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Abstract

The growth of the world population expected for the next decade will increase

the demand for products derived from cattle (i.e., milk and meat). In this

sense, precision livestock farming proposes to optimize livestock production

using information and communication technologies for monitoring animals.

Although there are several methodologies for monitoring foraging behavior,

the acoustic method has shown to be successful in previous studies. However,

there is no online acoustic method for the recognition of rumination and

grazing bouts that can be implemented in a low-cost device. In this study,

an online algorithm called bottom-up foraging activity recognizer (BUFAR)

is proposed. The method is based on the recognition of jaw movements
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from sound, which are then analyzed by groups to recognize rumination and

grazing bouts. Two variants of the activity recognizer were explored, which

were based on a multilayer perceptron (BUFAR-MLP) and a decision tree

(BUFAR-DT). These variants were evaluated and compared under the same

conditions with a known method for o�ine analysis. Compared to the former

method, the proposed method showed superior results in the estimation of

grazing and rumination bouts. The MLP-variant showed the best results,

reaching F1-scores higher than 0.75 for both activities. In addition, the MLP-

variant outperformed a commercial rumination time estimation system. A

great advantage of BUFAR is the low computational cost, which is about

50 times lower than that corresponding to the former method. The good

performance and low computational cost makes BUFAR a highly feasible

method for real-time execution in a low-cost embedded monitoring system.

The advantages provided by this system will allow the development of a

portable device for online monitoring of the foraging behavior of ruminants.

Web demo available at: https://sinc.unl.edu.ar/web-demo/bufar/

Keywords: Acoustic monitoring, activity recognition, ruminant foraging

behavior, precision livestock farming, pattern recognition, machine learning.

1. Introduction1

Accurate monitoring of animal foraging behavior is a complex but essen-2

tial task to optimize livestock production systems (Hodgson and Illius, 1998).3

Changes in the ruminant foraging behavior are indicators of animal health4

and welfare and can be useful in early detection and prevention of several5

diseases. For example, an increment in rumination time can be associated6
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with an increment of saliva production and improvements in rumen health7

(Beauchemin, 1991). Conversely, a reduction of rumination can be inter-8

preted as an indicator of stress (Herskin et al., 2004), anxiety (Bristow and9

Holmes, 2007), or a disease (Hansen et al., 2003; Paudyal et al., 2018; Welch,10

1982). In the last decade, precision livestock farming has been presented as11

a useful approach to tackle these problems, using advanced technology to12

monitor each animal. In this sense, recent technological developments have13

facilitated the use of sensors to monitor many physical variables both for an-14

imal science research and for practical farm level applications (Berckmans,15

2014).16

Foraging behavior of ruminants can be characterized by jaw movements17

(short timescale) and activities (long timescale). Jaw movements (JM) have18

a duration close to 1 s, whereas activity bouts can last from minutes to hours.19

The JM (or masticatory events) are biting, when herbage is apprehended and20

severed; chewing, when herbage is comminuted; and a combination of chew-21

ing and biting in a single JM, which is called chew-bite (Galli et al., 2018;22

Laca et al., 1992; Ungar and Rutter, 2006). Main foraging activities are graz-23

ing and rumination. Their duration widely �uctuates in the day. Grazing can24

cover from 25 to 50% of the day and rumination from 15 to 40% (Hodgson,25

1990; Kilgour, 2012; Phillips, 1993). The grazing process involves searching,26

apprehending, chewing, and swallowing herbage. Rumination involves bolus27

regurgitation, chewing, and deglutition, in a periodic cycle that typically last28

1 min. During both activities, JM are performed rhythmically with a fre-29

quency that ranges from 0.75 to 1.20 JM per second (Andriamandroso et al.,30

2016). While grazing, the three types of JM are present (i.e., chew, bite and31
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chew-bite), whereas only chews are present during rumination (Hodgson and32

Illius, 1998).33

An automatic monitoring system should be reliable, insightful, and prac-34

tical to implement. For instance, these goals imply that recorded signals35

should be analyzed without human assistance, that the methodology should36

be scalable to large herds (even in pasture-based production systems), that37

the device autonomy should facilitate the collection of data over long periods38

of time (from days to weeks), and that data should be processed online to39

reduce in-device data-storing and communication requirements. Thus, an40

ideal methodology to be deployed in the �eld is one that is powerful at char-41

acterizing the foraging behavior as well as it is e�cient at data processing.42

Di�erent sensing technologies have been used in the development of auto-43

matic monitoring systems, such as motion sensors, noseband pressure sensors,44

and microphones (Andriamandroso et al., 2016). Among motion sensors it45

is widespread the use of accelerometers (Arcidiacono et al., 2017; Giovanetti46

et al., 2017; GonzÆlez et al., 2015; Martiskainen et al., 2009) and inertial47

measurement units (Andriamandroso et al., 2017; Greenwood et al., 2017;48

Smith et al., 2016). These sensors have been used to recognize a broader49

set of activities such as rumination, grazing, resting, drinking and walking.50

An activity is determined by a postural analysis of the animal, where the51

sensors are used to estimate the position and motion of its head and body.52

However, this strategy can confuse activities that share the same posture. A53

better strategy for recognizing ruminating, eating and drinking activities is54

the use of noseband pressure sensors (Nydegger et al., 2010; Rutter, 2000;55

Rutter et al., 1997; Werner et al., 2018; Zehner et al., 2017). They have been56
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used in the analysis of housed and free-grazing cows during one- to two-hour57

sessions. This yielded very good results, but further studies are required for58

continuous long-term monitoring. A limitation of this approach is that does59

not discriminate between JM (i.e., they are not classi�ed) which is a require-60

ment for a more detailed analysis such as herbage intake estimation (Galli61

et al., 2018).62

Acoustic monitoring has proven to be reliable for recognizing short-term63

JM in free-ranging cows (Chelotti et al., 2018; Clapham et al., 2011; Laca64

et al., 1992; Milone et al., 2012; Navon et al., 2013). In particular, the65

chew-bite intelligent algorithm (CBIA) performs an online processing of the66

sound signal and has achieved very good results (Chelotti et al., 2018). A67

related commercial monitoring system is the Hi-Tag system (SCR Engineers68

Ltd., Netanya, Israel). Its design is focused on the autonomy, portability69

and hardware robustness required by the application. Besides it is based on70

microphones, the analysis of the signal is exclusively focused on rumination71

monitoring (Goldhawk et al., 2013; Schirmann et al., 2009). Recently, acous-72

tic monitoring has also been successful on long-term recognition of foraging73

activities in free-ranging cows (Vanrell et al., 2018). The regularity-based74

acoustic foraging activity recognizer (RAFAR) was able to identify grazing75

and rumination bouts from sound recordings. The success of RAFAR relies76

on an o�ine analysis of long recordings (several hours), which clearly ex-77

pose the regularities of foraging activities. Those recordings are acquired in78

each animal of the herd and then analyzed in a desktop computer. However,79

there are some practical limitations with this approach. A portable device,80

has limited storage capacity, processing capability, and power supply. These81
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limitations becomes more relevant when the application on large herds is82

desired.83

In this study, the acoustic monitoring strategy is taken one step further.84

The main point to explore is the potential of identifying the foraging activ-85

ities from a prior recognition of JM following a bottom-up approach. The86

proposed method is focused on an online processing of the acoustic signals87

, i.e. the input signal is processed sample-by-sample, as it is received. In88

addition, the method should have relatively low computational cost and be89

focused on its real-time implementation in a low-cost embedded system. This90

would contribute to establish the acoustic monitoring as a non-invasive alter-91

native that could handle the requirements of the application and can provide92

insights about natural foraging behavior of ruminants.93

2. Material and methods94

2.1. Proposed method95

An online method for detection and classi�cation of the most important96

foraging activities of ruminants is presented in this section. The method97

can process the signal sample-by-sample (online fashion). The bottom-up98

foraging activity recognizer (BUFAR) has two levels of recognition. First,99

JM are recognized and then this information is used to estimate rumination100

and grazing bouts. As a result, the information about nutritional status can101

be enhanced by providing statistics of both JM and activity bouts.102

Fig. 1 shows typical sound recordings during (a) grazing and (b) rumi-103

nation. The amplitude of the sound signals might be seen as an obvious104

measure for discrimination. However, variations in the amplitude across mi-105
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Figure 1: (a) Grazing and (b) rumination activities. Typical percentages and rate of jaw

movements by activity. The jaw movement included in each activity are zoom-in.

crophones, recording devices, sessions, and cows have not allowed a reliable106

classi�cation. By contrast, the rate of JM of both activities is very similar107

and it helps to distinguish activity bouts from noisy segments in the record-108

ings. A clear di�erence between the activities is the proportion of JM. For109

example, in these recordings, grazing has 25% of chews, 10% of bites, and110

65% of chew-bites, whereas rumination has a 100% of chews. Thus, the rate111

and the proportion of JM are the keys of the proposed method.112

A diagram of the proposed system BUFAR is shown in Fig. 2. It has �ve113

stages that perform the required processing of data to recognize JM and for-114

aging activities. For the sake of a low computational cost, tasks within each115

stage have been simpli�ed whenever it was possible. The input of the sys-116
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tem is the sound signal produced during foraging activities. Three activities117

are considered: rumination, grazing, and other activities. Other activities118

include any activity other than rumination or grazing (i.e., milking, silence119

, confusing sounds, etc.). Detection and classi�cation of JM are performed120

with the CBIA algorithm (Chelotti et al., 2018). CBIA comprises three121

stages: signal pre-processing, jaw-movement detection, and jaw-movement122

classi�cation. In signal pre-processing stage, the raw signal is conditioned and123

�ltered to improve the signal-to-noise ratio (SNR) and remove slow varying124

trends. Jaw-movement detection stage spots these movements by analyzing125

the �ltered signal with an adaptive threshold. Each JM is assigned with a126

timestamp and a set of features (duration, maximum amplitude, shape in-127

dex, and symmetry). The timestamp is saved in the segment bu�er and it128

will be used for activity recognition. In the classi�cation stage, the features129

of each JM are taken by a neural network model to assign an event label:130

bite (b), chew (c), or chew-bite (cb).131

The proposed system performs activity recognition by analyzing �xed-132

length segments of the acoustic signal. JM that are detected and classi�ed133

within a segment are stored in a segment bu�er. The rate of JM in a segment134

and the proportions of their types are computed to feed the last processing135

stage. At this point, activity classi�cation could be seen as a simple task,136

but an exploratory data analysis on the training set has shown a complex137

underlying distribution of the segment features (rate, %c, %b, %cb). The138

rate of recognized JM during rumination and grazing is expected to be in the139

range from 0.75 to 1.40 Hz (Fig. 3). By contrast, the rate of JM identi�ed140

during other activities presents a lower frequency. The overlapping among141

8

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

J.
 O

. C
he

lo
tti

, S
. R

. V
an

re
ll,

 L
. R

au
, J

. G
al

li,
 A

. M
. P

la
ni

si
ch

, S
.A

 U
ts

um
i, 

D
. H

. M
ilo

ne
, L

. G
io

va
ni

ni
 &

 H
. L

. R
uf

in
er

; "
A

n 
on

lin
e 

m
et

ho
d 

fo
r 

es
tim

at
in

g 
gr

az
in

g 
an

d 
ru

m
in

at
io

n 
bo

ut
s 

us
in

g 
ac

ou
st

ic
 s

ig
na

ls
 in

 g
ra

zi
ng

 c
at

tle
"

C
om

pu
te

rs
 a

nd
 E

le
ct

ro
ni

cs
 in

 A
gr

ic
ul

tu
re

, V
ol

. 1
73

, p
p.

 1
05

44
3,

 2
02

0.



�����
����	


����	

��
�����
�����

�
��
���
����
����

��
�
	������	����

��
�
�
�����

��������
�
	������	����

�
������
��	�������
���������	�
����
���
�	�����

����������� ��
��
�	�����

�����������������

���������
��������

�
��
���


����

���������

��
�������	��
���

�
��
���
����	��
���

�����
�������	��
���

Figure 2: General diagram of the bottom-up foraging activity recognizer (BUFAR). Activ-

ity classi�cation uses information of jaw movements (JM) within a segment. JM include:

chew (c), bite (b), and chew-bite (cb).

9

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

J.
 O

. C
he

lo
tti

, S
. R

. V
an

re
ll,

 L
. R

au
, J

. G
al

li,
 A

. M
. P

la
ni

si
ch

, S
.A

 U
ts

um
i, 

D
. H

. M
ilo

ne
, L

. G
io

va
ni

ni
 &

 H
. L

. R
uf

in
er

; "
A

n 
on

lin
e 

m
et

ho
d 

fo
r 

es
tim

at
in

g 
gr

az
in

g 
an

d 
ru

m
in

at
io

n 
bo

ut
s 

us
in

g 
ac

ou
st

ic
 s

ig
na

ls
 in

 g
ra

zi
ng

 c
at

tle
"

C
om

pu
te

rs
 a

nd
 E

le
ct

ro
ni

cs
 in

 A
gr

ic
ul

tu
re

, V
ol

. 1
73

, p
p.

 1
05

44
3,

 2
02

0.



si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

J.
 O

. C
he

lo
tti

, S
. R

. V
an

re
ll,

 L
. R

au
, J

. G
al

li,
 A

. M
. P

la
ni

si
ch

, S
.A

 U
ts

um
i, 

D
. H

. M
ilo

ne
, L

. G
io

va
ni

ni
 &

 H
. L

. R
uf

in
er

; "
A

n 
on

lin
e 

m
et

ho
d 

fo
r 

es
tim

at
in

g 
gr

az
in

g 
an

d 
ru

m
in

at
io

n 
bo

ut
s 

us
in

g 
ac

ou
st

ic
 s

ig
na

ls
 in

 g
ra

zi
ng

 c
at

tle
"

C
om

pu
te

rs
 a

nd
 E

le
ct

ro
ni

cs
 in

 A
gr

ic
ul

tu
re

, V
ol

. 1
73

, p
p.

 1
05

44
3,

 2
02

0.



si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

J.
 O

. C
he

lo
tti

, S
. R

. V
an

re
ll,

 L
. R

au
, J

. G
al

li,
 A

. M
. P

la
ni

si
ch

, S
.A

 U
ts

um
i, 

D
. H

. M
ilo

ne
, L

. G
io

va
ni

ni
 &

 H
. L

. R
uf

in
er

; "
A

n 
on

lin
e 

m
et

ho
d 

fo
r 

es
tim

at
in

g 
gr

az
in

g 
an

d 
ru

m
in

at
io

n 
bo

ut
s 

us
in

g 
ac

ou
st

ic
 s

ig
na

ls
 in

 g
ra

zi
ng

 c
at

tle
"

C
om

pu
te

rs
 a

nd
 E

le
ct

ro
ni

cs
 in

 A
gr

ic
ul

tu
re

, V
ol

. 1
73

, p
p.

 1
05

44
3,

 2
02

0.



grazing and rumination activities is not perfect. For example, CBIA detects155

a few bites during rumination, which is not actually true. Thus, the problem156

of distinguishing between activities requires a powerful method to handle157

these errors. In this study, the use of a simple method of machine learning is158

proposed. Activity classi�cation is performed by a trainable model, such as a159

multilayer perceptron or a decision tree, which assigns an activity label to the160

segment. A multilayer perceptron (MLP) is a feed-forward arti�cial neural161

network that can deal with non-linearly separable data (Bishop, 2006). It162

consists of several layers of nodes (simple perceptrons) in a directed graph,163

with each layer fully connected to the next one, but without connections164

between nodes in the same layer. Decision Trees (DTs) have the ability of165

learning simple decision rules and systematizing them in order to arrive at166

complex decisions (Bishop, 2006). For numerical attributes, DTs divide the167

feature space into axis-parallel rectangular regions and label each region with168

the correspondent class. In addition, a DT provides solutions which are easy169

to implement and understand.170

At the end of the processing stages, each segment of the input signal171

has a label that indicates if it corresponds to rumination, grazing, or other172

activity. Finally, a smoothing process is applied over the sequence of labeled173

segments in order to remove short gaps and thus reduce fragmentation of174

activity bouts. Thus, long recognized bouts are encouraged, which mimics175

the typical length of activity bouts.176

2.2. Acoustic database177

Acoustic signals were collected in August of 2014 at the dairy facility in178

the Kellogg Biological Station Robotic and Grazing Farm, operated by the179
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Michigan State University. As described in (Vanrell et al., 2018), the code180

for animal use by the Institutional Animal Care and Use Committee of the181

Michigan State University was reviewed, approved, and conducted according182

to protocols for animal handling and care. SONY ICDPX312 recorders were183

used to record the signals (Fig. 5a). A microphone was placed facing inwards184

on the forehead of cows (Fig. 5b) and was protected by a rubber foam (Milone185

et al., 2012). All recordings were saved in WAV �le format, considering a186

44.1 kHz sampling rate and 16-bit resolution.187

Cows were rotationally grazed on a pasture-based robotic milking sys-188

tem with voluntary cow tra�c as described previously in Watt et al. (2015).189

Brie�y, the �ve multiparous experimental cows (parity 2.6 � 0.5; days in190

milk 108 � 34; body weight 654 � 21 kg; milk yield 39 � 4 kg; milkings/d 3191

� 1) were group housed and managed together as part of a larger robotic and192

grazing herd of 146 Holstein cows, allocated to two Lely A3-Robotic Milk-193

ers (Lely Industries N.V., Maassluis, the Netherlands). Cows were raised194

and grazed previously on same pasture so they were properly adapted to195

the farming system and diets before this study commenced. Milking was196

conducted according to milk table permissions set by a minimum expected197

milk yield/milking of 9.1 kg or 6 h of minimum interval. During milking198

cows were fed a grain based concentrate (GBC) at a rate of 1 kg per 6 kg of199

milk production (cap 12 kg/ cow d�1). The average crude protein (CP), neu-200

tral detergent �ber (NDF), and net energy for lactation (NEL) of the GBC201

pellet o�ered (Cargill Inc, Big Lake, MN) was 193.0 g/kg DM, 99.4 g/kg202

DM, and 2.05 Mcal/kg DM, respectively. Cows had 24 h access to pasture203

dominated either by perennial ryegrass (Lolium perenne) and white clover204
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(Trifolium repens), or orchardgrass (Dactylis glomerata), tall fescue (Festuca205

arundinacea) and the same white clover. Cows were grazed at an average206

herbage allowance of 30 kg DM/cow d�1 split evenly into an AM and PM207

break of fresh pasture (15 kg DM/cow) freely accessible at opposite locations208

of the farm (north and south) from 10:00 h to 22:00 h and from 22:00 h to209

10:00 h, respectively. Herbage allowance was adjusted according to changes210

in pasture growth rates and measurements of pregrazing herbage cover (Y ;211

measured to ground level) by a plate meter (Y = 125x; r2 = 0:96), using212

30 readings of sward height (SH; x) taken alongside allocations. At the time213

of the study the average pregrazing and postgrazing herbage mass (n = 16214

paddocks) was 2387 � 302 kg DM/ha (19.2 � 2.5 cm SH) and 1396 � 281 kg215

DM/ha (11.2 � 2.2 cm SH), respectively. The average CP (4010 CN combus-216

tion system, Costech Analytical Technologies Inc., Valencia, CA), NDF and217

acid detergent �ber (ADF) (200 Fiber Analyzer, Ankom Technology Corp.,218

Fairport, NY), and acid detergent lignin (ADL) content and 48 h in vitro219

DM digestibility (Daisy II, Ankom Technology Corp.) of hand pluck pasture220

samples (n = 16) was 187 � 25 g/kg DM, 493 � 45 g/kg DM, 257 � 20 g/kg221

DM, 33 � 8 g/kg DM, and 78.1 � 3.0%, respectively.222

Expert labeling was used as a control reference for comparison and evalua-223

tion against algorithms results. Two experts with prior experience on animal224

behavior scouting, and digital analysis of acoustic signals, viewed the plot225

of the sound waveform and listened to the recordings to make a decision.226

Experts were able to identify, classify, and label the activity blocks, either as227

grazing, rumination, or neither of these activities. Experts agreed 100% on228

the labeling, but there were small di�erences in the limits of each label (start229
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2.3. Performance metrics241

In continuous activity recognition, performance evaluation requires a com-242

parison between a reference sequence and a recognized sequence. The activity243

blocks of the reference sequence and the recognized sequence may not be in244

a one-to-one correspondence. For example, a single block (an activity bout)245

of the reference sequence can be partially detected by three shorter blocks246

in the recognized sequence. A comprehensive set of performance metrics for247

continuous activity recognition has been proposed by Ward et al. (2011) and248

has been recently used in a related study (Vanrell et al., 2018). These met-249

rics are based on two complementary short- and long-term timescales. They250

present a multidimensional and detailed description instead of a single per-251

formance number. In this way, the strengths and weaknesses of a recognizer252

can be assessed, avoiding ambiguity in the results. Short-term metrics are253

frame-based, which is a small �xed-length unit of time. Frame-based metrics254

facilitate a �ne-grain analysis that resembles a continuous time analysis. By255

contrast, a block has no �xed-length and is de�ned as a continuous period256

of time of a sequence that has the same label. For example, a rumination257

block in the reference sequence is a rumination bout. Long-term metrics are258

block-based, which provide a di�erent point of view, like a big picture of the259

recognition performance. This is particularly valuable to detect coarse-grain260

bias and to propose modi�cations in the recognizer.261

The frame- and block-based error metrics were used to characterize each262

variant of the method. They are false negative rate (FNR�), false discovery263

rate (FDR�), recall (R�), precision (P�), fragmentation (F�), merging (M�),264

deletion (D�), insertion (I�), under�ll (U�), Over�ll (O�), and the standard265
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F1-score (F1�). All metrics were computed for each recording analyzed and266

then averaged for results presentation. For details about the computation of267

these metrics see Appendix A.268

2.4. Experimental Setup269

In this study, the following setup was considered for the proposed method.270

Computer experiments were performed considering that at time t the algo-271

rithm can use data available at time t and t��t but no using data at t+�t.272

This consideration is equivalent to online processing within the device. The273

con�guration of CBIA was the same used in Chelotti et al. (2018). For the274

signal pre-processing stage, a Least Mean Square �lter was used (Widrow275

et al., 1975). This adaptive �lter has proven to be useful for removing trends276

at low computational cost. For detection of JM, the steps proposed in Che-277

lotti et al. (2018) were implemented. For classi�cation of JM, it was selected278

a one-hidden-layer multilayer perceptron.279

An exploratory analysis on a subset of the training set was conducted280

for the segment bu�ering stage. Segments of 1.0, 2.5, 5.0, and 10.0 min281

in length were considered. The shortest segment considered (1.0 min) can282

capture at least a typical period of rumination. In addition, this segment283

length generally includes a number of JM that allows a suitable analysis.284

Segments longer than 10.0 min would result in poor temporal resolution. For285

the activity classi�cation stage, two models were considered: i) a multilayer286

perceptron (MLP) with one hidden layer and a logistic activation function,287

and ii) a binary decision tree (DT) based in the Gini impurity measure.288

An hyper-parameter optimization was performed for both activity classi�ers289

considering: the number of neurons in the hidden layer and learning rate for290
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the MLP, and the pruning factor for the DT. This optimization was made291

following a 5-fold scheme with signals on the other subset of the training292

set and maximizing the accuracy measure1. Finally, in the last stage, a293

smoothing process to avoid fragmentation in rumination and grazing bouts294

was applied: single segments were relabeled when they were surrounded by295

segments of the same activity.296

For this study, 30 h of recordings containing rumination and grazing ses-297

sions were randomly selected to optimize the segment-length. Another set298

of 24 h of recordings were used to train an optimize parameters and hyper-299

parameters of the activity classi�er and they were never used again. Clas-300

si�ers were trained following a 5-fold scheme on the training set. Finally,301

the test results were obtained from a separate test set of 137 h of record-302

ings, which were selected taking care that they correspond to a free-ranging303

environment. Those portions of the recordings captured inside the feeding304

barn were excluded from this study. The periods inside the feeding barn305

were identi�ed acoustically by experts, guided by the environmental sound306

(machines, engines, and the reverberation inside the barn) and the distinc-307

tive sound of metal gates opening and closing, when the animals entered or308

left the barn. This selection has been guided by the labels (timestamps)309

provided by the experts and it is in agreement with the study that presents310

the RAFAR (Vanrell et al., 2018). The present work included a comparison311

with the RAFAR-MBBP variant.312

A web demo of the method was developed with the tool (Stegmayer et al.,313

1This stage was implemented in python using the scikit-learn package.
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2016) and can be accessed at: https://sinc.unl.edu.ar/web-demo/bufar/.314

3. Results315

3.1. Segment-length e�ect316

Table 1 shows the e�ect of segment length in activity recognition using317

an MLP as the activity classi�er (BUFAR-MLP). Frame- and block-based318

F1-scores provide measures of the recognition in a short and long timescale,319

respectively. The shortest segment considered (1.0 min) achieved good frame-320

based metrics on grazing but very poor metrics on rumination. The longest321

segment considered (10.0 min) achieved good block-based metrics on grazing322

and poor metrics on rumination. A comparison of block-based metrics on323

grazing between 2.5-min and 5-min segments showed a notable improvement324

in favor of 5-min segments. Regarding rumination, a comparison between325

2.5-min and 5-min segments showed remarkable improvements in frame- and326

block-based metrics for 5-min segments. Similar results were obtained using327

a DT as the activity classi�er. In an overall assessment, 5-min segments328

achieved a strong performance for both frame- and block-based F1-score on329

the studied activities.330

3.2. Activity classi�cation331

Two variants of BUFAR were evaluated: i) one using a decision tree as332

the activity classi�er (BUFAR-DT) and ii) one using a multilayer perceptron333

as the activity classi�er (BUFAR-MLP). In a previous study (Vanrell et al.,334

2018), RAFAR showed notable performance when the entire sound recording335

was available (o�ine analysis). It is the only known method that estimates336
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Table 1: F1-score metrics on activity classi�cation for di�erent segment lengths using

Bottom-Up Foraging Activity Recognizer - Multilayer Perceptron (BUFAR-MLP).

Grazing Rumination

Segment-length Frame-based Block-based Frame-based Block-based

1.0 min 0:849(�0:161) 0:693(�0:355) 0:516(�0:340) 0:500(�0:173)

2.5 min 0.851(�0:165) 0:770(�0:359) 0:631(�0:311) 0:642(�0:263)

5.0 min 0:812(�0:181) 0.822(�0:196) 0.703(�0:274) 0.743(�0:318)

10.0 min 0:764(�0:314) 0:811(�0:244) 0:611(�0:336) 0:567(�0:279)

both grazing and rumination bouts from acoustic signals. For comparison337

purposes, the RAFAR-MBBP variant was considered in this study (in the338

following referred as RAFAR). For a fair comparison between RAFAR and339

the proposed methods, the same limited data (5-min sound segments) was340

considered as the input.341

A spider plot considering frame- and block-based metrics for grazing342

recognition is shown in Figure 6. A perfect recognizer would yield 0 for343

each error metric, which matches the boundary of the polygon. Frame-based344

metrics (gray side of the diagram) showed excellent FDRf (�10%) and poor345

FNRf (<40%) for both BUFAR variants. This means that most frames were346

correctly labeled as grazing, whereas some frames corresponding to grazing347

activity were not detected (false negatives). Deletions (Df ) and under�lls348

(Uf ) explain most of the undetected frames. The best FDRf was achieved349

by BUFAR-MLP, while BUFAR-DT obtained a slightly lower FNRf among350

variants. RAFAR presented the opposite situation, low FNRf and high351

FDRf . Regarding other metrics such as Ff , Mf , Of , and If , the evalu-352
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Figure 6: Spider plot of frame- and block-based metrics for grazing classi�cation. Error

metrics are: false negative rate (FNR), false discovery rate (FDR), fragmentation (F),

merging (M), deletion (D), insertion (I), under�ll (U) and over�ll(O).The subscript indi-

cates frame (f) or block-based (b) metrics.

ated variants achieved excellent results (<5%), which indicates that hardly353

any frame is associated with fragmentation, merging, over�ll, or insertion of354

grazing.355

Regarding the block-based analysis of grazing classi�cation, BUFAR vari-356

ants showed the lowest FDRb and FNRb and outperformed RAFAR on both357

metrics. BUFAR-MLP had slightly higher FNRb but lower FDRb than the358

BUFAR-DT. That is, BUFAR-MLP failed to detect some grazing block but359

added fewer extra grazing blocks (false positives) than BUFAR-DT. Both360
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