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Abstract

The obstructive sleep apnea-hypopnea (OSAH) syndrome is a common and fre-
quently undiagnosed sleep disorder. It is characterized by repeated events of partial
(hypopnea) or total (apnea) obstruction of the upper airway while sleeping. To quan-
tify the severity of the pathology, the Apnea Hypopnea Index (AHI) is used. This
index is defined as the average number of apnea and hypopnea events per hour of
sleep. Discriminating between these two types of events is a very challenging task
and in fact most traditional methods fail to do it. A reliable recognition of such
events would not only allow for an accurate estimation of the AHI index, but it
would also provide useful information regarding the severity of the pathology, which
is very important for clinical purposes. In this work we use a method for structured
dictionary learning, which is found to be suitable for automatically differentiating
between apnea and hypopnea using as a unique input blood oxygen saturation sig-
nals. The method is tested for both classification of segments and OSAH screening
on the Sleep Heart Health Study database. For OSAH screening, a receiver oper-
ating characteristic curve analysis shows an average area under the curve of 0.934
and diagnostic sensitivity and specificity of 89.10% and 86.70%, respectively. These
results represent important improvements with respect to all state-of-the-art proce-
dures which where used for comparison purposes. They also provide a solid support
for our conclusion that the method can be used for screening OSAH syndrome more
reliably and conveniently, using only a pulse oximeter.

Keywords: Pulse oximetry, Apnea-hypopnea events, Sleep disorders screening,
Structured dictionary learning, Discriminant measures, Multiclass classification
problems.
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1. Introduction1

Pulse oximetry, being a cheap and non-invasive technique, has become a promis-2

ing supporting tool for the diagnosis of sleep disorders [1, 2, 3]. Sleep disorders3

comprise several types of medical conditions. The most common one of them is the4

Obstructive Sleep Apnea Hypopnea (OSAH) syndrome, which is caused by frequent5

breathing pauses due to partial (hypopnea) or total (apnea) blockage of the upper6

airway during sleeping, which lead to several physiological changes such as blood7

oxygen desaturation [4, 5]. To establish the severity of this pathology, the apnea-8

hypopnea index (AHI) is commonly used. This index is defined as the number of9

apnea-hypopnea events per hour of sleep or record according to whether it refers10

to a complete study or a simplified one, respectively (more on this later). Most11

screening methods do not discriminate between apnea and hypopnea events since it12

is not strictly required for computing the AHI index [2]. However, a reliable recogni-13

tion of individual apnea and hypopnea events would not only allow for an accurate14

estimation of the AHI index, but it would also supply valuable information regard-15

ing the severity of the OSAH syndrome, which is very important for clinical and16

decision-making purposes [6]. Nevertheless, automatically detecting and differenti-17

ating between those two events is a very challenging task, specially when the problem18

is addressed using a unique signal as input, such as the pulse oximetry (SaO2).19

Achieving a good AHI estimation using recordings of just a few signals is a difficult20

problem that requires of precise ad-hoc evaluation tools for the clinical screening of21

OSAH syndrome [7]. In the past decade much interest in the development of portable22

devices using at most two sensors for OSAH screening has been observed (e.g. [8, 9,23

10, 11]). In particular, the authors in [9] present a detailed review of existing methods24

that use only pulse oximetry signals for automatically classifying patients having25

OSAH syndrome. It is important to highlight however that all methods mentioned26

in that review address only the detection of the pathology and do not recognize nor27

classify small segments of oximetry signals as normal breathing, apnea or hypopnea28

events. In that way, up to our knowledge, the problem of individually classifying29

abnormal respiratory events using only SaO2 signals in a multiclass scenario has30

never been explored before. Therefore, properly identifying hypopneas which were31

not detected by other approaches may add value in the diagnosis and treatment of32

the patients.33

There are methods for binary classification (existence or nonexistence of abnormal34

respiratory events) of SaO2 signals from which the AHI index can be estimated35

[2, 3, 12, 13]. In particular, the articles [12] and [13] make use of the so called Oxygen36
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Desaturation Index (ODI) defined as the number of times that the SaO2 signal falls 1

below a prescribed percentage of signal saturation regarding a baseline level per hour 2

of study. It is timely to point out however that although the concept of “baseline 3

level” is somewhat intuitive, there is yet no consensus about its formal definition, 4

and different authors have adopted different ones [12, 13]. In [12], for instance, the 5

baseline level was defined as the desaturation mean of the previous minute, while 6

a completely different approach was followed in [13] where it was computed using 7

a moving time average. In [2], the authors present a method for detecting blood 8

oxygen desaturations using specific waves (or modes) coming from empirical mode 9

decompositions of SaO2 signals. In that work, the desaturations are identified by 10

making use of a few thresholds and a set of simple rules which lead to the detection 11

of the sleep apnea-hypopnea syndrome. Finally, in [3], we introduced a different 12

approach based on sparse representations of SaO2 signals. In that work, the AHI 13

index is directly estimated without computing the ODI index, as the average number 14

of abnormal respiratory events per hour of study. 15

All previously mentioned approaches are unable to distinguish between apnea 16

and hypopnea events, which is very important for having a deeper understanding 17

of the underlying pathology and for providing better treatments [14]. Moreover, 18

some of those approaches require of appropriate estimates of the baseline level, and 19

poor approximations of it result in errors in the quantification of the desaturations 20

of the SaO2 signals. Hence, it becomes highly desirable to come up with an au- 21

tomatic multiclass classification method for detecting and distinguishing between 22

normal breathing, apnea and hypopnea events in SaO2 signals. Although some pre- 23

vious articles have tackled this issue, to the best of our knowledge, this is first time 24

that the problem is addressed using only SaO2 signals, which constitutes the main 25

contribution of this work [15, 16]. 26

The organization of this article is as follows. In Section 2, a brief description 27

about abnormal respiratory events during sleep is presented. Dictionary learning 28

methods for sparse representation are introduced in Section 3. Section 4 contains 29

details on all designed experiments. Results and discussions are introduced in Section 30

5 while conclusions are finally presented in Section 6. 31

2. Sleep apnea 32

It is well known that getting enough sleep is extremely important for maintaining 33

both mental and physical health. However, good sleeping very often becomes affected 34

by the presence of sleep-related breathing disorders. Poor sleep quality causes exces- 35

sive daytime sleepiness affecting the productivity and efficiency of people, including 36

3
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their ability to think clearly, react quickly and memorize efficiently, triggering bad1

decisions and highly increasing the risk of having domestic, work and traffic accidents2

[17].3

Polysomnography (PSG) is the reference study for diagnosing OSAH syndrome.4

This study requires of specially conditioned sleep units as well as the simultaneous5

recording of several biomedical signals. However the accessibility to PSG is very lim-6

ited mainly because PSG units are not commonly available and because the studies7

are both lengthy and costly, making the process of obtaining good quality signals ex-8

tremely complicated. In addition, a PSG study requires the attention of specialized9

technicians to ensure continuous time visualization and recording of all the signals10

being acquired. A complete PSG study consists of the simultaneous measuring of11

a minimum of seven physiological signals such as electroencephalography (EEG),12

electrooculography (EOG), electromiography (EMG), electrocardiography (ECG),13

airflow and SaO2. It is important to point out however that the continuous acquisi-14

tion of these signals highly affects the quality of sleep, making it even more difficult15

to achieve an accurate diagnosis. Because all those difficulties, new screening ap-16

proaches are always been developed. An ideal screening method can be considered17

as one that, on one hand leads to precise results, and on the other hand it uses as18

few signals as possible without degrading the quality of sleep [7].19

For the reasons described above, portable systems for assessing OSAH syndrome,20

that can be used outside sleep units, have been developed. In this sense other eval-21

uation procedures exist, such as home PSG, home Respiratory Poligraphy (RP) and22

other simplified procedures, to name a few. Although home PSG has the advantage23

of not requiring of any trained personnel, it still needs the acquisition of at least24

seven respiratory and sleep signals, just like a standard PSG. Nowadays, there is25

a home PSG which allows the classification of the different sleep stages by using a26

single-channel EEG. However, this procedure still requires of several signals whose27

appropriate acquisition affects the quality of sleep. On the other hand, home RP28

studies allow for the evaluation of cardiorespiratory variables without taking into29

account EEG, EOG and EMG signals and therefore they are unable to detect wake-30

fulness and to determine sleep stages [18]. Hence, even though home RP is simpler31

than both standard PSG and home PSG, it still needs the continuous measurement32

of several physiological signals, whose acquisition affects sleep quality. Finally, sim-33

plified procedures make use of only one or two cardiorespiratory variables, such as34

airflow, respiratory movements, heart rate, tracheal sound and SaO2. In particular,35

the SaO2 signal has become a reasonable alternative for OSAH syndrome screening36

and it is the one that will be used in this article [1, 2, 3].37

The severity of OSAH syndrome is classified as normal, mild, moderate or severe38
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Figure 1: A small portion of an airflow signal (top), a wavelet filtered SaO2 signal (middle) and
labels of normal breathing and abnormal respiratory events (apnea and hypopnea) that occur during
sleeping (bottom). Black dashed lines: apnea event (lower) and hypopnea event (higher). Data
obtained from [19].

depending on whether the AHI values fall within the intervals [0, 5), [5, 15), [15, 30), 1

or [30,∞), respectively. It is known that towards the end of each apnea or hypopnea 2

event, a desaturation of the hemoglobin occurs. It is therefore reasonable to think 3

that these deasaturations contain valuable information related the particular events 4

of apnea and hypopnea, which are very often impossible to be recognized and dis- 5

tinguished by the human eye. The top and middle waveforms in Figure 1 show a 6

six-minutes portion of a typical airflow signal and the corresponding filtered SaO2 7

signal, respectively (see Section 4.1) [3]. Black-dashed lines represent the beginning 8

and end of an event (apnea for the lower and hypopnea for the higher dash lines). 9

Also, the labels N (normal breathing), A (apnea) and H (hypopnea) are shown at 10

the bottom. It is important to mention that these labels were introduced by medical 11

experts, after a detailed analysis of all the signals acquired during the PSG study. 12

By observing both the airflow and the SaO2 signals, it can be seen that the time 13

frame between the reduction (or stopping) of airflow and the beginning of oxygen 14

desaturation levels is very variable. The SaO2 signal at the middle of Figure 1 shows 15

two gray-highlighted portions on the left, corresponding to the time intervals where 16

desaturations produced by a hypopnea event (left) and an apnea event (right) occur. 17

As it can be observed, the minimum saturation values and the general morphology 18

5
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Figure 2: A representation of the class distribution after applying a mapping denoted by Sammon
mapping, in its two most relevant attributes obtained from SaO2 signals (estimated taking into
account 200 examples for each class). Data obtained from [19].

of the signal on those two intervals are very similar. Hence, it becomes evident that1

automatic recognition of single apnea and hypopnea events from only SaO2 signals2

is a very challenging classification problem. To further visualize the difficulty of3

this classification problem, a technique for dimensionality reduction called “Sammon4

Mapping” was applied to low-dimensional samples of SaO2 signals [20]. Figure 25

shows projections to two-dimensional attributes of signals for the classes N, H and6

A. It can be observed that the distribution of the different classes in the attributes7

space highly overlap each other. Although the distributions representing both classes8

normal breathing and apnea events seems to be fairly separated, the distribution of9

hypopnea events presents a very high dispersion leading to a great degree of overlap10

with them.11

3. Dictionary Learning for Sparse Representation12

3.1. Basic methods13

The representation of signals based on a dictionary consists of finding appropriate14

linear combinations of atoms in the prescribed dictionary to represent a given set15

of signals. This representation problem can be divided in two sub-problems: an16

inference problem and a learning problem. We proceed to describe each one of them.17

For that, let x ∈ RN be an input signal and let Φ ∈ RN×M (usually M ≥ N) be18

a dictionary whose columns φj ∈ RN , j = 1, 2, · · · ,M , are atoms that we want to19

6
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use for representing x in the form x ∼= Φa =
∑M

j=1 ajφj. Here, and in the sequel, we 1

shall refer to the vector a = [a1 a2 · · · aM ]T ∈ RM as a “representation” of x. 2

The inference problem essentially consists of finding the optimal (in a certain 3

sense) representation a of the given signal x. A sparse solution of this problem is a 4

representation a with just a few non-zero components. If in a given representation a 5

certain coefficient is non-zero, then we shall refer to it as an “active” component. 6

A way of obtaining a sparse representation of the signal x based on the dictionary
Φ consists of solving the following problem:

(P0) a∗
.
= argmin

a∈RM

||a||0, subject to x = Φa,

where ||a||0 denotes the l0 pseudo-norm, defined as the number of non-zero elements 7

of a. 8

Solving (P0) is generally an NP hard problem yielding this approach highly un-
suitable for most applications [21, §1.8]. This is so because in (P0) we are imposing an
exact representation which, in most practical cases, is neither strictly necessary nor
desired. To overcome the computational burden which entails solving problem (P0),
several relaxed versions of it have been considered. One of them consists of allowing
a small representation error while imposing an upper bound on the l0 pseudo-norm,
i.e. solve:

(P q
0 ) a∗

.
= argmin

a∈RM

||x− Φa||2, subject to ||a||0 ≤ q,

where q is a prescribed integer parameter. Several approaches for solving problem 9

(P q
0 ) were proposed [22, 23, 24]. The one most widely used is Orthogonal Matching 10

Pursuit (OMP) which consists of approximating the solution in a greedy way pro- 11

viding a good trade-off between computational cost and representation error [25]. 12

Additionally, the method ensures convergence to the projection of x into the span of 13

the dictionary atoms [24]. 14

The dictionary Φ can be constructed either using a pre-specified group of atoms
(such as those obtained through the Wavelet Packet decomposition) or by means of
data-driven learning approaches. The dictionary learning problem associated to the
data q, M , N ∈ N, M ≥ N and a collection of n signals in RN , x1, · · · ,xn, can be
formally written as:

(DL) [Φ∗, a∗1, · · · , a∗n]
.
= argmin

Φ∈RN×M

ai∈RM,||ai||0≤q,1≤i≤n.

n∑
i=1

||xi − Φai||22

A solution of this problem yields on one hand a dictionary Φ and, on the other hand, 15

representations ai for all the signals x1, · · · ,xn (in terms of such a dictionary) com- 16

plying with the imposed sparsity constraint. Although several methods for solving 17
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(DL) exist, the most widely used is an iterative algorithm called K Singular Value1

Decomposition (KSVD) [26]. This approach consists of two steps: an inference step2

and a dictionary learning step. The OMP algorithm (for example) is used for obtain-3

ing the representation coefficients, which is then followed by a dictionary learning4

step where the atoms are updated one-at-a-time and the representation coefficients5

are adjusted in order to minimize the total representation error.6

3.2. Discriminant dictionaries7

As mention above, a dictionary Φ can be constructed using data-driven learning8

methods aimed exclusively to minimize the total representation error. However, a9

dictionary learned in this way quite often produces representations of signals which10

turn out to be unsatisfactory if the final objective is pattern recognition. This is so be-11

cause, as it is well known, a good representation does not necessarily guarantee good12

classification performance. A way to overcome this flaw consists of incorporating13

available prior information about class membership of the signals into the objective14

function in (DL) [27, 28]. In [27], for example, a discriminant version of the standard15

KSVD method applied to face recognition was presented. In that work, the authors16

included a discriminant term into the objective function of the standard KSVD al-17

gorithm. Results have shown that such a modification constitutes an appropriate18

way to learn dictionaries simultaneously complying with both desired properties:19

low reconstruction error and high recognition rates. In [28], a sparse-constrained20

optimization problem combining the objective function of the classification and the21

representation error of both labeled and unlabeled data, was formulated.22

With the objective of improving classification performance, new approaches based23

on the design of structured dictionaries were recently proposed [29, 30, 31, 32]. A24

structured dictionary can be thought of as a collection of class-specific sub-dictionaries25

which are designed to capture discriminant properties of each class as well as common26

features among all classes in the data. In this direction, an initial approach consists27

of learning one dictionary for each class, then classify by minimizing the represen-28

tation error among all classes [33]. Recently, a method called “Most Discriminative29

Columns Selection” (MDCS), which was shown to be capable of efficiently building30

structured dictionaries in a binary classification scheme, was developed [3]. Figure31

3 shows a schematic representation of the MDCS procedure for a three-class classifi-32

cation problem. In this case the classes are identified as N, A and H. The dictionary33

Φ is learned in an unsupervised way using all training signals for solving problem34

(DL). After that, the representation matrices AN, AA and AH whose columns are35

the corresponding representation vectors, are computed using the three separate sets36

of labeled signals X∗N, X∗A and X∗H, respectively. Next, the atoms of Φ are ranked37
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Figure 3: A schematic representation of the learning process of discriminant structured dictionaries
using the MDCS method.

according to a prescribed measure of discriminability in terms of their role in the 1

sparse representation of the signals for each class (see [34], Section 3.2). Following 2

this ranking procedure, and given a prescribed positive integer I (more on this later), 3

the best I atoms for each class are selected and used for building new class-specific 4

sub-dictionaries ΦN, ΦA and ΦH for classes N, A and H, respectively. The structured 5

dictionary, which we denote by Φ
(I)
D , is finally constructed by stacking side-by-side 6

all sub-dictionaries, i.e. Φ
(I)
D = [ΦN ΦA ΦH]. The parameter I is used to restrict the 7

size of the final dictionary, in the sense that Φ
(I)
D will end up having exactly I × k 8

columns, where k is the number of classes. This restriction intends to improve the 9

generalization capabilities reducing the size of the final feature vectors, what in turn, 10

reduces the computing time required for classification. 11

Along MDCS, a method for discriminant features selection called “Most Discrim- 12

inative Atoms Selection” (MDAS) was proposed [3]. The main difference between 13

both MDCS and MDAS is that in the later no new structured dictionary Φ
(I)
D is built. 14

Instead the original dictionary Φ is preserved and the ranking of the atoms is used 15

only to select the components to be used for classification. It is important to point 16

out that although both MDCS and MDAS were originally proposed for dealing only 17

with binary classification problems, their extension to multiclass problems is straight 18

forward. In what follows, we shall denote by MDCS-BC, MDCS-MC, MDAS-BC and 19

MDAS-MC the binary and multiclass versions of MDCS and MDAS, respectively. 20

Following on the idea behind MDCS, DAS-KSVD can be thought of as its ex- 21

tension to multiclass classification problems. Unlike MDCS, instead of selecting all 22
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Algorithm 1 DAS-KSVD method

1: procedure DAS-KSVD(Xtrn, q, rf , I, c, t)
2: p0(i) = 1/n, for all i
3: for l← 0, I − 1 do
4: [Xlrn, pl+1]← SampleData(Xtrn, t, pl, l)
5: Φ← KSVD(Xlrn, rf , q)
6: Alrn ← OMP(Xlrn,Φ, q)
7: mα∗,β∗ ← DiscMeasure(Alrn, c, q)
8: Φd ← GetAtoms(Φ,mα∗,β∗)

9: Φ
(i)
D ← SaveAtoms(Φd)

10: end for
11: return Φ

(I)
D

12: end procedure

I discriminant atoms simultaneously for both classes, DAS-KSVD iterates the pro-1

cess of choosing only one discriminant atom for each one of the classes at each step.2

Moreover, DAS-KSVD incorporates a re-sampling technique and a signal degradation3

stage that jointly promote diversity in the generation of discriminant atoms at each4

iteration. More precisely, if a certain set of signals is used for learning a dictionary5

at a particular iteration, then the re-sampling technique forces such signals to be less6

likely to be chosen than the remaining ones in the following iterations. On the other7

hand, the signal degradation step is meant to increase robustness and it consists8

of adding an additive zero-mean Gaussian noise (whose magnitude increases propor-9

tionally with the iteration step) to all signals used for learning the dictionary. Hence,10

by promoting diversity in this way, one expects that the resulting learned atoms will11

be capable of highlighting different intrinsic properties of the whole training data.12

For more details on this, we refer the reader to [34]. The steps for constructing the13

dictionary with DAS-KSVD are summarized in Algorithm 1.14

Figure 4 shows a schematic representation of one iteration of DAS-KSVD for15

a three-class classification problem. Observe that before using a method for solv-16

ing (DL), a re-sampling technique is applied. Then, the dictionary Φ is learned in17

an unsupervised way using all learning signals Xlrn. After that, the representation18

matrices AN, AA and AH whose columns are the corresponding representation vec-19

tors, are computed using the three separate sets of learning signals X̂N, X̂A and20

X̂H, respectively. Next, the atoms of Φ are ranked according to an appropriately21

defined multiclass measure of discriminability (details about this measure can be22

found in [34], Section 3.2). After this ranking procedure, only one atom for each23
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Figure 4: A schematic representation of one iteration of the learning process of discriminant struc-
tured dictionaries using the DAS-KSVD method.

class is selected and used for building new class-specific sub-dictionaries ΦN, ΦA and 1

ΦH for classes N, A and H, respectively. The structured dictionary, which is de- 2

noted by Φ
(I)
D , is finally constructed by stacking side-by-side all sub-dictionaries, i.e. 3

Φ
(I)
D = [ΦN ΦA ΦH]. 4

4. Experimental setup 5

The main objective of this article is the comparison of the overall classification 6

performances in the context of OSAH syndrome screening of MDCS, MDAS (both 7

in their binary and multiclass versions) and DAS-KSVD. To achieve that objective, 8

two experiments were carried out. The first one was designed with the final goal of 9

classifying the segments of SaO2 signals in one and only one of the three classes: nor- 10

mal breathing (N), apnea (A) or hypopnea (H). The second experiment was designed 11

to detect the existence or non-existence of the pathology. The whole experimental 12

setup is described below. 13

4.1. Database and signal pre-processing 14

The Sleep Heart Health Study (SHHS) database was originally designed to explore 15

possible correlations between sleep related breathing disorders and cardiovascular 16

11
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diseases [19, 35]. This database consists of several complete PSG studies, each one1

of them containing a group of physiological signals such as EEG, ECG, nasal airflow2

and SaO2. In addition, annotations of sleep stages, arousals and events of apnea and3

hypopnea are provided. The criteria that medical experts adopted for identifying4

apnea and hypopnea events were the following [5]. An apnea event is a complete5

(or almost complete) blockage of the upper airflow for at least ten seconds, usually6

associated with a desaturation in the SaO2 signal or an arousal. A hypopnea event7

is a reduction in airflow by less than a 70% of the baseline level, associated with a8

desaturation in the SaO2 signal or an arousal.9

In this article we make use of the first online version of the database called10

“Sleep Heart Health Study” (SHHS-2)1. This database consists of 995 complete PSG11

studies, 41 of which were discarded due to labeling flaws [3]. With the remaining12

954 studies, we performed k-fold cross validation, with k = 10. For OSAH syndrome13

detection, all performance measures (more on it later) were calculated individually14

(per study) and then averaged for the reported results.15

Mainly due to patient movements, baseline wander and undesired disconnections16

(among many other factors), the original raw SaO2 signals require of an appropriate17

pre-conditioning process. For that, linear interpolation and wavelet filters, as those18

used in a previous work [3], were applied. Figure 1 shows a small portion of a SaO219

signal (top) and its wavelet-filtered version (middle). Here, it is important to point20

out that the wavelet filtering process produces no effective signal loss. For more21

details on applications of such a filtering procedure to real data, we refer the reader22

to [36].23

Signals are segmented into vectors xi ∈ RN of length N = 128 (corresponding24

to 128 seconds of the signal recording) with a 50% overlapping between two consec-25

utive segments. In this process, segments containing artifacts or disconnections are26

discarded. Then, for each fold in the cross validation, a matrix Xtrn ∈ R128×ntrn is27

constructed by stacking side-by-side nN , nA and nH vectors belonging to the classes28

N, A and H, respectively. Clearly, ntrn = nN + nA + nH . Similarly, another matrix29

Xtst ∈ R128×ntst is built using the vectors associated to the testing set.30

4.2. Dictionary learning settings31

For DAS-KSVD, all experiments were performed setting I = 22 (i.e. 22 itera-32

tions). Thus, the final structured dictionary consists of 66 atoms (assuming k = 3).33

For each one of the classes used to learn the full dictionary (by means of KSVD),34

the number of samples was set to t = 9000. Also, several trials were performed35

1https://physionet.org/physiobank/
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in order to obtain adequate values for both parameters τ1 and τ2. In particular, it 1

was found that values of τ1 = 0.5 and τ2 = 0.1 are suitable for this application. In 2

addition, τ2 = 0.1 resulted in the best trade-off between signal degradation and the 3

number of iterations. Finally, for each and every fold in the cross validation, the 4

average value of the optimal pair of parameters (α∗, β∗) was found to be in a circle of 5

radius of 0.1 centered at (0.7, 0.1). All parameters of the KSVD method such as the 6

sparsity constrain q and the redundancy factor of the dictionary rf , were set equal 7

to those used in a previous work [34]. Finally, for both MDCS-MC and MDAS-MC, 8

all parameters were set as for DAS-KSVD. It is important to mention, however, that 9

these two methods make use of a different input data matrix X∗trn which is composed 10

of a balanced set of randomly selected segments from Xtrn. Since nL segments were 11

chosen for each class, the final size of X∗trn was 128× 3nL where nL is the number of 12

segments chosen from each class. 13

4.3. Classification of segments and OSAH screening 14

In order to classify segments of SaO2 signals into the three different classes, a 15

feed-forward Multilayer Perceptron (MLP) neural network was used. In particular 16

the experiments were run using three layers (input, hidden and output). Naturally, 17

input and output layer sizes were set to 150 and 3 corresponding to I × k and k, 18

respectively. Several preliminary trials were performed by varying the number of 19

neurons in the hidden layer between 100 to 1000 with a step of 100 neurons (with 20

tansig activation function) in order to determine an appropriate size. The results 21

indicated that no significant improvement is obtained with sizes above 500. To train 22

this network, conjugate gradient descent was used. For classification purposes, both 23

Mean Squared Error (MSE) and Cross-Entropy cost functions were used, obtaining 24

slightly better results with the latter. Thus, final experiments only use Cross-Entropy 25

cost function. 26

To carry out the first experiment, two balanced sets of 21000 and 4500 samples 27

were randomly selected from Xtrn and used for training and validation purposes, 28

respectively. Also, an additional balanced set of 4500 samples was randomly chosen 29

from Xtst and used for testing purposes. Then, sparse representations of these new 30

data sets in terms of the previously learned dictionary were found and used as input 31

of the classifier. 32

For the detection of OSAH syndrome, it is well known that in a typical PSG 33

study, the recorded signals are provided to medical experts who identify and label 34

apnea and hypopnea events, which are later used for computing the AHI index. 35

In a similar way, in our analysis, each testing study was appropriately filtered and 36

segmented in order to classify its segments as N, A and H, by means of the previously 37
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described process. Then, an estimated AHI (AHIest) was computed by counting the1

total number of segments classified as A or H and dividing it by the duration of the2

study, in hours. This new index was used for OSAH syndrome detection. Finally,3

each study was considered as pathological if the obtained AHIest was greater than a4

certain prescribed detection threshold [37].5

4.4. Performance measures6

To analyze and quantify the ability of the MLP to classify segments of SaO27

signals in a multiclass scenario, a confusion matrix was constructed. The confusion8

matrix is a very useful tool for reporting results in multiclass classification problems9

because it gives a full overview of all relations between the classifier predictions and10

the known (true) labels. Rows and columns of such a matrix refer to known and11

predicted class labels of the dataset, respectively, while its diagonal and off-diagonal12

elements correspond to observations that are correctly and incorrectly classified,13

respectively. This information summarizes the types of errors that occur during14

training, validation and testing. Based on the confusion matrix, the overall accuracy15

as well as other three widely used class-specific measures (sensitivity (Se), specificity16

(Sp) and precision (Pr)) were extracted. In this article, the confusion matrix is17

normalized by dividing each one of the elements in its rows by the total number of18

testing samples that belong to each class.19

To assess the ability of the proposed system in detecting patients suspected of20

suffering from moderate to severe OSAH syndrome, i.e. persons having an AHI index21

greater than 15, a Receiver Operating Characteristics (ROC) analysis was performed22

[38]. The optimal cut-off point (associated to a prescribed detection threshold) of23

the ROC curve is the one that simultaneously maximizes sensitivity and specificity.24

Also, the accuracy (Acc) and the area under the ROC curve (AUC) were computed.25

5. Results and discussions26

In this section we present the findings yielded by the experiments described above:27

classification of segments and detection of OSAH syndrome. In order to gain un-28

derstanding and dive deeper into the problem of discriminating between apnea and29

hypopnea events, a preliminary qualitative study was carried out. For that, a struc-30

tured dictionary for representing SaO2 signals was learned by DAS-KSVD, following31

all procedures described in Section 4. As a result, DAS-KSVD yielded a structured32

dictionary Φ
(I)
D = [ΦN ΦA ΦH] of size 128 × 150. Figure 5 shows the waveforms of33

some representative atoms corresponding to each one of the dictionaries ΦN (upper),34

ΦA (middle) and ΦH (bottom). Several remarks are in order. First, it can be seen35
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ΦN

ΦA

ΦH

Figure 5: Typical atoms corresponding to ΦN (top), ΦA (middle) and ΦH (bottom).

that each one of these dictionaries is composed of atoms capturing different types 1

of class-related information. For instance, most atoms in ΦN present quite regular 2

waveforms associated to normal inhalation-exhalation changes in the oxygen satu- 3

ration. On the other hand, atoms of ΦA, representing apnea events, present local 4

abrupt desaturations with clear sawtooth patterns. In pulse oximetry this is a typical 5

behavior associated to the absence of respiratory airflow for a relatively long period 6

of time. Finally, atoms of ΦH, associated to hypopnea events, show essentially two 7

desaturations, a large and a small one. We strongly believe that it is precisely this 8

type of desaturation pattern in the atoms what allows for the identification of the 9

hypopnea events. 10

5.1. Classification of segments 11

Features generated by DAS-KSVD were used to assess the ability of the MLP in 12

classifying segments of SaO2 signals. Table 1 shows the average normalized confusion 13

matrix constructed using all testing samples of each fold in the cross validation (left) 14

and a summary of all class-specific performance measures extracted from such a 15

matrix (right). The elements in the diagonal of Table 1 (left) represent the normalized 16

true positive rates. As it can be seen, the algorithm achieved true positive rates of 17

85.12%, 63.42% and 22.78% for the classes N, A and H, respectively, resulting in 18

an overall accuracy of 57.11%. Note that if we were to limit our analysis only to 19

the classes N and A (i.e. without tacking into account the third row and the third 20

column of the confusion matrix), then the inter-class confusions would be relatively 21

small. From the analysis of all these results several remarks can be drawn. First, 22

DAS-KSVD constitutes a reasonable approach for classifying normal (breathing) 23

and apnea events in pulse oximetry. Second, the results fall short of being good 24

for detecting hypopnea events. In fact, more than half of them are misclassified 25

as belonging to class N and more than one fourth are misclassified as belonging to 26

class A. This last remark, however, is consistent with the results obtained using the 27

Sammon mapping (see Section 2 and Figure 2) where we saw that the projections of 28

class A and N segments into the first two most important attributes of the mapping 29
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are clearly well separated, while the projections of class H segments overlap the other1

two classes and present a wide variance.2

Table 1: Average normalized multiclass confusion matrix obtained using DAS-KSVD for the clas-
sification of segments (left) and the corresponding performance measures (right).

Predicted

N A H

K
n
ow

n N 85.12 5.41 9.47

A 22.07 63.42 14.51

H 51.53 25.69 22.78

Class Se (%) Sp (%) Pr (%)

N 85.12 63.20 53.63

A 63.42 84.45 67.09

H 22.78 88.01 48.72

In order to gain insight into the reasons why DAS-KSVD outperforms all other3

evaluated approaches for OSAH syndrome detection (see next section), we compared4

its performance with that of MDCS-BC in classifying segments of SaO2 signals as5

containing an event or not (i.e. without tacking into account whether it is an apnea6

or a hypopnea). It is important to mention that MDCS-BC was chosen because it7

achieved the best performance among all previously developed methods. In order8

to analyze the performance of DAS-KSVD in the binary classification problem, we9

unified labels of segments belonging to the classes A and H which led to a new (and10

unique) class denoted by A+H. Table 2 shows a summary of the performance of11

DAS-KSVD and MDCS-BC using all testing samples. It is important to point out12

that, in this case, the target class is A+H. As it can be observed, although both13

methods yielded similar sensibility percentages, DAS-KSVD reached a significantly14

better specificity and precision percentages than MDCS-BC. In other words, DAS-15

KSVD has become more specific having fewer false positives than the other one. This16

clearly indicates that in the classification process, segments that were misclassified17

as N, are now correctly classified as H.18

5.2. OSAH screening19

In this article, besides analyzing the ability of DAS-KSVD to classify segments of20

SaO2 signals into the classes N, A and H, we make use of these predictions to detect21

the presence of the pathology (according to a prescribed AHI diagnostic threshold).22

In that sense, a comparison between DAS-KSVD with many other state-of-the-art23

methods in the diagnosis of moderate to severe OSAH syndrome (AHI > 15) was24

performed. Table 3 shows a comparative summary of the results achieved by DAS-25

KSVD, MDCS-BC, MDCS-MC, MDAS-BC and MDAS-MC, and by the approaches26
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Table 2: Average performance measures for the classification of A+H events using both DAS-KSVD
and MDCS-BC.

Method Se (%) Sp (%) Pr (%)

DAS-KSVD 63.20 85.12 80.94

MDCS-BC 62.71 80.37 76.15

introduced by Chiner et al. [12], Vázquez et al. [13] and Schlotthauer et al. [2]. It is 1

important to point out that all reported results are the mean value and the standard 2

deviation in the cross validation.

Table 3: Average performance measures for moderate to severe OSAH screening using different
methods.

Method AUC Se(%) Sp(%) Acc(%)

DAS-KSVD 0.934± 0.01 89.10± 2.14 86.70± 2.93 87.90± 1.65

MDCS-MC 0.924± 0.01 87.15± 3.13 88.23± 3.45 86.07± 6.37

MDAS-MC 0.891± 0.04 82.36± 9.07 86.09± 4.63 84.22± 5.07

MDCS-BC [3] 0.922± 0.02 87.89± 3.89 84.86± 3.84 86.38± 3.20

MDAS-BC [3] 0.878± 0.04 80.60± 9.07 81.83± 4.63 81.22± 5.07

Schlotthauer et al. [2] 0.921± 0.03 85.70± 5.68 86.00± 5.68 85.85± 3.79

Vázquez et al. [13] 0.909± 0.03 83.54± 6.72 88.10± 4.47 85.82± 2.76

Chiner et al. [12] 0.767± 0.04 65.57± 3.08 80.10± 5.56 72.84± 4.41

3

As can be observed in Table 3, DAS-KSVD outperforms all other evaluated ap- 4

proaches in their two versions: binary and multiclass. In particular, It was found that 5

applying DAS-KSVD, the classifier yielded an average AUC value of 0.934 and sen- 6

sitivity, specificity and accuracy of 89.10%, 86.70% and 87.90%, respectively. Also, 7

the method leading to the second largest performances is the multiclass version of 8

MDCS (MDCS-MC). When applying such a method, the classifier achieved an aver- 9

age AUC value of 0.924 and sensitivity, specificity and accuracy of 87.15%, 88.23% 10

and 86.07%, respectively. In addition, if we compare the performance of DAS-KSVD 11

with MDCS-MC, then it can be concluded that DAS-KSVD significantly enhances 12

the overall performance achieved by MDCS-MC (assuming a p-value of 0.05). 13

It is also important to point out that, in most cases, multiclass classification 14
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methods outperform the binary ones in the detection of the pathology. For instance,1

the application of both MDCS-MC and MDAS-MC resulted in better performances2

than the ones achieved by their respective binary versions. More precisely, MDAS-3

MC obtained an average AUC value of 0.891 representing an improvement of 1.48%4

regarding MDAS-BC, which achieved an average AUC value of 0.878. Similarly,5

MDCS-MC yielded an improvement of 0.22% with respect to MDCS-BC. On the6

other hand, it becomes appropriate to mention that although MDAS-MC shows7

improvements regarding MDAS-BC, its overall performance remains still below that8

of MDCS-BC and Schlotthauer et al.9

A more comprehensive analysis of Table 3 indicates that, although most discrim-10

inant methods achieved good results, DAS-KSVD outperforms all of them. The11

application of this method results in an average area under the ROC curve of 0.93412

as well as sensitivity, specificity and accuracy of 89.10%, 86.70% and 87.90%, respec-13

tively. According to the original labels and taking into account a detection threshold14

of 15, each fold in the cross validation (95 studies) contains in average 73 and 2215

pathological and normal (or healthy) patients, respectively. A 89.10% sensitivity16

indicates that of the 73 pathological cases, 65 were correctly detected (true positive)17

while 8 were false positive. On the other hand, an 86.70% specificity indicates that18

of the 22 healthy cases, 19 were appropriately identified (true negative) while only 319

were false negative. It is timely to note that for the 3 cases that DAS-KSVD yielded20

an AHI higher than 15, most events identified by the medical expert were precisely21

hypopneas and most of them were not associated with noticeable desaturations in22

the SaO2 signal. This fact indicates that the final scoring process was carried out23

following the AASM criteria. Hence, this issue may be one of the causes that led24

to the misclassification of hypopneas, since its distribution highly overlaps with the25

one corresponding to normal breathing. Finally, if we look at the SaO2 signal, there26

are a lot of cases where it becomes difficult to distinguish between normal breathing27

and hypopnea event.28

In Table 4 we present an account of the computational costs associated to the im-29

plementation of the different methods. The programs were conducted using Matlab30

on a Lenovo V330-15IKB personal computer running Ubuntu 18.04 (64 bits) with31

an Intel Core i3 Processor 7th Generation @2.3GHz and 8GB of main memory. As32

it can be seen, the CPU times required by DAS-KSVD, MDCS and MDAS range33

between two and eight times those required by the other three methods. We empha-34

size, however that these computing times remain very low. In fact it takes about two35

seconds to analyze ten hours of data corresponding to a complete study.36

The higher computational cost mentioned above, is highly compensated by better37

performances. In fact, since the previous methods do not include training from data38
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Table 4: Average computational costs (time used for computation for a single study during testing)
associated to each one of the evaluated methods.

Method Computational time (seconds)

DAS-KSVD 1.56± 0.057

MDCS-MC 1.40± 0.032

MDAS-MC 1.55± 0.016

MDCS-BC [3] 1.42± 0.008

MDAS-BC [3] 1.60± 0.013

Schlotthauer et al. [2] 0.75± 0.019

Vázquez et al. [13] 0.41± 0.007

Chiner et al. [12] 0.19± 0.019

and are based upon predefined rules, their performances are always lower (see bottom 1

part of Table 3). On the other hand, although the methods based on learning from 2

the data (middle and upper part of Table 3) are more difficult to implement and 3

computationally more costly, they yield better performances and have the ability of 4

adapting to new data and to changes in data recording conditions. Additionally the 5

methods presented by our group allow distinguishing between apnea and hypopnea 6

events. 7

6. Conclusions 8

In this article, with the objective of OSAH syndrome screening, we applied a 9

previously developed method called DAS-KSVD to classify segments of SaO2 signals 10

into normal breathing and abnormal respiratory events in a multiclass scenario. It 11

was found that the combined discriminant measure, which is used by DAS-KSVD in 12

the process of building the structured dictionary, is capable of efficiently selecting the 13

most discriminant atoms for each one of the classes. In addition, DAS-KSVD yielded 14

a structured dictionary composed by three sub-dictionaries each one associated to a 15

particular class. We evaluated DAS-KSVD in two different but related applications, 16

namely, classification of abnormal respiratory events and detection of moderate to 17

severe OSAH syndrome. Although it is a very challenging task, the proposed method 18

has demonstrated to be efficient for automatically discriminating between apnea 19

and hypopnea events in a multiclass scheme. To detect the presence or absence of 20

events, DAS-KSVD resulted more specific than the most competitive binary-based 21
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approach (MDCS-BC). This improvement is due to the ability of DAS-KSVD in1

separating between (apnea or hypopnea) events and normal breathing. In a similar2

way, the application of DAS-KSVD led to the best reported performance in OSAH3

syndrome screening using a well known and publicly available database. This fact4

constitutes a strong evidence that our approach can be helpful in the development5

of new intelligent technologies for portable OSAH syndrome screening devices.6

In the near future we plan to explore the use of Deep Learning tools to further7

enhance adaptation robustness and classification performance.8
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