain the desired linear and angular velocity of
the robot and converts the latter to rad/s for each wheel based on the
configuration provided in the hibachi_description package.
The robot odometry is computed from the hardware feedback, and
published as an Odometry message. It is compatible with both differ-
ential drive and skid-steer vehicles. As stated in previous section, in
order to use the diff_drive_controller package we do not
have to write extra code, just a simple configuration file (see Listing
5). The configuration file requires us to define the list of wheel joint
names (as we used in the URDF description file), the publish rate of
the odometry information, the wheel separation and wheel radius (in
meters) and allows to choose if we want to see the control command
after limiters have been applied on the controller input (good for
debugging purposes) and if we want the controller to publish the TF
tree.

Listing 5. Hibachi diff drive controller configuration snippet.

hibachi velocity controller:
type:
"diff drive controller/ DiffDriveController "
left wheel: [’front left wheel ’,

’rear left wheel ’]
right wheel: [’front right wheel ’,

’rear right wheel ’]
publish rate: 25

cmd vel timeout: 0.25
publish cmd: True
enable odom tf: True

wheel separation: 0.34
wheel radius: 0.06

VI. PUBLISHING HIBACHI STATE TO ROS
To make other ROS packages aware of the current state of

Hibachi, we use the robot_state_publisher package, which
uses the URDF specified by hibachi_description and the
joint positions from the topic joint_states published by the
JointStateInterface to calculate the forward kinematics of
the robot and publish the results to other ROS nodes. This is a glimpse
of how ROS reutilizes software. This package takes the joint angles of
the robot as input and publish the 3D poses of the robot links, using
a kinematic tree model of the robot. After that, you can visualize
the robot state (including every sensor data) in real-time using RViz,
for example. Figure 2 shows the Hibachi model as described in the
URDF and the axes of some of its links: base_link, which is
located in the center of the acrylic plate; front_left_wheel and
front_right_wheel, which are located in the center of the front
left and right wheel, respectively, they are connected to the vehicle
body through a joint and rotate on their x − axis whenever the
wheel moves; the rplidar and gps axis tell where each of these

Fig. 2. Hibachi model showing various axes of the TF tree in RViz.

sensors are located and how they are orientated, allowing the system
to calculate automatically the needed transformations from each one
to the center of mass of the vehicle.

Simply launching the robot_state_publisher with the pa-
rameter robot_description specifying our URDF and without
extra configuration is enough for the system to publish the current
state: the 3D poses of all the robots links. Once the state gets
published, it is available to all components in the system.

VII. TELEOPERATING THE HIBACHI

Once our robot is ROS compatible and accepts Twist messages
to control the desired linear and angular velocities, we can simply
configure and launch the already written tele-operating packages
teleop_twist_keyboard or teleop_twist_joy, allowing
our vehicle to start moving around. If our robot is correctly con-
figured, the teleop packages will send Twist messages to the
diff_drive_controller, which will send velocity commands
to the robot wheels and it will update the odometry information
accordingly. The approach that requires less configuration is to launch
the teleop_twist_keyboard package, which will listen to a
computer keyboard and will publish Twist messages. You can move
the robot around by pressing the keys [u], [i], [o], [j], [k],
[l], [m], [,] and [.].

VIII. SIMULATION WITH ROS AND GAZEBO

The ROS ecosystem has a high quality simulator in Gazebo2,
which offers the posibility to simulate and quickly test any ROS
compatible robot through the gazebo_ros_control package.
Once the robot_description is done, we can add simulated
sensors choosing from a vast pre-existing library (such as IMU, GPS,
LIDAR, etc) and we can launch our robot in a simulated world with
a robust physics engine and high quality graphics. Each simulated
sensor accepts different configuration parameters, such as frequency,
noise variance, drift, bias, etc. This allows to simulate our vehicle
and have realistic simulated sensors with noisy data. Moreover, each
Gazebo world can be configured in many ways, giving a lot of
flexibility. Figure 3 shows the Hibachi in a simulated world with

2http://gazebosim.org
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Fig. 3. Hibachi in a Gazebo simulation

Fig. 4. Hibachi following outdoor waypoints.

obstacles around, thus allowing developers and researchers to test
different algorithms even without access to the real hardware. The
package hibachi_gazebo is responsible to load Hibachi URDF
by launching the hibachi_description package and bring
up the robot in a world run by Gazebo simulator. The simulated
Hibachi is loaded with wheel encoders, accelerometer, gyroscope,
magnetometer, GNSS sensor and a LIDAR, mimicking the on-board
hardware on the real robot.

IX. EXPERIMENTAL RESULTS

In the following, we will show the experimental results obtained
while the Hibachi follows a set of predefined outdoor waypoints
arranged in a squared shape. For this experiment, we configured
the robot_localization package to fuse information from the
GPS, IMU and wheel encoders to obtain an estimation of the current
position and orientation in the real world. The navigation uses ROS
navigation stack. As Fig. 4 shows, the vehicle starts moving
towards waypoint W1. Once it reaches the waypoint, the Hibachi
turns left and moves to W2. This behaviour repeats until the Hibachi
reaches W4, which is the starting point.

These algorithms need some extra tuning, however this shows the
importance of having an open-source framework for robotics, such
as ROS that simplifies the transition to experimental robotics.

X. CONCLUSION AND FUTURE WORK

Making a ROS compatible vehicle enables developers and re-
searchers to stop spending time finding solutions to problems that
have already been solved. It also facilitates sensor integration and
exchange (for example, we could easily change an IMU as long

as it has a ROS driver and it outputs its data as an Odometry
message) and provides a standarized testbed for robotics research
(thanks to many of the REPs, such as REP-103 and REP-105). We
hope this work enlightens a little the path towards making a ROS
compatible vehicle. Once the sensors and the vehicle hardware is
properly configured, the user can choose what other ROS packages to
configure and run according to the required necessities. For example,
if the user needs indoor navigation with obstacle avoidance you
should setup the navigation package, which will allow to fuse
data from the IMU, the wheel encoders and some range sensor
such as a LIDAR. For outdoor navigation you should setup the
robot_localization package to fuse data from the GNSS,
IMU and the wheel encoders to localize the robot in an outdoor
environment. The use of a Raspberry Pi as an on-board computer
allows the AGV to have a high degree of autonomy, requiring user
intervention only to send mission plans or for emergency stops.

We are planning to migrate the Hibachi software to ROS2, since
ROS is reaching its end of life. On the hardware side, we are intending
to upgrade the motors in order to provide more power and be able
to carry heavier payloads and add a higher quality IMU.
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