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ABSTRACT11

Surface electroencephalography is a standard and noninvasive way to measure electrical brain activity. Recent advances in
artificial intelligence led to significant improvements in the automatic detection of brain patterns, allowing increasingly faster,
more reliable and accessible Brain-Computer Interfaces. Different paradigms have been used to enable the human-machine
interaction and the last few years have broad a mark increase in the interest for interpreting and characterizing the "inner voice"
phenomenon. This paradigm, called inner speech, raises the possibility of executing an order just by thinking about it, allowing
a “natural” way of controlling external devices. Unfortunately, the lack of publicly available electroencephalography datasets,
restricts the development of new techniques for inner speech recognition. A ten-subjects dataset acquired under this and
two others related paradigms, obtained with an acquisition system of 136 channels, is presented. The main purpose of this
work is to provide the scientific community with an open-access multiclass electroencephalography database of inner speech
commands that could be used for better understanding of the related brain mechanisms.

12

Background & Summary13

Brain-Computer Interfaces (BCIs) are a promising technology for improving the quality of life of people who have lost14

the capability to either communicate or interact with their environment1. A BCI provides an alternative way of interaction15

to such individuals, by decoding the neural activity and transforming it into control commands for triggering wheelchairs,16

prosthesis, spellers or any other virtual interface device2, 3. In BCI applications, neural activity is typically measured by17

electroencephalography (EEG), since it is a non-invasive technique, the measuring devices can be easily portable and the EEG18

signals have high time resolution1, 2.19

Different paradigms have been used in order to establish communication between a user and a device. Some of the most20

widely adopted paradigms are P3004, steady-state visual evoked potentials5 and motor imagery6. Although the use of these21

paradigms have resulted in great advances in EEG-based BCI systems, for some applications, they are still unable to lead to22

efficient ways for controlling devices. This is so mainly because they turned out to be too slow or they required a large effort23

from the users, restricting the applicability of BCIs in real-life and long-term applications.24

In this context, speech-related paradigms, based on either silent, imagined or inner speech, seek to find a solution to the25

aforementioned limitations, as they provide a more natural way for controlling external devices. Although major and clear26

differences exist between those three paradigms, they are quite often referred inconsistently and misleadingly in the literature.27

We present below the main characteristics of each one of them.28

i) Silent speech refers to the articulation produced during normal speech, but with no sound emitted. It is usually measured29

using motion-capturing devices, imaging techniques or by measuring the activity of muscles, and not only from brain signals7, 8.30

ii) Imagined speech is similar to silent speech but it is produced without any articulatory movements, just like in motor31

imagery of speaking, in which the speaker must feel as if he/she is producing speech7. This paradigm was widely explored32

using EEG9–13 and electrocorticography (ECoG) signals14–16.33

iii) Inner speech is defined as the internalized process in which the person thinks in pure meanings, generally associated34

with an auditory imagery of own inner “voice”. It is also referred to as verbal thinking, inner speaking, covert self-talk, internal35

monologue, and internal dialogue. Unlike imagined and silent speech, no phonological properties and turn-taking qualities36

of an external dialogue are retained7, 17. Compared to brain signals in the motor system, language processing appears to be37
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more complex and involves neural networks of distinct cortical areas engaged in phonological or semantic analysis, speech38

production and other processes15, 18. A few studies have already been conducted within the inner speech paradigm using39

EEG19–21, ECoG15, functional Magnetic Resonance Imaging (fMRI) and positron emission tomography scan22–25.40

Another paradigm related to the inner speech is the so-called “auditory imagery”26, 27. In this paradigm, instead of actively41

producing the speech imagination, the subject passively listens to someone else’s speech. It has already been explored42

using EEG19, 28, ECoG29, 30 and fMRI31, 32. Although this paradigm is not particularly useful for real BCI applications, it has43

contributed to the understanding of neural processes associated with speech-related paradigms.44

While publicly available datasets for imagined speech10, 33 and for motor imagery34–38 do exist, to the best of our knowledge45

there is not a single publicly available EEG dataset for the inner speech paradigm. In order to improve the understanding of46

inner speech and its applications in real BCIs systems, we have built a multi speech-related BCI dataset consisting of EEG47

recordings from ten naive BCI users, performing four mental tasks in three different conditions: inner speech, pronounced48

speech and visualized condition. The last two of them are explained in detail in the Section BCI Interaction Conditions. These49

conditions allow us to explore whether inner speech activates similar mechanisms as pronounced speech or whether it is closer50

to visualizing a spatial location or movement. Each participant performed between 475 and 570 trials in a single day recording,51

obtaining a dataset with more than 9 hours of continuous EEG data recording, with over 5600 trials.52

Methods53

Participants54

The experimental protocol was approved by the “Comité Asesor de Ética y Seguridad en el Trabajo Experimental” (CEySTE,55

CCT-CONICET, Santa Fe, Argentina1). Ten healthy right-handed subjects, four females and six males with mean age ± std56

= 34 ± 10 years, without any hearing or speech loss, nor any previous BCI experience, participated in the experiment and57

gave their written informed consent. Each subject participated in an approximately two hours recording. In this work, the58

participants are identified by aliases “sub-01” through “sub-10”.59

Experimental Procedures60

The study was conducted in an electrically shielded room. The participants were seated in a comfortable chair in front of a61

computer screen where the visual cues were presented. In order to familiarize the participant with the experimental procedure62

and the room environment, all steps of the experiment were explained, while the EEG headcap and the external electrodes were63

placed. The setup process took approximately 45 minutes. Figure 1 shows the main experiment setup.64

The stimulation protocol was designed using Psychtoolbox-339 running in MatLab40 and was executed on a computer,65

referred to as PC1 in Figure 1. The protocol displayed the visual cues to the participants in the Graphic User Interface (GUI).66

The screen’s background was light-grey coloured in order to prevent dazzling and eye fatigue.67

Each subject participated in one single recording day comprising three consecutive sessions, as shown in Figure 2. A68

self-selected break period between sessions, to prevent boredom and fatigue, was given (inter-session break). At the beginning69

of each session, a fifteen seconds baseline was recorded where the participant was instructed to relax and stay as still as70

possible. Within each session, five stimulation runs were presented. Those runs correspond to the different proposed conditions:71

pronounced speech, inner speech and visualized condition (see Section BCI Interaction Conditions). At the beginning of each72

run, the condition was announced in the computer screen for a period of 3 seconds. In all cases, the order of the runs was: one73

pronounced speech, two inner speech and two visualized conditions. A one minute break between runs was given (inter-run74

break).75

The classes were specifically selected considering a natural BCI control application with the Spanish words: "arriba",76

"abajo", "derecha", "izquierda" ( i.e."up", "down", "right", "left", respectively). The trial’s class (word) was randomly presented.77

Each participant had 200 trials in both the first and the second sessions. Nevertheless, depending on the willingness and78

tiredness, not all participants performed the same number of trials in the third session.79

Figure 3 describes the composition of each trial, together with the relative and cumulative times. Each trial began at time80

t = 0 s with a concentration interval of 0.5 s. The participant had been informed that a new visual cue would soon be presented.81

A white circle appeared in the middle of the screen and the participant had been instructed to fix his/her gaze on it and not to82

blink, until it disappeared at the end of the trial. At time t = 0.5 s the cue interval started. A white triangle pointing to either83

right, left, up or down was presented. The pointing direction of the cue corresponded to each class. After 0.5 s, i.e. at t = 1 s,84

the triangle disappeared from the screen, moment at which the action interval started. The participants were instructed to start85

performing the indicated task right after the visual cues disappeared and the screen showed only the white circle. After 2.5 s of86

action interval, i.e. at t = 3.5 s, the white circle turned blue, and the relax interval began. The participant had been previously87

instructed to stop performing the activity at this moment, but not to blink until the blue circle disappears. At t = 4.5 s the blue88

1https://santafe.conicet.gov.ar/ceyste/
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circle vanished, meaning that the trial has ended. A rest interval, with a variable duration of between 1.5 s and 2 s, was given89

between trials.90

To evaluate each participant’s attention, a concentration control was randomly added to the inner speech and the visualized91

condition runs. The control task consisted of asking the participant, after some randomly selected trials, which was the direction92

of the last class shown. The participant had to select the direction using the keyboard arrows. No time limit was given to reply93

to these questions and the protocol continued after the participant pressed any of the four arrow keys. Visual feedback was94

provided indicating whether the question was correctly or incorrectly answered.95

Data Acquisition96

Electroencephalography (EEG), Electrooculography (EOG) and Electromyography (EMG) data were acquired using a BioSemi97

ActiveTwo high resolution biopotential measuring system2. For data acquisition, 128 active EEG channels and 8 external active98

EOG/EMG channels with a 24 bits resolution and a sampling rate of 1024 Hz were used. BioSemi also provides standard EEG99

head caps of different sizes with pre-fixed electrode positions 3. A cap of appropriate size was chosen for each participant100

by measuring the head circumference with a measuring tape. Each EEG electrode was placed in the corresponding marked101

position in the cap and the gap between the scalp and the electrodes was filled with a conductive SIGNAGEL®4 gel.102

Signals in the EOG/EMG channels were recorded using a flat-type active electrode, filled with the same conductive gel and103

taped with a disposable adhesive disk. External electrodes are referred from “EXG1” to “EXG8”. Electrodes EXG1 and EXG2104

were both used as a no-neural activity reference channels, and were placed in the left and right lobe of each ear, respectively.105

Electrodes EXG3 and EXG4 were located over the participant’s left and right temples, respectively, and were intended to106

capture horizontal eye movement. Electrodes EXG5 and EXG6 aimed to capture vertical eye movement, mainly blinking107

movements. Those electrodes were placed above and below the right eye, respectively. Finally, electrodes EXG7 and EXG8108

were placed over the superior and inferior right orbicularis oris, respectively. Those electrodes were aimed to capture mouth109

movement in the pronounced speech and to provide a way for controlling that no movement was made during the inner speech110

and visualization condition runs.111

The software used for recording was ActiView5, developed also by BioSemi. It provides a way of checking the electrode112

impedance and the general quality of the incoming data. It was carefully checked that the impedance of each electrode was less113

than 40 Ω before starting any recording session. Only a digital 208 Hz low-pass filter was used during acquisition time (no114

high-pass filter was used).115

Once the recording of each session was finished, a .bdf file was created and stored in computer PC2. This file contains the116

continuous recording of the 128 EEG channels, the 8 external channels and the tagged events.117

BCI Interaction Conditions118

The design of the dataset was made having in mind as main objectives the decoding and understanding of the processes119

involved in the generation of inner speech, as well as the analysis of its potential use in BCI applications. As described in the120

“Background & Summary” Section, the generation of inner speech involves several complex neural networks interactions. With121

the objective of localizing the main activation sources and analyzing their connections, we asked the participants to perform the122

experiment under three different conditions: inner speech, pronounced speech and visualized condition.123

Inner speech124

Inner speech is the main condition in the dataset and it is aimed to detect the brain’s electrical activity related to a subject’s125

thought about a particular word. In the inner speech runs, each participant was indicated to imagine his/her own voice, repeating126

the corresponding word until the white circle turn blue. The subject was instructed to stay as still as possible and not to move127

the mouth nor the tongue. For the sake of natural imagination, no rhythm cue was provided.128

Pronounced speech129

Although motor activity is mainly related to the imagined speech paradigm, inner speech may also show activity in the motor130

regions. The pronounced speech condition was proposed with the purpose of finding motor regions involved in the pronunciation131

matching those activated during the inner speech condition. In the pronounced speech runs, each participant was indicated132

to repeatedly pronounce aloud the word corresponding to each visual cue. As in the inner speech runs, no rhythm cue was133

provided.134

2https://www.biosemi.com/products.htm
3https://www.biosemi.com/pics/cap_128_layout_medium.jpg
4https://es.parkerlabs.com/signagel.asp
5https://www.biosemi.com/software_biosemi_acquisition.htm
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Visualized condition135

Since the selected words have a high visual and spatial component, with the objective of finding any activity related to that being136

produced during inner speech, the visualized condition was proposed. It is timely to mention that the main neural centers related137

with this spatial thinking are located in the occipital and parietal regions41. In the visualized condition runs, the participant was138

indicated to focus on mentally moving the circle shown in the center of the screen in the direction indicated by the visual cue.139

Data Processing140

In order to recast the continuous raw data into a more compact dataset and to facilitate their use, a transformation procedure141

was proposed. Such processing was implemented in Python, mainly using the MNE library42, and the code along with the raw142

data are available, so any interested reader can easily change the processing setup as desired (see Code Availability Section).143

Raw data loading144

A function that rapidly allows loading of the raw data corresponding to a particular subject and session, was developed. The raw145

data stored in the .bdf file contains records of the complete EEG and external electrodes signals as well as the tagged events.146

Events checking and correction147

The first step of the signal processing procedure was checking for correct tagging of events in the signals. Missing tags148

were detected and a correction method was proposed. The method detects and completes the sequences of events. After the149

correction, no tags were missing and all the events matched those sent from PC1.150

Re-reference151

A re-reference step of the data to channels EXG1 and EXG2 was applied. This eliminates both noise and data drift, and it was152

applied using the specific MNE re-reference function.153

Digital filtering154

The data were filtered with a zero-phase bandpass finite impulse response filter using the corresponding MNE function. The155

lower and upper bounds were set to 0.5 and 100 Hz, respectively. This broad band filter aims to keep the data as raw as possible,156

allowing future users the possibility of filtering the data in their desired bands. A Notch filter in 50Hz was also applied.157

Epoching and decimation158

The data were decimated four times, obtaining a final sampling rate of 254 Hz. Then, the continuous recorded data were159

epoched, keeping only the 4.5s length signals corresponding to the time window between the beginning of the concentration160

interval and the end of the relaxation interval. The matrices of dimension [channels x samples] corresponding to each trial,161

were stacked in a final tensor of size [Trials x channels x samples].162

Independent Components Analysis163

Independent Components Analysis (ICA) is a standard and widely used blind source separation method for removing artifacts164

from EEG signals43–45. For our dataset, ICA processing was performed only on the EEG channels, using the MNE implementa-165

tion of the infomax ICA46. No Principal Component Analysis (PCA) was applied and 128 sources were captured. Correlation166

with the EXG channels was used to determine the sources related to blink, gaze and mouth movement, which were neglected in167

the process of reconstructing the EEG signals, for obtaining the final dataset.168

EMG Control169

The EMG control aims to determine whether a participant moved his/her mouth during the inner speech or visualized condition170

runs. The simplest approach to find EMG activity is the single threshold method47. The baseline period was used as a basal171

activity. The signals coming from the EXG7 and EXG8 channels were rectified and bandpass filtered between 1 and 20 Hz48–50.172

The power in a sliding window of 0.5 s length with a time step of 0.05 s was calculated as implemented in Peterson et al51. The173

power values were obtained by the following equation,174

Pwr =
1

S− s+1

S

∑
n=s

x[n]2, (1)

where x[·] denotes the signal being considered, and s, S are the initial and final samples of the window, respectively. For every175

window, the computed powers were stacked and their mean and standard deviations were calculated and used to construct a176

decision threshold:177

th = mean(StackedPowerBaseline)+ γ ∗ std(StackedPowerBaseline). (2)
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In Equation 2, γ is an appropriately chosen parameter. According to Micera et al.52 γ = 3 is a reasonable choice. The same178

procedure was repeated for both channels and the mean power in the action interval of every trial was calculated. Then, if179

one of those values, for either the EXG7 or EXG8 channels was above the threshold, the corresponding trial was tagged as180

“contaminated”.181

A total of 115 trials were tagged as contaminated, which represents a 2.5% of the inspected trials. The number of tagged182

trials is shown in Table 1. The tagged trials and their mean power corresponding to EXG7 and EXG8 were also stored in183

a report file. In order to reproduce the decision threshold, the mean and standard deviation power for the baseline for the184

corresponding session were also stored in the same report file.185

The developed script performing the control is publicly available and interested readers can use it to conduct different186

analyses with the single threshold method.187

Ad-hoc Tags Correction188

After session 1, subject sub-03 claimed that, due a missinterpretation, he/she performed only one inner speech run and three189

visualized condition runs. The condition tag was appropriately corrected.190

Data Records191

All data files can be accessed at repository53. All files are contained in a main folder called “Inner Speech Dataset”, structured192

as depicted in Figure 4, organized and named using the EEG data extension of BIDS recommendations54, 55. The final dataset193

folder is composed of ten subfolders containing the session raw data, each one corresponding to a different subject. There is an194

additional folder, containing five files obtained after the proposed processing: EEG data, Baseline data, External electrodes data,195

Events data and a Report file. We now proceed to describe the contents of each one of these five files along with the raw data.196

Raw data197

The raw data file contains the continuous recording of the entire session for all 136 channels. The mean duration of the198

recordings is 1554 seconds. The .bdf file contains all the EEG/EXG data and the tagged events with further information about199

the recording sampling rate, the names of the channels and the recording filters, among other information. The raw events are200

obtained from the raw data file and contain the tags sent by PC1, synchronized with the recorded signals. Each event code, its201

ID and description are depicted in Table 2. A spurious event, of unknown origin, with ID 65536 appeared at the beginning of202

the recording and also it randomly appeared within some sessions. This event has no correlation with any sent tag and it was203

removed in the “Events Check” step of the processing. The raw events are stored in a three column matrix, where the first204

column contains the time stamp information, the second has the trigger information, and the third column contains the event ID.205

EEG data206

Each EEG data file, stored in .fif format, contains the acquired data for each subject and session, after processing as described207

above. Each one of these files contains an MNE Epoched object, with the EEG data information of all trials in the corresponding208

session. The dimension of the corresponding tensor data is [Trials x 128 x 1154]. The number of trials changed among209

participants in each session, as explained in the “Data Aquisition” Section. The number of channels used for recording was 128210

while the number of samples was 1154, each one of them corresponding to 4.5 s of signal acquisition with a final sampling rate211

of 256 Hz. A total of 1128 pronounced speech trials, 2236 inner speech trials and 2276 visualization condition trials, were212

acquired, distributed as shown in Table 4.213

External electrodes data214

Each one of the EXG data files contains the data acquired by the external electrodes after the described processing was applied,215

with the exception of the ICA processing. They were saved in .fif format. The corresponding data tensor has dimension [Trials216

x 8 x 1154]. Here, the number of EXG trials equals the number of EEG data trials, 8 corresponds to the number of external217

electrodes used, while 1154 corresponds to the number samples of 4.5 s of signal recording at a final sampling rate of 256 Hz.218

Events Data219

Each event data file (in .dat format) contains a four column matrix where each row corresponds to one trial. The first two220

columns were obtained from the raw events, by deleting the trigger column (second column of the raw events) and renumbering221

the classes 31, 32, 33, 34 as 0, 1, 2, 3, respectively. Finally, the last two columns correspond to condition and session number,222

respectively. Thus, the resulting final structure of the events data file is as depicted in Table 5.223

Baseline data224

Each baseline data file (in .fif format) contains a data tensor of dimension [1 x 136 x 3841]. Here, 1 corresponds to the225

only recorded baseline in each session, 136 corresponds to the total number of EEG + EXG channels (128+8), while 3841226

corresponds to the numbers of seconds of signal recording (15) times the final sampling rate (256 Hz). Through a visual227
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inspection it was observed that the recorded baselines of subject sub-03 in session 3 and subject sub-08 in session 2, were228

highly contaminated.229

Report230

The report file (in .pkl format) contains general information about the participant and the particular results of the session231

processing. Its structure is depicted in Table 3.232

Technical Validation233

Attentional Monitoring234

The evaluation of the participant’s attention was performed on the inner speech and the visualized condition runs. It was aimed235

to monitor their concentration on the requested activity. The results of the evaluation showed that participants correctly followed236

the task, as they performed very few mistakes (Table 6; mean ± std = 0.5 ± 0.62). Subjects sub-01 and sub-10 claimed that237

they had accidentally pressed the keyboard while answering the first two questions in session 1. Also, after the first session,238

subject sub-01 indicated that he/she felt that the questions were too many, reason for which, for the subsequent participants, the239

number of questions was reduced, in order to prevent participants from getting tired.240

Event Related Potentials241

It is well known that Events Related Potentials (ERPs) are manifestations of typical brain activity produced in response to242

certain stimuli. As different visual cues were presented during our stimulation protocol, we expected to find brain activity243

modulated by those cues. Moreover, we expected this activity to have no correlation with the condition nor with the class244

and to be found across all subjects. In order to show the existence of ERPs, an average over all subjects, for each one of the245

channels at each instant of time, was computed using all the available trials (Nave = 5640), for each one of the 128 channels.246

The complete time window average, with marks for each described event is shown in Figure 5. Between t = 0.1 s and t = 0.2 s247

a positive-negative-positive wave appears, as it is clearly shown in Figure [5-A]. A similar behavior is observed between t = 0.6248

s and t = 0.7 s, but now with a more pronounced potential deflection, reflecting the fact that the white triangle (visual cue)249

appeared at t = 0.5 s (see Figure [5-B]). At time t = 1 s, the triangle disappeared and only the white fixation circular remained.250

As shown in Figure [5-C], a pronounced negative potential followed. It is reasonable to believe that this negative potential is the251

so-called “Contingent Negative Variation” ERP, which is typically related to the “warning-go” stimuli56. The signal appears252

to be mostly stable for the rest of the action interval. As seen in Figure [5-D], a positive peak appears between t = 3.8 s and253

t = 3.9 s, in response to the white circle turning blue, instant at which the relax interval begins.254

Time-Frequency Representation255

With the objective of finding and analyzing further differences and similarities between the three conditions, a Time-Frequency256

Representation (TFR) was obtained by means of a wavelet transform, using the Morlet Wavelet. The implementation is available257

in the file “TFR_representations.py”, at our GitHub repository (see Code Availability Section).258

Inter Trial Coherence259

By means of the TFR, the Inter Trial Coherence (ITC) was calculated for all 5640 trials (all together). A stronger coherence260

was found within the concentration, cue and relax intervals, mainly at lower frequencies (see Figure 7). Also, the beginning of261

the action interval presents a strong coherence. This could be a result of the modulated activity generated by the disappearance262

of the cue.263

Now, instead of taking the ITC of all trials (all together) we calculated the ITC for all the trials belonging to each one of264

the three conditions, separately. Of the three conditions, pronounced speech appears to have a more intense global coherence,265

mainly at lower frequencies. This is most likely due to the fact that there seems to exist a quite natural pace in the articulation266

of generated sounds. Inner speech and visualized condition show consistently lower coherence during the action interval (see267

Figures 7-A and 7-C). All these findings are consistent with the ERPs found in the time domain.268

Averaged Power Spectral Density269

Using all available trials for each condition, the Averaged Power Spectral Density (APSD) between 0.5 and 100 Hz was270

computed. This APSD is defined as the average between all PSDs of the 128 channels. Figure 8 shows all APSD plots, in271

which shaded areas correspond to ±1 std of all channels. As shown in the Inter Trial Coherence Section, all trials have a strong272

coherence up to t = 1.5 s. Therefore, comparisons were made only in the action interval between 1.5 and 3.5 s. As it can273

be seen, the plots in Figure 8 show a peak in the alpha band [8 - 12 Hz] for all conditions, as it was to be expected, with a274

second peak in the beta band [12 - 30 Hz]. Also, pronounced speech shows higher power at high frequencies (beta-gamma),275

which is most likely related to the brain motor activity and muscular artifacts. Finally, a narrow depression at 50 Hz appears,276

corresponding to the Notch filter applied during data processing.277
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Spatial Distribution278

In order to detect regions where neural activity between conditions is markedly different, the power difference in the main279

frequency bands between each pair of conditions, was computed. As in the Averaged Power Spectral Density section, the time280

window used was 1.5 - 3.5 s. The Power Spectral Density (PSD) was added to the analysis to further explore regions of interest.281

Shaded areas on the PSD graphics in Figure 9 corresponds to ±1 std of the different channels used. No shaded area is shown282

when only one channel was used to compute the PSD.283

The top row of Figure 9 shows a comparison between inner and pronounced speech. In the alpha band, a major inner speech284

activity can be clearly seen in the central occipital/parietal region. The PSD was calculated using channels A4, A5, A19, A20285

and A326 and shows a difference of approximately 1 dB at 11 Hz. On the other hand, in the beta band, the spatial distribution286

of the power differences shows an increased temporal activity for the pronounced condition, consistent with muscular activity287

artifacts. Here, the PSD was calculated using channels B16, B22, B24 and B29 for the right PSD plot and channels D10, D19,288

D21 and D26 for the left PSD plot. Pronounced speech shows higher power in the whole beta band with a more prominent289

difference in the central left area.290

The middle row of Figure 9 shows a comparison of the pronounced speech against the visualized condition. In the alpha291

band, the visualized condition presents a larger difference in the central parietal regions and a more subtle difference in the292

lateral occipital regions. The PSD was calculated using channels A17, A20, A21, A22 and A30. Here again, a difference293

of about 1 dB at 11 Hz can be observed. In the beta band, an intense activity in the central laterals regions appears for the294

pronounced condition. For this band, the PSD was calculated using the same channels as in the comparison between inner and295

pronounced speech for the beta band. As seen, power for pronounced speech is higher than for the visualized condition in the296

whole beta band, mainly in the left central region. This result is consistent with the fact that the occipital region is related to the297

visual activity while the central lateral region is related to the motor activity.298

Finally, a comparison of the inner speech with the visualized condition is shown in the bottom row of Figure 9. Visualized299

condition exhibits a stronger activity in the laterals occipital regions in both the alpha and beta bands. This was to be expected300

since the visualized condition, containing a stronger visual component, generates marked occipital activity. Interesting, inner301

speech shows a broad although subtle higher power in the alpha band in a more parietal region. For the alpha band, the PSDs302

were computed using channels A10 and B7 for the left and right plots respectively. In both plots, the peak corresponding to the303

inner speech condition is markedly higher than the one corresponding to the visualized condition. For the beta band, the PSD304

was calculated using channels A13 and A26 for the left and right PSD plots, respectively. As it can be observed, the power for305

the visualized condition in the whole beta band is higher than the inner speech power. It is timely to mention that no significant306

activity was presented in the central regions for neither of both conditions.307

Usage Notes308

The processing script was developed in Python 3.757, using the MNE-python package v0.21.042, NumPy v1.19.258, Scipy309

v.1.5.259, Pandas v1.1.260 and Pickle v4.061. The main script, “InnerSpeech_processing.py”, contains all the described310

processing steps and it can be modified to obtain different processing results, as desired. In order to facilitate data loading and311

processing, six more scripts defining functions are also provided.312

The stimulation protocols were developed using Psychtoolbox-339 in MatLab R2017b40. The auxiliary functions, including313

the parallel port communication needed to send the tags from PC1 to BioSemi Active 2, were also developed in MatLab. The314

execution of the main script, called “Stimulation_protocol.m”, shows the visual cue in the screen to the participant, and sends,315

via parallel port, the event being shown. The parallel port communication was implemented in the function “send_value_pp.m”.316

The main parameter that has to be controlled in the parallel communication is the delay needed after sending each value. This317

delay allows the port to send and receive the sended value. Although we used a delay of 0.01 s, it can be changed as desired for318

other implementations.319

Code Availability320

In line with reproducible research philosophy, all codes used in this paper are publicly available and can be accessed at321

https://github.com/N-Nieto/Inner_Speech_Dataset. The stimulation protocol and the auxiliary MatLab322

functions are also available. The code was run in PC1, and shows the stimulation protocol to the participants while sending the323

event information to PC2, via parallel port. The processing Python scripts are also available. The repository contains all the324

auxiliary functions to facilitate the load, use and processing of the data, as described above. By changing a few parameters in325

the main processing script, a completely different process can be obtained, allowing any interested user to easily build his/her326

own processing code. Additionally, all scripts for generating the TFR and the plots here presented, are also available.327

6BioSemi nomenclature for a head cap with 128 channels - https://www.biosemi.com/pics/cap_128_layout_medium.jpg
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Table 1. Number of tagged trials by subject and session.

Subject Session 1 Session 2 Session 3 Total
1 6 6 1 13
2 38 0 4 42
3 0 1 0 1
4 0 0 1 1
5 0 0 1 1
6 11 0 11 22
7 0 0 0 0
8 0 0 0 0
9 8 4 15 27

10 7 0 1 8
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Table 2. Raw data event tags number and meanings.

Event ID Description
1 Start of protocol

12 End of protocol
13 Start of baseline
14 End of baseline
15 Start of run
16 End of run
17 Cognitive control - question posing
21 Start of pronounced speech run
22 Start of inner speech run
23 Start of Visualized condition run
31 “Arriba/Up” trial - start of cue interval
32 “Abajo/Down” trial - start of cue interval
33 “Derecha/Right” trial - start of cue interval
34 “Izquierda/Left” trial - start of cue interval
42 Start of concentration interval
44 Start of action interval
45 Start of relax interval
46 Start of rest interval
51 Start of inter runs rest interval
61 Answer to cognitive control: “Arriba/Up”
62 Answer to cognitive control: “Abajo/Down”
63 Answer to cognitive control: “Derecha/Right”
64 Answer to cognitive control: “Izquierda/Left”

Table 3. Report file fields

Listed field Content
Age Participant’s age.
Gender Participant’s gender: ‘F’ for female, ‘M’ for male.
Recording_time Length of the complete session recording in seconds.
Ans_R Number of times the participant correctly answered the cognitive control questions.
Ans_W Number of times the participant incorrectly answered the cognitive control questions.
EMG_trials Position of the contaminated trials.
Power_EXG7 Mean power for channel EXG7 of the contaminated trials. Array with the same dimension as EMG_trials.
Power_EXG8 Mean power for channel EXG8 of the contaminated trials. Array with the same dimension as EMG_trials.
Baseline_EXG7_mean Mean power for channel EXG7 in the Baseline.
Baseline_EXG8_mean Mean power for channel EXG8 in the Baseline.
Baseline_EXG7_std Standard deviation of the power for channel EXG7 in the Baseline.
Baseline_EXG8_std Standard deviation of the power for channel EXG8 in the Baseline.
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Figure 1. Experiment setup. Both computers, PC1 and PC2, were located outside the acquisition room. PC1 runs the
stimulation protocol while communicating to PC2 every cue displayed. PC2 received the sampled EEG data from the
acquisition system and tagged the events with the information received from PC1. At the end of the recording, a .bdf file was
created and saved.

Table 4. Final number of trials divided by subject, class and condition.

Pronounced Speech Inner Speech Visualized Condition
Subject Up Down Right Left Up Down Right Left Up Down Right Left
sub-01 25 25 25 25 50 50 50 50 50 50 50 50
sub-02 30 30 30 30 60 60 60 60 60 60 60 60
sub-03 25 25 25 25 45 45 45 45 55 55 55 55
sub-04 30 30 30 30 60 60 60 60 60 60 60 60
sub-05 30 30 30 30 60 60 60 60 60 60 60 60
sub-06 27 27 27 27 54 54 54 54 54 54 54 54
sub-07 30 30 30 30 60 60 60 60 60 60 60 60
sub-08 25 25 25 25 50 50 50 50 50 50 50 50
sub-09 30 30 30 30 60 60 60 60 60 60 60 60
sub-10 30 30 30 30 60 60 60 60 60 60 60 60

Sub Total 282 282 282 282 559 559 559 559 569 569 569 569
Total 1128 2236 2276

Table 5. Events data format and tag meaning.

Sample Trial’s class Trials’ condition Trials’ session
Sample at which the event occured 0 = “Arriba” (up) 0 = Pronounced speech 1 = session 1
(Numbered starting at n=0, 1 = “Abajo” (down) 1 = Inner speech 2 = session 2
corresponding to the beginning of the recording) 2 = “Derecha” (right) 2 = Visualized condition 3 = session 3

3 = “Izquierda” (left)
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Figure 2. Organization of the recording day for each subject.
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Figure 3. Trial workflow. The screen presented to the participant in each time interval was plotted on the top arrow of the
figure. Relative and global time were plotted above and below the arrow, respectively.

Table 6. Result of attention monitoring. Note that the maximum number of incorrect answers is 2. The large variability in the
number of questions in session 3 is due to the different number of trials for each one of the participants.

Subject Session Questions Wrong
1 45 2

1 2 12 2
3 4 0
1 11 0

2 2 16 1
3 16 1
1 12 1

3 2 10 1
3 8 0
1 12 1

4 2 14 0
3 14 1
1 12 0

5 2 10 0
3 13 1
1 12 1

6 2 12 0
3 9 0
1 12 0

7 2 11 0
3 16 1
1 12 0

8 2 11 0
3 8 1
1 12 0

9 2 10 0
3 13 0
1 11 1

10 2 11 0
3 10 0
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Figure 4. Final dataset structure, files, and naming.
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Figure 5. Global subject average trial and interval plots; all the channels were plotted with a color reference location. A-B
Concentration interval. B-C Cue interval. C-D Action interval. D-end Relax interval.
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Figure 6. Global average trial for each class. Top row: Inner speech, Middle row: Pronounced speech. Bottom row:
Visualized condition
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Figure 7. Inter Trials Coherence. A: Inner speech trials. B: Pronounced trials. C: Visualized condition trials. D: Global
Average.
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Figure 8. Power spectral density for all conditions. Top: Inner Speech. Middle: Pronounced Speech. Bottom: Visualized
Condition
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Figure 9. Power difference between conditions. Left Column: alpha band comparisons. Right row: beta band comparison.
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