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Abstract

Motivation: The discovery of microRNA (miRNA) in the last decade has certainly changed the
understanding of gene regulation in the cell. Although a large number of algorithms with different features
have been proposed, they still predict an impractical amount of false positives. Most of the proposed
features are based on the structure of precursors of the miRNA (pre-miRNA) only, not considering the
important and relevant information contained in the mature miRNA. Such new kind of features could
certainly improve the performance of the predictors of new miRNAs.
Results: This paper presents three new features that are based on the sequence information contained in
the mature miRNA. We will show how these new features, when used by a classical supervised machine
learning approach as well as by more recent proposals based on deep learning, improve the prediction
performance in a significant way. Moreover, several experimental conditions were defined and tested in
order to evaluate the novel features impact in situations close to genome-wide analysis. The results show
that the incorporation of new features based on the mature miRNA allow to improve the detection of new
miRNAs independently of the classifier used.
Availability: https://sourceforge.net/projects/sourcesinc/files/cplxmirna/
Contact: jraad@sinc.unl.edu.ar
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction1

In the recent decades, the discovery of new non-coding RNA molecules2

has changed the understanding of gene regulation in the cell. One of those3

molecules that caught most of the attention of the scientific community4

has been the microRNA (miRNA), due to its importance in the promotion5

or inhibition of several diseases (Bartel, 2004; Takahashi et al., 2015).6

The miRNAs are small RNA molecules, approximately 21 bases long,7

which regulate gene expression in animal and plant cells through post-8

transcriptional control (Bartel, 2004). Given their proven role in promoting9

or inhibiting genes, the discovery of more miRNAs is of high interest10

today. Up to date, there are 38,589 miRNAs in miRBase v221. Small RNA11

deep sequencing datasets have been used in order to support their validity.12

The read mapping patterns provided strong support for between 20% to13

1 http://www.mirbase.org/

65% (depending on the species) microRNA annotations (Kozomara et al., 14

2019). It is expected that the number of miRNAs continues growing. In 15

fact, it has been increasing with every new release of miRBase: in v19 16

there were 25,141 and 30,582 in v21. 17

In a genome, the miRNAs are stored inside precursors that allow 18

their recognition (Bartel, 2004). Precursors of miRNAs (pre-miRNAs) 19

are molecules of 100 bases long approximately, which have a stem- 20

loop structure. Experimental methods for detecting pre-miRNAs can 21

be performed with different techniques, such as quantitative real-time 22

PCR (qPCR), microarray and deep sequencing. These techniques present 23

some practical difficulties when evaluating a large number of candidates. 24

First, both qPCR and microarray suffer from low specificity and need 25

extensive normalization (Baker, 2010; Dong et al., 2013). In addition, 26

prior knowledge is needed for the design of primers for qPCR and target 27

sequences for microarrays, which does not allow finding novel pre- 28

miRNAs (Pritchard et al., 2012). In the case of deep sequencing, prior 29

knowledge is not necessary but this technique is hampered by the need 30
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of extensive downstream computational analysis (Demirci et al., 2017).31

Due to these technical and practical difficulties in detecting pre-miRNAs,32

computational methods have been playing an increasingly important role33

for their prediction (Li et al., 2010; de ON Lopes et al., 2014).34

Among computational methods, two main prediction strategies can be35

considered: rule-based (RB) and machine learning (ML) based algorithms.36

RB algorithms evaluate measures of each sequence against reference37

values obtained from known pre-miRNAs. Two examples of RB tools38

are (Mathelier and Carbone, 2010; Friedländer et al., 2011). ML based39

algorithms require a training step on features calculated from known pre-40

miRNAs and a negative set. Several RB and ML based tools were revised41

in (Bortolomeazzi et al., 2017). The adjustment of parameters for each42

methods can be done automatically (by grid search or learnt from data) or43

manually. For example, if a given distance is calculated among sequences,44

a threshold must be set. If the prediction method is used with other data45

(for example, a newer version of miRBase), this threshold will have to46

be manually adjusted again. Instead, a threshold (or any other parameter)47

that can be automatically learnt according to data distribution, as in ML,48

could be used with these and with other newer data, without requiring a49

manual readjustment by an expert. A large number of approaches based50

on ML have emerged recently, for example with random forests (Vitsios51

et al., 2017), support vector machines (Tseng et al., 2017), graph based52

semi-supervised learning model (Yones et al., 2018), and deep neural53

architectures (Bugnon et al., 2019). Most of them propose novel ML54

models using a standard feature extraction. Differently, in this work we55

will propose novel features and will test them with standard ML classifiers.56

Many reviews have analysed the advantages of ML tools. For example57

(Chen et al., 2018) reviews 20 miRNA bioinformatics tools published58

before 2018, where 11 out of 20 are ML-based. It concluded that classic59

ML methods, such as support vector machines, are still popularly used in60

the miRNA field, while novel and more advanced deep learning methods61

are beginning to appear. In (Stegmayer et al., 2018), 29 pre-miRNA ML-62

based prediction tools published in the last 10 years are included. (Morgado63

and Johannes, 2017), affirmed that ML models can capture more general64

features that other approaches, which allows them to better detect miRNA65

sequences and precursors, even those with low similarity to the reference66

set. In (Liu, 2017) is analyzed in detail a web-server that can construct a67

very large variety of ML predictors for miRNAs. It is based on the fact68

that ML learning techniques are playing key roles in this field nowadays,69

but they can be cumbersome to build and use. Thus, this web server has70

been proposed to automatically complete the main steps for constructing71

a ML-predictor. A recent study (Demirci et al., 2017) has shown that72

the computational prediction of pre-miRNAs is yet far-away from being73

satisfactory solved.74

In order to find new candidates for pre-miRNA, structural and sequence75

characteristics of hairpins in a genome have to be extracted to train an ML76

classifier (Li et al., 2010; de ON Lopes et al., 2014; Shukla et al., 2017).77

In the literature, many different features sets have been proposed, which78

mostly describe information of the structure of the pre-miRNA inspired by79

the action of Drosha (de ON Lopes et al., 2014). However, although the80

microprocessor can takes a leading role in choosing which RNA precursors81

encode a miRNA, the specificity of the subsequent processes can impose82

additional restrictions on those hairpins that will eventually become mature83

miRNA (Bartel, 2018). In addition, in different studies it has been found84

that the selectivity of the miRNA for the target mRNA is defined by the85

sequence of the corresponding mature miRNA (Friedman et al., 2009;86

Lewis et al., 2005; Brennecke et al., 2005; Bartel, 2009). Specifically,87

the mature miRNA contains two areas of union with the target sequence88

called seed and complementary site (Friedman et al., 2009). Due to the89

importance that the seed has in the sequence function, the mature miRNAs90

can be classified on the basis of the presence of identical seed sequences91

into groups called miRNA families (Lewis et al., 2003). In fact, some92

authors have proposed automatic classifiers for miRNAs families (Zou 93

et al., 2014). Therefore, given that important information is codified in 94

the mature region, the secondary structure of the precursor by itself might 95

not be sufficient to differentiate a true pre-miRNA from other hairpins. 96

Our hypothesis is that the main difficulty in separating both classes is 97

due to the omission of relevant information regarding the mature miRNA 98

sequence in the description (feature extraction process) of the pre-miRNAs. 99

This fact is especially notable in the prediction of novel precursors, where 100

the features are extracted mainly from the sequences structure. A typical 101

example of this kind of standard features (SF) is the triplets representation 102

(Xue et al., 2005), which considers the structural composition of three 103

adjacent nucleotides and the middle base to build a vector with 32 elements. 104

Other examples are the number of internal loops and their length (Yousef 105

et al., 2006), the z-score of the minimum free energy (Hertel and Stadler, 106

2006), the dinucleotide proportion (Batuwita and Palade, 2009), base pair 107

proportion, G+C content in the terminal loop (de ON Lopes et al., 2014), 108

Shannon’s entropy (zQ), base pair propensity (zP) (Ng and Mishra, 2007) 109

and base pair distance (zD) (Ding et al., 2010). Although many features 110

have been proposed, those are mostly based on the secondary structure of 111

pre-miRNA or the relative frequencies of dinucleotides, trinucleotides and 112

motifs in these sequences (de ON Lopes et al., 2014; Yones et al., 2015). 113

These features have been performing quite well on current classifiers 114

(Stegmayer et al., 2018). However, it can be stated that these SF do not 115

allow to represent nor to preserve the information regarding the order in 116

which these triads and motifs are present in the sequence, losing valuable 117

information regarding the coding of the mature miRNA within a sequence 118

itself. 119

In this work, we propose three new features that take particularly into 120

account the order in which the nucleotides are presented in the mature 121

miRNA, which can effectively improve the sequence representation. We 122

will show how these novel features can improve the prediction of novel 123

pre-miRNAs, independently of the classifier. One of the proposed features 124

is based on the Levenshtein distance. The rationale behind it is that 125

candidate sequences to be new miRNAs should be very similar in the 126

region encoding the mature, and Levenshtein distance can measure it 127

in terms of nucleotides editions. This distance has been used in other 128

areas of bioinformatics like sequence alignment, and also to estimate 129

the proximity between sequences (Zytnicki et al., 2008; Lassmann and 130

Sonnhammer, 2005; Billoud et al., 2013). The first algorithm for global 131

alignment was proposed as a modification of the Levenshtein distance 132

(Needleman and Wunsch, 1970), where the problem was formulated in 133

terms of maximizing the similarity between sequences. Subsequently, 134

different approaches appeared such as local and semi-global alignment. 135

The local alignment seeks to align dissimilar sequences that contain small 136

regions of similarity in large contexts (Polyanovsky et al., 2011). The semi- 137

global alignments are used to align short sequences with large sequences, 138

through a global alignment of the first and a local alignment of the second 139

one (Brudno et al., 2003). However, the reason why the Levenshtein 140

distance was chosen in our work is for obtaining a numerical measure to 141

better quantify the distance (and not maximizing the similarity) between 142

two short sequences (mature miRNAs). Therefore, due to the conservation 143

and the evolution of miRNAs (Wheeler et al., 2009), we will show how the 144

chains that codify the mature miRNA of possible pre-miRNA sequences 145

are closer in this space than those that do not encode miRNAs. This way it 146

is possible to calculate, for each candidate sequence, a distance to labeled 147

pre-miRNAs in order to evaluate how close each candidate is to these pre- 148

miRNA samples. Differently from (Mathelier and Carbone, 2010), where 149

the Levenshtein distance is used as a direct calculation of the edition errors 150

with a threshold for eliminating sequences as a first step of the processing, 151

in our work we build a statistic that can estimate the belonging of the 152

candidate sequence to the set of positive class examples. This way, the 153

Levenshtein distance as a feature is more general and applicable to any 154
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species, and can be used by any classifier. The second and third proposed155

features were inspired, from the point of view of the information theory,156

considering the randomness of a sequence that would encode a mature157

miRNA in the hairpin. In addition, it is known that certain mature regions158

have specific motifs that define their functionality and the belonging to159

a specific miRNA family (Bartel, 2018, 2009). In order to quantify this160

fact, we propose a permutation entropy (Bandt and Pompe, 2002) feature161

and a measure of the Lempel-Ziv complexity (Ziv and Lempel, 1978) of162

the sequences. We have measured the performance of these new features163

when used by classical supervised machine learning approaches such as164

Naive Bayes (NB), Random Forest (RF), k-nearest neighbor (KNN) and165

more recent proposals based on deep neural networks (DNN).166

2 Novel features based on complexity measures167

2.1 Levenshtein distance168

During evolution, many miRNAs were mostly preserved among different169

species, sometimes suffering modifications that resulted in new miRNAs.170

Despite these modifications over time, the preservation of specific171

sequences such as the seeds of mature miRNAs has been studied, defining172

functionality as well as the belonging to a specific family (Bartel, 2018).173

This leads us to believe that the sequences that can be candidates to new174

pre-miRNAs should be very similar in the region encoding a mature. In175

other words, as a result of evolution, one would expect to have a small176

nucleotide edit distance in those sequences that can effectively encode177

miRNAs.178

The Levenshtein distance, L, also known as edit distance between179

strings, is defined as the minimum number of operations (insertions,180

deletions or substitutions) required to transform one string into another one181

(Levenshtein, 1966). This distance between two strings x and y, of lengths182

|x| and |y|, can be calculated according to Algorithm 1. The algorithm183

begins verifying that both chains have a length greater than zero (line 1).184

If either of the two does not satisfy the condition, the algorithm returns185

the length of the other chain (line 2), that is, the number of insertions186

necessary to build it from an empty chain. If both chains satisfy the previous187

condition, a matrix D of |x| + 1 rows and |y| + 1 columns is created where188

the first row is initialized with values from 0 to |x|, and the first column189

from 0 to |y| (lines 4 and 5). Then for each element di,j in the matrix D, it is190

verified if xi is equal to yj . If this equality is satisfied, no editing operation191

is required. Otherwise, since one string chain can be obtained in different192

ways from the other one, we want to find the strings that require the fewest193

editing operations in relation to the other one(that is, the minimum edit194

distance between them). For this purpose, the minimum value of the three195

possible string operations is obtained in line 9, where the di−1,j + 1,196

di,j−1+1 and di−1,j−1+c corresponding to the operations of insertion,197

deletion and substitution, respectively. The variable c corresponds to a198

substitution cost. It is calculated in line 8, where δ(xi, yj) is the Dirac199

delta. The cost c is equal to 0 when both characters are equal, and 1200

otherwise. It must be noted that for insertion and deletion, cost is always201

1. Finally, the value found in last element of D, d|x|,|y|, is assigned as202

the Levenshtein distance between the analyzed chains (line 10). Since this203

measure adds insertion steps when two chains have different lengths, it is204

necessary to define a way to be able to compare the distances between pairs205

of candidates, regardless their individual lengths are different. That is why206

in line 10 each distance is adjusted by subtracting the absolute difference207

of the lengths of the strings under analysis.208

In order to be able to calculate L as a feature for each hairpin sequence,209

and since L is a distance between two elements, it is necessary to have a210

reference set for comparison. Let be A the set with the miRNA matures211

ak . Let a` an element of A for which we wants to obtain the L feature.212

Algorithm 1: Levenshtein distance
Input : x , y RNA sequence strings
Output: L Levenshtein distance

1 if |x||y| = 0 then
2 L← max{|x|, |y|}
3 else
4 di,0 ← i ∀i
5 d0,j ← j ∀j
6 for i← 1 to |x| do
7 for j ← 1 to |y| do
8 c← 1− δ(xi, yj)
9 di,j ← min {di−1,j + 1, di,j−1 + 1, di−1,j−1 + c}

10 L←− d|x|,|y| − ||x| − |y||
11 return L

Then, the median of the distance of a` to all the other elements of the set 213

can be as feature of a`, that is 214

LAra` (a`) = med∀k 6=`{ak, a`}, (1)

where A r a` is the set A without the element a`. Then, each candidate 215

can have its mature coding in different regions (5p or 3p), it is necessary 216

to extract two chains a5p` and a3p` . Thus, two L measures for each a` 217

are obtained and the maximum edit value between both LAra` (a
5p
` ) and 218

LAra` (a
3p
` ) is selected as the final L(a`). That is, the L feature is not 219

based on the distance to the primary mature strand alone, but also to its 220

corresponding complementary star strand as well. When the distance with 221

respect to both strands is calculated, selecting afterwards the maximum, 222

both strands must comply with a certain minimum distance to the known 223

miRNAs so that the L feature evidences a miRNA. That is to say, this 224

way, none of the two strands has an excessive distance to the known pre- 225

miRNAs. 226

2.2 Permutation entropy 227

The section in the hairpin that encodes the mature miRNA contains specific 228

patterns of the nucleotides order in its seed and in its complementary 229

region (Friedman et al., 2009; Lewis et al., 2005; Bartel, 2009). Thus, it 230

can be expected that pre-miRNAs have less randomness in that section 231

than any other sequences. Therefore, a measure capable of quantifying 232

such randomness in sequence patterns could be useful to detect the true 233

pre-miRNAs. 234

The Shannon entropy is widely used to measure the randomness of a 235

sequence: the more random, the larger the entropy (Shannon, 2001). The 236

drawback of this approach when analyzing miRNA sequences is that the 237

information of the internal order of the nucleotides is lost when calculating 238

the relative frequencies. To solve this, Bandt and Pompe in (Bandt and 239

Pompe, 2002) proposed a new coding based on permutation patterns in 240

the sequence, where the entropy is estimated from the relative frequencies 241

of these patterns. The measure was called permutation entropy (PE). In 242

this case, the probability distribution of x was replaced by the relative 243

frequencies pπ of all possible patterns π that can be found within x. 244

When working with PE, it is necessary to previously choose the length 245

of the patterns to be permuted. This parameter is called order N . Thus, 246

defined the order, N ! patterns π of length N are obtained. For example, 247

selecting N = 3, then 6 possible patterns are possible: (1,2,3) (1,3,2) 248

(2,1,3) (3,2,1) (3,1,2) (2,3,1). If the frequencies of these patterns are 249

calculated in x, then the corresponding PE can be estimated as 250

PEN (x) = −
N !∑
i=1

pπi · log2(pπi ), (2)
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When N is too small, relevant information from the system dynamics251

cannot be captured. On the other hand, if N is very large, the sequence252

will require a longer length in order to obtain a good estimation of the253

probability of each pattern. Therefore, as a practical rule (Bandt and254

Pompe, 2002),N must be selected in such a way thatN !� |x|. In the case255

of RNA sequences, they are encoded in an alphabet of 4 nucleotides that can256

form different combinations. In order to analyze as many combinations as257

possible, and due to the fact that the mature sequences have an approximate258

length of 25 nt, N should be just 2 or 3.259

2.3 Lempel-ziv complexity260

When observing the specificity of the mature sequence with respect to its261

corresponding target mRNA, from an information theory point of view,262

there must be syntactic rules that avoid any random mutation to modify263

their function. In other words, the coding of a mature sequence should264

be contained in a ’dictionary’, so that more complex combinations of265

nucleotides are constructed from simpler combinations. Since the sequence266

of a mature must be encoded only by specific ’words’, it is expected for267

those candidates that encode miRNA to have a smaller dictionary than268

those candidates that do not. Therefore, it could be very useful to have a269

measure to quantify this complexity in a sequence of nucleotides.270

The Lempel-Ziv (LZ) algorithm allows the calculation of such271

complexity in a finite sequence based on the analysis of its "production272

process" (Lempel and Ziv, 1976). Let a be a RNA sequence, which is273

composed of the 4 nucleotides. We define a(i,j) as a subsequence of a that is274

composed of the elements that are between the indices i and j. We say that a275

is reproducible from a(1, j), if a(j+1, |a|) is a sub-word of a that is contained276

in a(1, j). Then, we say that a is producible from a(1, j), if we add a new277

element at the end of the sequence a that cannot be obtained by reproducing278

a(1, j). In other words, a chain a can be obtained from the extension of279

smaller chains by two processes: reproduction (when the extension is done280

by copying a substring of the smallest chain) or production (when the281

extension is done by a new substring that is not contained in the initial282

chain). For example, given the sequence ACACCA, we can obtain the283

dictionary A | C | AC | CA. Then, the sequence ACACCACAA is obtained284

by production when adding a new substring CAA that is not contained285

in the dictionary. However, the chain ACACCAAC is obtained from the286

original sequence ACACCA by reproduction of AC element.287

If we concatenate all the processes by which the chain a can be formed,288

the history of its construction H(a), is obtained. With this history, we289

can measure the complexity of such construction as the number of steps290

necessary to generate it. In addition, since it is possible to obtain a chain291

from another one in different ways, we are interested in finding the history292

that has the minimum necessary number of steps. If we consider each step293

of the process as reproduction or production, then a can be analyzed as a294

process of z steps H(a) = H1(a)H2(a)...Hz(a) with h0 ≡ 0.295

Then, let |H(a)| be the number of steps in H(a). The Lempel-Ziv296

complexity of a sequence a is thus defined as lz(a) = min{|H(a)|},297

regarding all the histories of a. Then, to obtain a measure that is298

independent of the length of a,299

LZ(a) =
lz(a) log4 |a|

|a|
, (3)

where 4 in the base of the logarithm represents the number of nucleotides.300

3 Materials, measures and experimental setup301

3.1 Datasets302

For this study we have created a number of datasets of varying ratios303

of class imbalance, testing pre-miRNA predictors with and without304

the proposed new features. We have used an already available public 305

dataset (Gudyś et al., 2013), which provides negative and positive 306

samples of all known pre-miRNAs in miRBase (Kozomara and Griffiths- 307

Jones, 2010) for Homo sapiens (1,406 positives and 81,228 negatives). 308

The standard features are those used in the mostly cited works (see details 309

in the Supplementary Material) (Stegmayer et al., 2018; Jiang et al., 2007; 310

Gudyś et al., 2013; Batuwita and Palade, 2009). The varying ratios of 311

class imbalance allows to evaluate the robustness of the new features in 312

situations closer to those found in a real genome, where the number of 313

positive miRNAs is very low with respect to the number of hairpins without 314

miRNA in the rest of a complete genome. For this purpose, datasets were 315

generated by random sampling from 1:500 (1 positive in 500 negatives) to 316

a very high imbalance 1:10,000 (1 positive in 10,000 negatives). 317

3.2 Performance measures 318

For performance evaluation, the following standard measures have been 319

used 320

Recall s+ =
TP

TP + FN
, Precision p =

TP

TP + FP
, 321

Specificity s− =
TN

TN + FP
, F-measure F1 = 2

s+ p

p+ s−
, 322

Matthew correlation coefficient 323

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
, 324

Kappa coefficient 325

κ =
a− ac
1− ac

, 326

where TP, TN, FP and FN are true positives, true negatives, false 327

positives and false negatives, respectively; N is the total number of 328

observations; a = (TP + TN)/N is the standard accuracy and ac is 329

the accuracy by chance, that is, the one provided by a classifier assigning 330

randomly a positive or negative label to each sample. 331

The true positives rate is measured with s+, while the true negatives 332

rate is measured with s−. The precision p is key to evaluate the 333

performance of a classifier in the context of large imbalances due to the 334

impact of false positives. Although only a small fraction of the negatives are 335

misclassified, it becomes a large number in comparison to the number of 336

positives. This detail is fundamental when a realistic scenario is considered, 337

where biologists need only a small set of candidates. Thus,F1 becomes the 338

best measure to compare classification methods in large class imbalances, 339

combining s+ and p through the harmonic mean. Furthermore, we used 340

two more combined measures, MCC and κ, which are also used for 341

imbalanced datasets. 342

3.3 Experimental setup 343

To calculate the features, the secondary structure of all sequences (positives 344

and negatives) was predicted with RNAfold (Lorenz et al., 2011), with 345

37◦C and the remaining parameters by default. After that, the 5p and 346

3p chains were extracted with 40 nt length from the terminal loop. In 347

this way, the specific position of the mature miRNA within the chain is not 348

required. Thus, it is possible to calculate the feature without any additional 349

information for unknown hairpins. This is important because different iso- 350

miRs of the same chain can be generated depending on the position of the 351

cut (Bartel, 2018). 352

The performance in each experiment is reported as the average value 353

of 8 folds for the imbalances from 1:500 to 1:1,000, and 4 folds for 354

the imbalances from 1:1,500 to 1:10,000, using the test partition only. 355
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This difference in the number of folds selected for each case is due to356

the decrease in the number of positives when the imbalance increases.357

To assess whether there is a statistically significant difference in the358

performance of the proposed sets of features, the Friedman test was359

performed for theF1 measure with a significance level ofα= 0.01. Finally,360

to evaluate which features have statistically different performances, the361

Nemenyi post-hoc test was used (Demšar, 2006).362

The LD feature must be calculated taking into account that the363

reference set (the positive pre-miRNAs) changes with each training364

partition. Therefore, only the mature miRNAs found in each training365

set A of each corresponding fold are used, thus avoiding introducing366

a-priori information from the corresponding test set. For the training367

sequences, the distance of each training sample a` ∈ A is calculated368

as LAra` (a`) = max{LAra` (a
5p
` ), LAra` (a

3p
` )}. In the case of the369

test samples t`, all the sequences in the train set can be used and the feature370

is calculated as LA(t`) = max{LA(t5p` ), LA(t
3p
` )}.371

For the PE calculation, we selected N = 2 because this value372

showed the best performance in preliminary tests. We codified each373

nucleotide A, C, G, U with an integer from 1 to 4 according to its relative374

frequencies in the sequences. To combine the information from both chains375

3p and 5p, we calculated PE for each one and selected the smallest376

one. That is, the PE of order 2 of each test candidate t is calculated as377

PE2(t) = min{PE2(t5p), PE2(t3p)}. In the same way the LZ of each378

test candidate t was calculated as LZ(t) = min{LZ(t5p), LZ(t3p)}.379

These new features were tested with Naive Bayes (NB), Random380

Forest (RF), k-nearest neighbor (KNN) and Deep Neural Network (DNN)381

classifiers. These classifiers have been chosen because they have provided382

the best performances in a very recent review study on pre-miRNA383

prediction approaches (Stegmayer et al., 2018).384

NB classifiers are a family of probabilistic classifiers based on applying385

Bayes' theorem (Webb, 2002) with strong assumptions of independence386

between the features. It calculates the probability that a given example387

belongs to a certain class, under the assumption that the features are388

conditionally independent given the class. A NB classifier can be seen as a389

probability function that assigns, to an unknown input z, a class label y(z),390

which is proportional to the product of the prior p(yj) and the conditional391

probability p(zj |yj). Gaussian distributions were used to train this model392

in our experiments. RF is an ensemble of decision trees (Breiman, 2001).393

A decision tree classifier is composed by a number of nodes starting from394

a root node. At each node, the training set is split into two non overlapping395

sets: for a selected feature, a threshold is chosen such that the sample is396

assigned to some set (Breiman, 2001). The tree is grown until a maximum397

depth. For the prediction of a new case, it is pushed down the tree and398

assigned the label of a terminal node. To avoid overfitting, bootstrap-399

aggregated (bagged) is used by combining the results of many trees. The400

final decision for an unknown input vector is made by taking the majority401

vote of the trees in the ensemble. We used 100 trees for all cases.402

KNN is a method that stores all the training examples as the classification403

model, without building a parametric model. All computation occurs at404

testing time (without training). It does not fit a model to the data. KNN405

just looks for the k nearest neighbors in all the training dataset at testing406

time, and classifies according to the majority class of the neighbors (Webb,407

2002). Therefore, the only parameter that needs to be set is the number of408

neighbors k. Euclidean distance was used with k = 1 for imbalances ratio409

less than 1:1,500 and k = 3 for the other ones.410

A DNN can be built from several feedforward layers of nonlinear411

neurons. Layers that are commonly used in deep learning include latent412

variables organized layer-wise in deep generative models such as the413

restricted Boltzmann machines (RBM) (Fischer and Igel, 2012). After414

the unsupervised stage to train each RBM layer, a supervised training is415

applied to the full network. Therefore, this model uses a hybrid learning416

approach. In this work, we used a network with 3 hidden layers and an417

output layer of 2 neurons. For imbalance of 1:500: 256, 128 and 16 neurons 418

were used in each layer. For the second imbalance, 1:1,000: 256, 128, and 419

128 neurons were used in each layer. For the other cases: 256, 256, and 420

64 neurons were used for each layer. In all cases, the network was trained 421

with cross entropy function and a batch size of 16. The optimization of 422

these hyperparameter was done following (Stegmayer et al., 2018). 423

4 Results and discussion 424

4.1 Classifiers and measures 425

Tables 1 to 4 present the results for each proposed new feature and the 426

standard features (SF), for NB, RF, KNN and DNN classifiers, respectively. 427

In each row, the performance of each classifier on a given imbalance, for all 428

features, is reported according toMCC, κ and F1. The best performance 429

for each imbalance ratio and each measure is shown in bold. 430

Table 1 shows that, for NB with LD versus SF, the performance measures 431

reflect consistently improvements for all imbalances. In particular, when 432

LD are used, this classifier obtained the best rates in all imbalance 433

cases. For the case where PE is used, improvements with respect 434

to SF are found for all measures except for the imbalances of 1:2,000 and 435

1:4,000, where the performance remains the same. In the case of LZ, 436

the same behavior is observed as in PE. In Table 2, when analyzing 437

RF performance with the new features, all three performance measures 438

show consistent results, that is, they improve the classifier performance 439

in relation to SF alone. From 1:8,000 and on, all measures show that this 440

classifier is highly affected by the imbalance. From the analysis of this 441

table in a general way, it can be observed that the best results for each 442

imbalance are distributed among the three features, but always exceeding 443

SF in all cases and measures. 444

Table 3 shows KNN with LD versus SF. It can be seen here, again, that there 445

is an improvement in performance when incorporating LD for imbalances 446

less than 1:8,000. The only exception is for the imbalance of 1:4,000, where 447

only F1 shows an improvement in the classifier performance, while the 448

other measures show the same result than SF alone. The other two features 449

improve SF but only slightly and in some cases. At the highest imbalance 450

point, KNN has an extremely poor performance, which is reflected by all 451

measures. In Table 4, when analyzing the performance of DNN with LD 452

versus SF, a significant improvement is observed in all the three measures 453

and for all imbalances when the new LD feature is added to SF. For the 454

case PE versus SF, it is observed that MCC and κ show improvements 455

for the imbalances larger than 1:6,000. With F1 the same improvement is 456

found for all cases. 457

Finally, after a comprehensive analysis of all four tables in this section, 458

it can be stated that, overall, improvements can be observed by all 459

performance measures, consistently, and independently of the classifier 460

used. It can be seen that RF and KNN show values equal to zero (orMCC 461

of -1.0) for the largest imbalances. This is due to the bias generated by the 462

a-priori probabilities of the classes, which causes the classifier to label 463

the positive cases as part of the majority class (negative class). It is also 464

observed that DNN achieved the highest performances for all imbalances 465

and all features proposed, furthermore showing that these improvements 466

are equally reflected by the three performance measures reported . For this 467

reason, in the rest of this study, only this classifier will be used for the 468

detailed analysis of the behavior of the proposed features. In addition, due 469

to the fact that the three measures report a similar behavior, F1 will be 470

used from now on. 471

4.2 Detailed performance of novel features 472

Figure 1 shows a detailed analysis of the classification results for each of 473

the new proposed features and SF, with DNN as classifier. The horizontal 474
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Fig. 1. Results of deep neural networks (DNN) with standard features (SF), Levenshtein distance (LD), permutation entropy (PE) and Lempel-Ziv (LZ). a) Sensibility, s+; b) Precision, p;
c) F1 score.

axis shows the imbalance ratio, while the vertical axis shows s+, p and475

F1, in Figures 1a, 1b and 1c, respectively. For more detailed information476

regarding the scores see Tables S1 to S4 (Supplementary Material). Since477

s− has shown to be very close to 100% in all imbalances and for all478

features, it has not been included in the figure. This has happened because479

due to the high class imbalance, the negative class is the majority one and480

the easiest to detect, independently of the features employed.481

Figure 1 clearly shows how the DNN classifier is capable of maintaining482

performance at increasing imbalances, and even increasing both s+483

(Figure 1a) and p (Figure 1b) when the new LD feature is used. This is484

a remarkable result, which has a direct impact in the impressive good485

performance of DNN with LD in F1. In Figure 1c, when analyzing486

the performance of DNN with SF versus LD, it is observed that F1 is487

significantly higher for all the imbalances when the new LD feature is488

used. For example, it can be seen that for the imbalances between 1:500489

and 1:10,000, F1 with SF goes down from almost 70% to around 20%.490

In this same imbalance range, however, DNN with LD goes up to almost491

80%. It can also be noticed that the precision of the classifier increases492

very much with the incorporation of LD up to a very high level (higher493

than 90%) at the highest imbalance here studied. This is a very important494

result in practical terms, especially for imbalances closer to real cases495

where genome-wide data is used, because it assures to reduce remarkably496

the amount of false positives. Due to the fact that, in general terms, s+497

is also improved when LD is used, the F1 increases in all cases as the498

imbalance increases. This is very interesting, since the ability to avoid499

false positives seems to be robust to the imbalance and the size of the500

positive set, without thereby influencing the detection of positives cases.501

When analyzing all the figures in a global way, an improvement of LD 502

with respect to SF is observed for all the measures, which presents a clear 503

trend to increase as the imbalance increases. The other features have more 504

variable performance. In summary, it can be affirmed that a very important 505

improvement in performance is obtained when using LD in the feature set, 506

even at the highest imbalance. 507

An interesting point to discuss here is why LD shows such a 508

robust behavior to imbalance. Generally, the algorithms for pre-miRNA 509

prediction use public databases for training, which generates a bias towards 510

previously known pre-miRNAs. Given that most of them have a stem- 511

loop structure, and most of the features are based on that structure, with 512

these standard features it is difficult to recognize possible new miRNAs 513

that differ from the canonical ones. However, the inclusion of a sequence 514

feature such as LD, calculated from the mature miRNA, is disruptive in this 515

sense because it allows to take into account different information from the 516

candidates, not related nor biased towards the structure alone. Thus, in a 517

different space, generated by the novel features, the distances are different 518

and the sequences that were not close according to standard features can 519

be near now in the new space generated with the information of the mature 520

miRNA. A second argument is that LD is not calculated only with the 521

information of each candidate, but it is a distance of each sequence with 522

respect to the whole reference set. A third point of view is that it can be said 523

that this feature could be capable of obtaining a large robustness in front of 524

candidates sequences that may have a more recent structure. This would 525

be due to the incorporation of mature information that is complementary to 526

the structure of each candidate. Thus, it could be possible to find new pre- 527

miRNAs that differ from the canonical pre-miRNAs. One last interesting 528
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Table 1. Naive Bayes classification results for standard features (SF), Levenshtein distance (LD), permutation
entropy (PE) and Lempel-Ziv (LZ). Results reported with Matthew correlation coefficient (MCC), Kappa
coefficient (κ) and F1 score.

Imbalance SF SF+LD SF+PE SF+LZ
ratio MCC κ F1 MCC κ F1 MCC κ F1 MCC κ F1

1:500 0.314 0.197 0.200 0.324 0.207 0.210 0.315 0.198 0.201 0.317 0.199 0.202
1:1,000 0.223 0.107 0.111 0.234 0.115 0.119 0.227 0.109 0.113 0.224 0.108 0.111
1:2,000 0.180 0.066 0.067 0.184 0.069 0.071 0.179 0.065 0.067 0.179 0.065 0.067
1:4,000 0.166 0.056 0.058 0.180 0.066 0.067 0.166 0.056 0.058 0.167 0.057 0.058
1:6,000 0.142 0.040 0.044 0.164 0.052 0.057 0.146 0.042 0.046 0.143 0.040 0.044
1:8,000 0.143 0.040 0.041 0.178 0.061 0.063 0.145 0.041 0.043 0.146 0.042 0.044
1:10,000 0.130 0.038 0.041 0.153 0.052 0.061 0.134 0.040 0.043 0.134 0.040 0.042

Table 2. Random Forest classification results for standard features (SF), Levenshtein distance (LD), permutation
entropy (PE) and Lempel-Ziv (LZ). Results reported with Matthew correlation coefficient (MCC), Kappa
coefficient (κ) and F1 score.

Imbalance SF SF+LD SF+PE SF+LZ
ratio MCC κ F1 MCC κ F1 MCC κ F1 MCC κ F1

1:500 0.650 0.630 0.633 0.664 0.646 0.646 0.664 0.646 0.646 0.682 0.666 0.654
1:1,000 0.602 0.532 0.510 0.612 0.545 0.526 0.498 0.456 0.453 0.591 0.518 0.492
1:2,000 0.418 0.298 0.279 0.500 0.400 0.372 0.447 0.333 0.311 0.500 0.400 0.380
1:4,000 0.447 0.333 0.266 0.387 0.261 0.208 0.500 0.400 0.339 0.387 0.261 0.194
1:6,000 -1.000 0.000 0.000 0.289 0.154 0.125 -1.000 0.000 0.000 -1.000 0.000 0.000
1:8,000 -1.000 0.000 0.000 -1.000 0.000 0.000 -1.000 0.000 0.000 -1.000 0.000 0.000
1:10,000 -1.000 0.000 0.000 -1.000 0.000 0.000 -1.000 0.000 0.000 -1.000 0.000 0.000

Table 3. K-nearest neigbor classification results for standard features (SF), Levenshtein distance (LD), permutation
entropy (PE) and Lempel-Ziv (LZ). Results reported with Matthew correlation coefficient (MCC), Kappa
coefficient (κ) and F1 score.

Imbalance SF SF+LD SF+PE SF+LZ
ratio MCC κ F1 MCC κ F1 MCC κ F1 MCC κ F1

1:500 0.531 0.530 0.527 0.568 0.568 0.574 0.531 0.530 0.531 0.531 0.530 0.531
1:1,000 0.421 0.421 0.411 0.441 0.441 0.447 0.421 0.421 0.414 0.409 0.409 0.419
1:2,000 0.399 0.373 0.383 0.494 0.476 0.478 0.372 0.345 0.356 0.448 0.426 0.414
1:4,000 0.592 0.518 0.451 0.592 0.518 0.476 0.404 0.400 0.442 0.592 0.518 0.451
1:6,000 0.408 0.286 0.250 0.577 0.500 0.367 0.408 0.286 0.225 0.408 0.286 0.225
1:8,000 0.354 0.222 0.167 0.354 0.222 0.167 0.354 0.222 0.167 0.354 0.222 0.167
1:10,000 -1.000 0.000 0.000 -1.000 0.000 0.000 -1.000 0.000 0.000 -1.000 0.000 0.000

Table 4. Deep neural networks classification results for standard features (SF), Levenshtein distance (LD),
permutation entropy (PE) and Lempel-Ziv (LZ). Results reported with Matthew correlation coefficient (MCC),
Kappa coefficient (κ) and F1 score.

Imbalance SF SF+LD SF+PE SF+LZ
ratio MCC κ F1 MCC κ F1 MCC κ F1 MCC κ F1

1:500 0.704 0.702 0.695 0.725 0.724 0.714 0.697 0.697 0.707 0.704 0.702 0.693
1:1,000 0.499 0.492 0.488 0.544 0.508 0.493 0.472 0.451 0.453 0.483 0.464 0.461
1:2,000 0.508 0.506 0.496 0.617 0.617 0.622 0.506 0.490 0.548 0.495 0.494 0.483
1:4,000 0.564 0.564 0.603 0.699 0.698 0.708 0.600 0.600 0.611 0.699 0.698 0.648
1:6,000 0.400 0.400 0.293 0.764 0.737 0.579 0.333 0.333 0.268 0.463 0.461 0.381
1:8,000 0.320 0.316 0.325 0.935 0.933 0.775 0.408 0.400 0.274 0.408 0.400 0.325
1:10,000 0.320 0.316 0.278 0.866 0.857 0.783 0.612 0.545 0.392 0.612 0.545 0.433
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point to discuss is whether LD results can be biased towards larger miRNAs529

classes or families. Since in Eq. (1) LD is calculated as a statistic of the530

distances to each mature miRNAs of the training set, the choice of this531

statistic was not trivial. Firstly, the minimum has been chosen in order532

to avoid a possible bias towards the most numerous families. However,533

the results obtained showed a wide overlap of both classes, because the534

minimum considers only the most similar sequence. In contrast, the median535

is a more informative statistic because it uses the complete training set of536

known miRNAs. Thus, class distributions were shown to be more separated537

(see Figure S1 in the Supplementary Material).538

For DNN with PE it is observed that F1 is being improved in539

approximately a 10%, only at the largest imbalance here analyzed, where540

F1 is almost 30% with SF, and almost 40% when PE is also used. The541

most important and remarkable improvement is observed in p at 1:10,000,542

where from around 30% it goes up to more than 45%. This suggests543

that this feature can effectively reduce the false positives, achieving an544

improvement of precision in very large imbalanced problems. In summary,545

it can be stated that PE can only improve the performance of DNNs just546

for highly imbalanced cases.547

In the case of LZ, when analyzing the performance of DNN with SF,548

versus DNN with the incorporation of LZ, it is observed thatF1 is superior549

for the largest imbalance. It can also be seen that the improvement of F1550

is due to by a slightly improvement of p and s+. That is, LZ can probably551

serve to avoid false positives, especially when a negative class is extremely552

large with respect to the positive class. It can be stated, in summary, that553

LZ can have the capacity to improve the performance of a DNN for high554

imbalances, mainly thanks to the improvement of p.555

4.3 Global performance of novel features556

Table 5 shows the results with different combinations of the proposed557

features for DNN. In each row F1 can be observed for the different sets558

of features, for each imbalance. It can be seen that LD improves the559

performance of the classifier in all cases, even for very high imbalances560

(1:10,000). Instead, LZ and PE individually do not improve the DNN561

performance. F1 in those cases remains the same or quite similar to the562

SF case. Observing the different combinations of features for DNN, it can563

be noticed that F1 improves for all cases in LD+PE with respect to SF. In564

addition, for the case of 1:2,000, 1:4,000 and 1:6,000, LD+PE combined565

achieve a larger performance than when used separately. For LD+LZ,566

F1 improves in all cases with respect to SF (except for 1:1,000, where567

it remains almost the same). Furthermore, for the cases of 1:4,000 and568

1:8,000, LD+LZ overcome the performance of the features used separately.569

In the case of PE+LZ, it is observed that F1 mostly remains the same, or570

improves only slightly in some cases. Finally, analyzing the behavior of the571

combination of all the features together, it can be stated that F1 improved572

in all cases.573

Table 5 shows, in a more global way, two key and complementary results.574

In the first place, that LD is the feature that has the best individual575

performance. Secondly, although the features PE and LZ individually576

improve the results for DNN classifier, their contributions have more577

impact when combined. For this reason, it can be said that the novel578

features presented in this work provide complementary information.579

In order to evaluate the statistical significance of the results, the Friedman580

test forF1 was performed, resulting in a p-value of 2.5748E-05 (α = 0.01),581

which indicates that there is a statistically significant difference between582

the scores. Then, the Nemenyi post-hoc test for F1 was performed. This583

statistical analysis clearly indicates that the results obtained for LD and the584

combination LD+PE+LZ are the best features, in comparison to SF, LZ and585

PE alone. The post-hoc test showed that there are no statistically significant586

difference between LD and LD+PE+LZ, as it also showed that there are587

no statistically significant difference between LZ, PE and SF. Thus, the588

Table 5. F1 results for different combinations of Levenshtein distance (LD),
permutation entropy (PE) and Lempel-Ziv (LZ) with deep neural networks.
Best results in bold for each table panel, individual (left) and combined (right)
features.

IR SF LD PE LZ LD+PE LD+LZ PE+LZ ALL
1:500 69.50 71.44 70.65 69.34 71.39 71.68 68.96 71.50

1:1,000 48.81 49.33 45.33 46.05 49.26 48.71 52.85 53.85
1:2,000 49.55 62.22 54.82 48.29 63.21 57.72 53.33 65.34
1:4,000 60.28 70.78 61.11 64.81 78.28 73.33 64.95 71.89
1:6,000 29.29 57.92 26.79 38.10 61.67 57.92 29.17 56.79
1:8,000 32.50 77.50 27.36 32.50 77.50 85.00 36.67 77.50

1:10,000 27.78 78.33 39.17 43.33 62.50 70.00 40.48 54.17

difference between these two groups of features is statistically significant. 589

Furthermore, due to the fact that there were very few positive samples in the 590

test partitions of the highest imbalances, we have repeated the experiment 591

10 times with different samplings of positives in the case of LD versus SF 592

with DNN for imbalance 1:10,000. A median F1 of 66.67% and 30.95% 593

were obtained, for LD and SF respectively. A Wilcoxon signed-rank test 594

test was applied to these 40 test partitions and a p < 6.2028E-05 was 595

obtained. 596

An interesting point to further discuss is why PE and LZ individually have 597

not shown a robust behavior for increasing imbalances. However, when 598

combined with LD, it has been found that those actually help improving 599

the robustness to imbalance. This behavior suggests that these features 600

can capture useful information from the mature, but due to its short length 601

it is not possible to obtain values discriminative enough, by themselves, 602

separately. However, they are more discriminative when combined with 603

LD, because this feature does not depend on the length of the sequence 604

itself, but on the distance to the whole reference set, as explained before. 605

For this reason, when all the features are combined, a predominance of LD 606

over PE and LZ is observed, although the inclusion of the latter continues 607

to provide some discriminative information. For example, for imbalance 608

1:2,000, the baseline F1 provided by SF is 49.55%, LD improves it up to 609

62.22% but PE and LZ are just slightly better than SF. Thus, the 65.34% 610

of ALL is clearly dominated by LD. On the other hand, the best results 611

of the Levenshtein distance feature can be explained based to the fact that 612

this feature is calculated according to an external/outside set of pre- 613

miRNAs. Instead, permutation entropy and Lempel-Ziv complexity are 614

individual features, calculated with information within each sequence by 615

itself. LD allows having a more accurate measure and representative sense 616

of belonging to the positive class, since LD is a distance to a reference set of 617

miRNAs. From another point of view, this suggests that the mature contains 618

certain syntactic structures that guide its functioning, thus avoiding any 619

random mutation to modify it. Therefore, by combining the information of 620

the median distance of a candidate (LD), together with the information of 621

its randomness (PE) and its complexity (LZ), we are restricting the number 622

of candidate sequences just to the possible combinations of nucleotides that 623

can allow small changes, with a defined complexity. 624

5 Conclusions 625

In the prediction of novel pre-miRNAs a large number of structural 626

features have been proposed in order to improve the efficiency in the 627

separation of the positive and negative classes. However, the detained 628

performance is highly dependent on the imbalance, generating a large 629

number of false positives. In this work, a set of new features based on 630

the sequence information of the mature miRNA was proposed, which 631

improve the performance independently of the classifier, decreasing the 632

number of false positives for high imbalances. The results showed that the 633

incorporation of the proposed measures in the mature miRNA provides a 634
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high discriminative power. Especially, the proposed Levenshtein distance635

has shown to have the best performance for all the imbalances. In636

addition, the proposed features based in permutation entropy and Lempel-637

Ziv complexity showed the best performances in high imbalances when638

combined with Levenshtein distance. The best results of the Levenshtein639

distance can be explained because it is a measure to a reference set640

of miRNAs, which allows measuring more accurately the belonging of641

any sequence to the positive class. This feature has provided very high642

precision to the classifiers evaluated, which is one of the most important643

contributions of our work, because most available algorithms have a644

very large rate of false positives. Moreover, it has shown robustness to645

the imbalance, improving predictions even in large imbalance scenarios.646

In a future work it would be interesting to introduce the probability of647

mutation of each nucleotide as different penalties in the Levenshtein648

distance. Another important conclusion of this study is that, although for all649

classifiers the inclusion of the new features improved their performance,650

the deep neural networks was the best one to relate the structural and651

sequence information of each pre-miRNA.652
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