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Abstract

Estimating forage intake and monitoring the foraging behavior of grazing livestock are difficult tasks. Detection
and classification of jaw movements are very useful to obtain that information. In a similar way, the monitoring
and analysis of long-term activities such as rumination and grazing provide useful insight. Several works have
demonstrated that acoustic monitoring is an adequate way to analyze ruminant feeding behavior. In this work, we
present a complete system for monitoring ruminant foraging behavior. As components of such a system, a review
about two own methods based on the analysis of acoustic signals is included: i) a short-term analysis system that
automatically detects and classifies jaw movements, and ii) a long-term analysis system for the recognition of
grazing and rumination activities. Both systems use simple concepts and tools derived from signal processing and
pattern recognition areas. A description of an ad-hoc electronic platform is also included.
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I. INTRODUCTION

The world dairy industry has undergone profound changes over recent decades. A trend exists in dairy
farming toward the automation of processes to reduce labor and labor costs [1]. This development is partly
driven by the economic reality of increasing labor costs relative to capital costs. Automated systems enable
dairy farmers to manage larger herds with lower labor requirements, which means that the application of
automated systems fits with the trend of increasing herd sizes.

Animal behavior is a clear indicator of its physiological and physical state [2]. Eating, ruminating,
and resting are the main daily activities of ruminant livestock. Monitoring these activities is key to many
important management decisions in free-grazing systems [3]. Such information enables farmers to check
the living conditions of cattle in the pasture and make effective decisions about food supplement and
pasture management. Therefore, accurate monitoring of the feeding behavior of free-grazing cattle is
necessary to ensure the welfare and health of these animals, which will improve quantity and quality of
livestock products.

Monitoring of foraging behavior is key to ensure the fulfillment of the basic health and welfare
requirements of grazing cattle and to improve the efficiency of pasture-based production systems [3].
Thus, the continuous monitoring of such behavior can help retrieve individual status information for each
animal [4], [5], build a log, detect emerging diseases [6] or the onset of estrus, and optimize pasture and
animal management.

Cattle foraging behavior is mainly composed of grazing and rumination bouts. Grazing can cover from
25% to 50% of the day and rumination, from 15% to 40% [7]. Grazing involves searching, apprehending,

Preprint submitted to the IEEE International Conference on Industrial Technology (ICIT) 2020

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
si

nc
.u

nl
.e

du
.a

r)
L

. R
au

, J
. O

. C
he

lo
tti

, S
. R

. V
an

re
ll 

&
 L

. G
io

va
ni

ni
; "

D
ev

el
op

m
en

ts
 o

n 
re

al
-t

im
e 

m
on

ito
ri

ng
 o

f 
gr

az
in

g 
ca

ttl
e 

fe
ed

in
g 

be
ha

vi
or

 u
si

ng
 s

ou
nd

"
20

20
 I

E
E

E
 I

nt
er

na
tio

na
l C

on
fe

re
nc

e 
on

 I
nd

us
tr

ia
l T

ec
hn

ol
og

y 
(I

C
IT

),
 p

p.
 7

71
-7

76
, 2

02
0.



2

chewing, and swallowing herbage. Rumination includes bolus regurgitation, chewing, and deglutition.
While grazing, the animal moves its jaw with no predefined sequence of jaw movements, a typical
rumination involves chewing for 40–60 s followed by a 3-to-5 s interruption due to bolus deglutition and
regurgitation [3], [8], [9]. During both activities, jaw movements (JM) are performed rhythmically with a
frequency that ranges from 0.75 to 1.20 events per second. JMs are: biting, when herbage is apprehended
and severed; chewing, when herbage is comminuted; and a compound movement called chew-bite, when
herbage is severed and comminuted in the same JM [10]–[12]. JMs length is around 1 s, whereas activity
bouts can last from minutes to hours. Thus, foraging behavior is characterized by JMs (short timescale)
and activities (longer timescale).

An approach to measure feeding behavior is acoustic monitoring [13]. Laca et. al. [10] instrumented
an inward-facing microphone on the forehead of steers to register stronger and readily distinguishable
sounds of bites, chews, and chew-bites. Consequently, acoustic monitoring proved to be a more effective
methodology to discriminate sensitive differences in feeding and rumination than previous jaw recorders
or visual observation methods [11], and since then it has been increasingly applied as a research tool to
study different aspects of grazing behavior in sheep and cattle [14].

In this work, we review previously published algorithms based on the acoustic method: i) one related to
the recognition of JMs [15] and the other ii) related to the recognition of grazing and rumination activities
[16]. The concept and results of each method are presented. Also, the design and evaluation of an ad-hoc
embedded system are presented.

II. SENSOR SYSTEM FOR FEEDING BEHAVIOR

A. Jaw movement recognition
Since the 1980s, a lot of work has been put into developing sensors that measure parameters of individual

cows. A sensor system consists of devices plus the software that processes the data (see Fig. 1):
• Transduce and record the signal of interest;
• Analyze the data to explain the changes to produce information about the state of the cow;
• Integrate the information provided by sensor with supplementary data to improve the quality and

accuracy of animal information; and
• Make a decision using the information obtained by the system to advise the farmer.
The stages defined here describe the abstraction level of information provided by the sensor system.

The sensor itself is only the first stage. The second stage is to process the sensor data with algorithms
that provide information about the state of each individual cow. In this stage, it is possible to combine
sensor data with data about cow history. The algorithm produces information about the cow’s state by
determining changes in the sensor data. The third stage uses this information in a decision support model
that uses economic information to produce advice about how to act upon the detected events. Finally, the
fourth stage is the decision regarding the change in the health status of the cow, as detected by the sensor.

In this work, we focused on the initial stages of the system for the case of real-time monitoring of
the feeding behavior of grazing cattle (left side in Fig. 1). The proposed system is based on acoustic
sensors and algorithms capable of achieving good performance in the detection and classification of
feeding activities with a low computational cost, which allows its real-time execution. Therefore, a group
of measurable properties should be found to characterize the sounds produced by JMs.

III. THE ALGORITHMS

A. Jaw Movement Recognition
A pattern recognition system is an automatic process that aims at classifying input data into a set of

specific classes [17]. This system can be described by a series of generic stages that allow: (i) the input
signal description, which facilitates the extraction of distinctive features, and (ii) its classification, which
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Fig. 1. Structure of a sensor system for animal monitoring

enables identification of patterns. A block diagram of the jaw movement recognition algorithm (called
CBIA in the original work) is shown in Fig. 2.

Fig. 2 shows the relationship between a typical pattern recognition system and the different stages of the
algorithm: signal conditioning, preprocessing, event detection, feature extraction, and event classification.
The input of the system is the digitized sound, whose numerical representation is normalized and its range
is matched with the range of the computer in the signal conditioning stage. Sound signals sometimes show
slow time-varying noises added to the target signal, especially in barn environments. Therefore, CBIA
uses a detrending technique that removes the non-stationary noises at the signal conditioning stage. Within
the pre-processing stage, the sound signal follows two paths:

• A maximum detector computes the maximum amplitude of the sound signal over a sliding window
whose length is half of the duration of a typical chew-bite event.

• An envelope detector computes the sound envelope using synchronous demodulation and a low-pass
filter.

Since the sound envelope only has low-frequency components, the signals computed by both detectors
are down-sampled to reduce the amount of data processed by the remaining stages. The events are
detected by comparing the sound envelope with a time-varying threshold [18]. Then, the sound envelope

Maximum
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Fig. 2. Block diagram of the JM recognition system (CBIA).
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Fig. 3. Acoustic events, jaw movements, and derived signals.

is segmented and it is used to compute the features. Once the candidate JMs are detected, their features
are extracted over a time window centered at the sample where the event was detected. Four temporal
features that are low-cost and with discriminative power for this problem are extracted:

• Shape index: is computed as the number of zero-crossings in the sign of the derivative signal obtained
from the envelope signal (third row in Fig. 3). This calculation is performed only if the envelope
amplitude exceeds a noise threshold. This feature provides useful information to differentiate simple
JMs (chews and bites) from combined JMs (chew-bites).

• Maximum intensity: provides information to differentiate low-amplitude JMs (chews) from high-
amplitude ones (bites and chew-bites). This feature is extracted directly from the sound signal over
a sliding window with length equal to the period of a typical chew-bite event (fourth row in Fig. 3).

• Duration: is calculated as the time in which the envelope amplitude is greater than a given threshold.
In general, the duration of compound events (chew-bites) is larger than simple events (chews or bites),
which are similar (fifth row in Fig. 3).

• Symmetry: is computed as the ratio between the left area and the total area of the event. Left
and right event areas are divided at the first peak of the event (last row in Fig. 3). It can provide
discriminative information because events have different symmetries.

B. Activity recognition
Grazing and rumination are activities with quasi-periodic characteristics. In addition, each activity has

a different proportion of JMs. The proposed activity recognition algorithm aims to use this discriminative
information to provide grazing and rumination bouts [16]. To achieve a low computational cost, tasks
within each stage have been simplified whenever it was possible. The input of the system is the sound
signal produced during foraging activities. Three activities are considered: rumination, grazing, and other
activities. The latter category includes any activity other than rumination or grazing (i.e. from silence to
different noises).

Detection and classification of JMs are performed with the algorithm presented in Section III-A. Then,
the feeding activity is recognized by analyzing fixed-length segments of the acoustic signal. JMs that are
detected and classified within a segment are stored in a segment buffer. The rate of JMs in a segment
and the proportions of their types are computed to feed the last processing stage. At this point, activity
classification could be seen as a simple task, but an exploratory data analysis on the training set has shown
a complex underlying distribution of the segment features (rate, %c, %b, %cb). The rate of recognized
JMs during rumination and grazing is expected to be in the range from 0.75 to 1.40 Hz (Fig. 5). By
contrast, the rate of JMs identified during other activities presents a lower frequency. The overlapping
among rate distributions of activities is part of the problem.
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The triangle plot in Fig. 5 shows the proportions of the identified JMs for several segments of the training
set. Proportions of a single segment always sum to 1.0. The top corner corresponds to 100% of chews, the
bottom left corner corresponds to 100% of chew-bites, and the bottom right corner corresponds to 100%
of bites. Points inside the triangle correspond to segments composed by more than one type of JMs. For
example, while rumination is mainly composed of chews, grazing has a diversity of JMs compositions.
During other activities, bites are the most assigned type of JMs.

Distributions of segment features show that the recognition of JMs within grazing and rumination
activities is not perfect. For example, CBIA detects a few bites during rumination, which is not actually
true. Thus, the problem of distinguishing between activities requires a powerful method to handle these
errors. In this study, the use of a simple method of machine learning is proposed. Activity classification
is performed by a trainable model, such as a multilayer perceptron or a decision tree, which assigns
an activity label to the segment. In this way, at the end of the processing stages, each segment of the
input signal has a label that indicates if it corresponds to rumination, grazing, or other activity. Finally, a
smoothing process is applied over the sequence of labeled segments to remove short gaps and thus reduce
fragmentation of activity bouts. Thus, long recognized bouts are encouraged, which mimics the typical
length of activity bouts.

IV. THE EMBEDDED SYSTEM

The design of a battery-powered embedded system requires a detailed analysis of each subsystem to
minimize size, cost, and, principally power consumption. The sensor unit device has been designed as
a trade-off between minimizing power consumption and parameter estimation accuracy. It is located on
the neck of the animal, just behind the head. The embedded device was built around a microcontroller
(MCU) and it comprises four interconnected modules: i) the signal conditioning, ii) the data-logging and
communications, iii) the power supply and energy harvesting, and iv) the digital processing, as shown in
Fig. 6.

The MCU for this application (MCF51JM128, NXP Semiconductors) was chosen based on its availabil-
ity in the local market, power consumption, computational power, analog ports, communication resources
(SPI, USART and USB), internal clocking resources, and a real-time clock module.

A. Signal conditioning
The signal conditioning module acquires and conditions the animal feeding sound. It senses the sound

with an electret microphone facing inward on his forehead. The signal bandwidth is limited to 2 kHz
to minimize the quantization noise with an eighth-order Butterworth low pass filter. An automatic gain
control (AGC) amplifier is used to maximize the signal-to-noise ratio. The AGC output is connected to
one of the analog input channels of an 8 bits A/D converter in the MCU. The AGC applied gain level is
delivered to the MCU through another analog input channel. The AGC output is also connected to a low
pass filter to detect when an acoustic signal is present. It is compared with a defined threshold reference
voltage to detect when there is feeding activity and to wake-up the MCU (IRQ input).

B. Digital processing and data-logging
The embedded firmware is organized into four tasks: i) signal conditioning and preprocessing, event

detection, and classification, ii) data logging, iii) internal and external communication, and iv) device
configuration. The software architecture is driven by four possible interrupts to wake-up the MCU from
sleep mode and execute one of these tasks.

When the voltage comparator detects a sound level above a threshold, an A/D conversion begins. Every
500 µs a finished A/D conversion wake-up the MCU and execute the algorithm to detect and classify
JMs. The software extracts the information that characterized the ingestive activities and accumulates the
partial results, and the MCU is set into sleep mode until the next A/D conversion is completed. Finally,
after 5 minutes since the last sound level activation, the device is hibernated.
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Fig. 6. Block diagram of the embedded system.

For every 30 min interval, a data frame is built gathering instant information from the GPS (time and
position) and information related to the feeding activities (i.e. quantity, average time, and average energy
of each potential event). Finally, the data frame is stored as a text file in one of the two flash memories,
and the MCU is set into sleep mode.

Every 15 min the PC starts and controls the wireless communication with the sensor device, generating
an interrupt in the MCU. The reception module is on continuously. When a request package is received
from the PC, the MCU turns on the transmission module, transmits the requested data frames, waits for
the reception acknowledgment and then it turns off the transmission module and the MCU is set into
sleep mode. The final interrupt is triggered when a USB communication is established to transfers the
data stored in the flash memories to the PC or to set a new sensor configuration.

C. Communications
Internal sensor communications are managed by the MCU. A 3 V coin cell battery is incorporated as a

backup power supply for the GPS. The USB module provides an On-The-Go (OTG) dual-role controller.
The additional wireless communication mode operates at 433/470 MHz with a transfer rate of up to 37.5
kbps. All these features simplify the hardware and software required for communication.

D. Power supply
The device has been designed to minimize power consumption whereas it is able of harvesting all the

energy needed for its operation. Therefore, three complementary approaches were used to develop the
energy management scheme: i) A combined duty-cycling and data-driven operating scheme, driven by
data, to operate only when relevant information is available. It is implemented through the firmware in
the MCU. ii) An energy harvesting scheme, by using a 1W solar panel able to recharge the two Li-Ion
batteries when the sensor device is operating outdoors; iii) A USB port when the device is connected to
a PC or an energy source.

E. Autonomy analysis
To determine the autonomy of the sensor device it is mandatory to know the time it will be on the active

mode, due to the sum of the times of the rumination and grazing activities. According to the circadian
rhythm of the cattle feeding behavior described in the sensor device will be on the active mode around
60% of the daily time.

The measured charge consumption per hour during active mode is 34.9 mAh. Considering the battery
capacity of 5000 mAh and in the absence of the solar panel, the sensor device would have an autonomy

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
si

nc
.u

nl
.e

du
.a

r)
L

. R
au

, J
. O

. C
he

lo
tti

, S
. R

. V
an

re
ll 

&
 L

. G
io

va
ni

ni
; "

D
ev

el
op

m
en

ts
 o

n 
re

al
-t

im
e 

m
on

ito
ri

ng
 o

f 
gr

az
in

g 
ca

ttl
e 

fe
ed

in
g 

be
ha

vi
or

 u
si

ng
 s

ou
nd

"
20

20
 I

E
E

E
 I

nt
er

na
tio

na
l C

on
fe

re
nc

e 
on

 I
nd

us
tr

ia
l T

ec
hn

ol
og

y 
(I

C
IT

),
 p

p.
 7

71
-7

76
, 2

02
0.



8

80 60 40 20 0 20 40 60 80
Time Estimation Error (min)

0

1

2

3

4

5

6

7

8
-67% -50% -33% -17% 0% 17% 33% 50% 67%

Normalized Error

Fig. 7. Time estimation error of rumination for proposed activity recognition system (orange) and Hi-Tag (gray). Top axis is normalized
with the length of segments analyzed (2 hours).

of TA = 143.27 h. Otherwise, the instant current provided by the solar panel is 120 mA during daylight
hours. If we suppose it is maintained during 6h, the average charge provided is QSP = 30.0 mAh.

According to the circadian cycle of the cattle feeding behavior, the average charge consumed per hour
for a whole day is given by QCR = 20.6 mAh. Thus, the net charge balance is QSP −QCR = 9.4 mAh.
This shows that the harvested power is sufficient to energize the sensor device.

To determine the worst-case conditions, the sensor device was tested in active mode during 5 days
outdoors with the batteries fully charged initially. During the day, the sensor device is powered entirely
by the solar panel and, at the same time, the batteries are partially recharged. However, it is not enough to
accomplish a full charge of the batteries. As expected, during the night, the batteries supply the embedded
system and its voltage decreases considerably. At the end of the test, the sensor device still worked properly
and the voltage tends to stabilize close to 3.7 V, which is the nominal battery voltage.

V. RESULTS

A comparison of the rumination time estimation obtained by a commercial system (Hi-Tag) and the
proposed system was performed. The Hi-Tag system summarizes the total time the animal spent ruminating
during two-hour chunks [19]. Raw data and timestamps of rumination bouts within a two-hour chunk are
not available [20]. Therefore, the estimations with the proposed system were aligned, and the total duration
of rumination was summarized to match the same two-hour chunks of the Hi-Tag system. The comparison
was made with a total of 53 two-hour chunks from all the recordings analyzed as it was done in [21].
Since the Hi-Tag is a commercial system, its computational cost was not available to be considered in
the analysis.

The results of time estimation error for rumination are shown in Fig. 7. The medians of the distributions
are −2.91 min and −13.55 min for the proposed system and the Hi-Tag system, respectively. Negative
medians imply that both systems tend to underestimate the rumination time. The proposed system was
more accurate and resulted in a narrower error distribution. While the error dispersion for the proposed
system is in the range (-30, +50) min, the distribution corresponding to the Hi-Tag is wider and it is in
the range (-80, +80) min. In practical terms, these errors are very high since they are in the same order
of magnitude of the two-hour chunks analyzed [16].

Fig. 8 shows the evolution of voltage and current of the batteries. During the day, the current provided
by the batteries decreases to zero, when the device is powered entirely by the solar panel and, at the
same time, the batteries are partially recharged. However, it is not enough to accomplish a full charge of
batteries. As expected, during the night and periods when there is no solar light incident on the solar panel,
the batteries supply the embedded system and its voltage decreases considerably. During each daylight,
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there is a small peak in the current consumption, which corresponds to the projection of a shadow above
the solar panel making that much of the current consumed by the device has to be provided by the batteries
during this time. At the end of the test, the device still worked properly and the voltage tends to stabilize
close to 3.7 V, which is the nominal battery voltage.
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Fig. 8. Current consumption (black line) and voltage of the battery pack (red line).

VI. CONCLUSIONS

In the tests performed, the acoustic methods presented have achieved good performance rates. In
addition, they provide comprehensive information (short- and long-term) of the foraging behavior of the
ruminant. The low computational cost of the proposed methods allows its real-time execution in a simple
embedded system. The activity recognition method showed better performance than a commercial system,
under certain conditions. Robust recognition of rumination and grazing activities is another challenge
to be addressed in future studies. The developed embedded system has shown suitable communication,
processing and autonomy characteristics.
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