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Abstract

Neural  networks  are  required  to  meet  significant  metabolic  demands  associated  with

performing  sophisticated  computational  tasks  in  the  brain.  The  necessity  for  efficient

transmission of information imposes stringent constraints on the metabolic pathways that can

be used for energy generation at the synapse, and thus low availability of energetic substrates

can reduce the efficacy of synaptic function. Here we study the effects of energetic substrate

availability  on  global  neural  network  behavior  and  find  that  glucose  alone  can  sustain

excitatory neurotransmission required to generate high-frequency synchronous bursting that

emerges in culture. In contrast, obligatory oxidative energetic substrates such as lactate and

pyruvate  are  unable to  substitute  for  glucose,  indicating  that  processes  involving glucose

metabolism form the primary energy-generating pathways supporting coordinated network

activity. Our experimental results are discussed in the context of the role that metabolism

plays  in  supporting  the  performance  of  individual  synapses,  including  the  relative

contributions from postsynaptic responses, astrocytes, and presynaptic vesicle cycling. We

propose a simple computational model for our excitatory cultures that accurately captures the

inability  of  metabolically  compromised  synapses  to  sustain  synchronous  bursting  when

extracellular glucose is depleted. 

Introduction

Accurately processing, storing, and retrieving information comes at a considerable metabolic

cost  to  the  central  nervous  system  (1).  It  is  currently  thought  that  the  human  brain  is

responsible for 20% of all energy consumed by the body, whilst comprising only 2% of the

total body weight (2). The amount of energy expended on different components of excitatory
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signaling  in  the  brain  has  been  estimated  (3)(4),  and  mechanisms  mediating  synaptic

transmission (including glutamate accumulation in vesicles) are predicted to monopolize 41%

of  all  ATP  turnover  in  the  cortex  (5).  Theoretical  considerations  suggest  that  cortical

networks therefore maximize the ratio of information transmitted to energy consumed  (6).

This finding could explain why the mean firing rate of neurons measured  in vivo is much

lower than that expected to maximize the brain’s total coding capacity, i.e. where neurons fire

at approximately half their maximum rates, a behavior that is only very rarely observed in

practice  (3)(7).  Mathematical  models  of  energy-efficient  neurotransmission  led  to  the

surprising conclusion that synaptic vesicle release probability is low and synaptic failures

should occur often (8)(5). However, even with these adaptations for energetic efficiency the

metabolic demands of neural networks remain a large proportion of the body’s total energy

budget. 

To meet this energetic demand, the cortex has evolved an extensive neurovascular coupling

that can increase blood flow to regions of high activity. Astrocytes and other glial cells in

contact with blood vessels are important regulators of brain energy supply and play a key role

providing neurons with a readily accessible fuel source  (9)(10). The nature of this neuron-

astrocyte relationship remains controversial however, with conflicting theories concerning the

primary substrate of resting  versus active neural metabolism as well as the relative fluxes

through metabolic pathways in the two cell types (11)(12)(13). Hemodynamic signals based

on  blood-oxygen-level-dependent  functional  magnetic  resonance-based  imaging  (BOLD

fMRI) show that oxygen uptake during neural activity is disproportionally small compared to

that required for complete oxidation of glucose (i.e. 6O2 per glucose consumed), suggesting

that glycolysis is the major metabolic pathway of active cortex (14). This observation led to a

proposal that neural  activity  induces aerobic glycolysis  in astrocytes,  which then produce
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lactate to serve as the main fuel source for neurons (15)(16). Whilst, as an energetic substrate,

lactate can support some aspects of synaptic function  (17)(18), the astrocyte-neuron lactate

shuttle hypothesis challenges the long-standing consensus that glucose is the principal fuel

source of neuronal metabolism  (12). Other recent studies continue to support the idea that

significant amounts of glucose feed directly into neuronal glycolysis however (e.g. (19)(20)

(21)),  and  advancements  in  fluorescent  imaging  demonstrate  that  activity  stimulates

glycolysis, but not lactate uptake (22).

Presynaptic nerve terminals are unusual in the sense that many lack mitochondria but are able

to satisfy the sizable ATP-consumption requirements of synaptic vesicle recycling  (23)(24)

(25). ATP production must be able to increase rapidly in order to meet acute changes in

presynaptic demands, and so it is perhaps not surprising that recent work has highlighted the

importance  of  locally-derived  glycolytic  ATP  generation  and  glucose  transport  in  the

synaptic vesicle cycle (26)(27). Neuronal activity has been associated with localization of key

glycolytic  enzymes  to  the  presynaptic  terminal  (28),  and  several  of  these  proteins  are

enriched  in  synaptic  vesicles  (29)(30) where  they  are  found to  be  essential  for  synaptic

vesicle re-acidification and glutamate uptake (31)(32). Vesicle recycling is a highly dynamic

and energetically-demanding process  (33)(34) for which ATP supply  via  glucose oxidation

alone is presumably too slow (35)(36). Consequently, metabolic stress induced at individual

excitatory  presynapses  by  substrate  depletion  has  been  shown  to  reduce  the  number  of

functional release sites and depress rates of synaptic vesicle recovery (37)(38). It is not yet

understood,  however,  whether  these  changes  in  central  carbon metabolism directly  affect

global network behavior. In this study we set out to determine the consequences of energetic

substrate depletion on a network model of human cortical neurons.  
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Our approach  was  to  develop a  combined experimental-computational  model  sufficiently

detailed to be relevant to the problem at hand yet sufficiently simple to provide an intuitive

picture of how metabolism governs important aspects of cortical network behavior. For these

experiments  we  used  induced  cortical  glutamatergic  neurons  (iNs)  derived  from  human

embryonic  stem cells  (hESCs)  by  overexpression  of  neurogenin  2  (NGN2)  (39) from a

genetically  safe  harbor  in  order  to  maximize  induction  efficiency  and  improve  network

homogeneity  (40). We cultured human iNs together with rat astrocytes on multi-electrode

arrays  (MEAs);  extensive  characterization  of  their  electrophysiology  has  been performed

previously  (39)(41) and  suggests  individual  iNs  constitute  excitatory  cortical  layer  2/3

neurons  equipped  with  AMPA  receptors.  For  computational  conceptualization  of  our

experimental results we extended a simplified version of the spiking neural network model

used by Guerrier et al. (2015) to describe the emergence of synchronous bursting driven by

synaptic dynamics (42). We found a reduced version of this model captured the same effects

and  incorporated  metabolic  regulation  of  synaptic  vesicle  recovery  in  order  to  interpret

experimental data derived from cultured excitatory networks.   

Results

Emergence of synchronized bursts during excitatory network development

We cultured  human  iNs  together  with  rat  astrocytes  on  MEAs from day 3  of  induction

onwards.  From day 12 we recorded 10min of electrical  activity  at  three regularly-spaced

intervals (10:00 AM GMT every Monday, Wednesday, and Friday) each week for a total of

six  weeks  (Materials  and  Methods).  To  ensure  the  observed  network  behavior  was

representative we repeated this experiment on three separate occasions, each time using a
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different hESC clone for induction and a new preparation of astrocytes for co-culture. The

emergence of spontaneous bursting after 3-4 weeks from induction was a consistent feature

of  developing  networks  (Fig.  1).  Bursts  were  easily  identified  upon visual  inspection  of

recorded data and consisted of a characteristic, high-frequency spike train (Fig. 1A). Timings

of  bursts  were  synchronized  across  all  participating  electrodes  whilst  spontaneous  action

potentials occurring within and between bursts were not. A custom-built synchronous burst

detection algorithm (SI Appendix) was used to analyze bursts from raw electrode data and

showed that synchronous bursting spread and then stabilized across the network over the

course  of  development.  Network  maturation  was  accompanied  by  a  gradual  increase  in

synchronous burst frequency (Fig. 1B), but precise frequencies varied significantly between

cultures. Although we do not present an extensive analysis here, we also experienced that,

during later stages of network maturation, synchronous bursts underwent different degrees of

higher  level  organization,  including the appearance  of  compound bursting  (43) and burst

compactification (44).

Figure  1.  Synchronous  bursting  characteristics.  A)  Synchronized  bursts  consisting  of

trains of action potentials are clearly visible in raw electrode data. Representative data from

two  neighboring  electrodes  showing  temporal  correlation  of  bursts  occurring  in  control

conditions (i).  Synchronized bursts are obliterated (although spontaneous action potentials

persist) by the presence of the AMPA/kainite receptor antagonist CNQX (ii), but this effect is

immediately reversible following a wash-off (iii). Total inhibition of electrical activity upon

treatment with TTX (iv). For illustrative purposes, upper panels displaying fast time scale are

smoothed using a  2ms Gaussian window.  B)  Numbers  of  synchronous bursts  per  minute

(SBPM) gradually  increases and stabilizes  over the course of network development  (data

from  three  independent  6-week-long  experiments  each  using  distinct  hESC  clones  and
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astrocyte preparations). Two-way ANOVA reports time (days from induction) as the major

source of variation, Ptime < 0.0001; N=3. C) When mature, the same cultures were subject to

CNQX  treatment,  revealing  the  dependence  of  synchronous  bursting  on  excitatory

glutamatergic signaling. Zero synchronous bursts were observed in the presence of CNQX.

Several groups have similarly described the emergence of network-wide synchronous bursts

in  cultures  of  disassociated  primary  rat  neurons  (45)(46)(47) and  human  iNs  (48).  The

frequency of synchronous bursting reported by Frega et al. (4.1   0.1 burst/min)  (48) lies

within  the  SBPM  range  that  we  observe  in  mature  cultures,  suggesting  that  the  two

phenomena  are  closely  related.  The  similar  characteristics  of  synchronous  bursting  are

perhaps expected given that iNs were used in those experiments also, but one cannot rule out

possible  differences  caused  by  viral  targeting  or  contributions  from excitatory/inhibitory

neuronal contamination in astrocyte preparations  (49). To confirm that synchronous bursts

are dependent on excitatory glutamatergic signaling we subjected each culture to treatment

with 40M cyanquixaline (CNQX) following the developmental  time course.  CNQX is a

specific, competitive inhibitor of excitatory AMPA/kainite receptors (50). 10min incubation

of cultures  in the presence of this  drug resulted in total  inhibition of synchronous bursts

without  affecting  spontaneous  firing  of  action  potentials  (Fig.  1A,  1C and S1)  (see  also

Supplementary Dataset 1). The effect was immediately reversible following a single wash

with fresh media. Subsequent administration of 1M tetrodotoxin (TTX), a potent voltage-

gated  sodium channel  blocker,  silenced  the  network  entirely  (Fig.  1A and S1)  (see  also

Supplementary Dataset 1). Conversely, administration of 40M bicuculline,  a competitive

antagonist of the primary inhibitory GABA receptor, had no detectible effect on synchronous

bursts (not shown).
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Kinetics of vesicle re-acidification determine synchronous bursting frequency

Having confirmed that neuronal communication via release of the excitatory neurotransmitter

glutamate is responsible for coordinating synchronous bursting, we were interested to know

what aspects of neurotransmission determine synchronous bursting frequency. To evaluate

the role of the synaptic vesicle cycle we sought to inhibit a process known to be important for

vesicle maintenance and recovery following exocytosis. Various pathways and vesicle pools

are suggested to participate in synaptic vesicle recycling (33)(34), and the currently accepted

knowledge is  concisely  summarized  by KEGG pathway entry  hsa04721.  Common to  all

pathways  is  vesicle  re-acidification  by  the  vacuolar-type  ATPase  (v-ATPase)  required  to

generate the electrochemical proton gradient that is an essential prerequisite for the uptake of

glutamate into synaptic vesicles (51)(52). 

We evaluated the response of cultures to acute pharmacological inhibition of the v-ATPase

by rounds of 10min incubation in media treated with drug or vehicle, transfer to the MEA

recording  device  for  a  200sec  equilibration,  and  a  10min  recording  of  network  activity

(Materials and Methods). We found that 50nM concanamycin A (CMA), a highly specific

inhibitor of the v-ATPase (53), significantly reduced the number of synchronous bursts per

minute (SBPM) (Fig. 2, vehicle: 4.76  1.76; CMA: 0.30  0.15) suggesting that vesicular

re-acidification is a key determinant of the frequency of network-wide synchronous bursts.

Conversely,  treatment  with  80M dynasore  (54),  an  inhibitor  of  all  the  major  dynamin

isoforms required for vesicle endocytosis, had no significant effect after the first or second

10min incubation (Fig. 2B, vehicle: 3.90   1.20; dynasore 10min: 4.33   1.11; dynasore

20min: 4.00  1.50). 
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Figure  2.  Inhibiting  the  vesicle  recycling  and  maintenance  pathways.  A)  Incubating

cultures  in the presence of 50nM CMA for 10min significantly reduces the frequency of

synchronous bursting compared to 10min incubation in the presence of vehicle alone. CMA

versus vehicle P = 0.032; N=3. B) 80µM dynasore had no detectible effect on SBPM after the

first, or second, 10min incubation. Dynasore 10min versus vehicle P = 0.4, dynasore 20min

versus vehicle P = 0.48; N=3.

    

Glucose depletion reduces synchronous burst rate

To assess the consequences of energetic  substrate  restriction on synchronous bursting we

developed a timing-based protocol of substrate depletion and repletion (Fig. 3A and Materials

and Methods). On the basis of recent work, 20-30min in the absence of extracellular glucose

is sufficient to impair presynaptic transmission (55)(37)(38), which is far shorter than the 16h

time window during which the survival of cultured neurons remains uncompromised (56). As

with  previous  pharmacological  experiments,  we  repeated  multiple  rounds  of  10min

incubation,  200sec equilibration,  followed by a 10min recording after which transfer of a

culture into fresh media was always performed regardless of whether or not it contained an

alternative mix of substrates (Fig. 3A and Materials and Methods). This was to rule out any

confounding  effects  of  mechanical  perturbation  or  media  acidification/oxygenation.  We

found that synchronous burst frequency (as measured by SBPM) decreased following the first

10min  incubation  in  the  absence  of  25mM  glucose  and  0.22mM  pyruvate  and  was

significantly reduced after the second 10min incubation, with far fewer synchronous bursts

occurring at regularly-spaced intervals across the subsequent 10min recording (Fig. 3B and

S2, glucose and pyruvate: 6.23  2.00; no substrate 10min: 4.60  1.01; no substrate 20min:

0.30   0.12)  (see  also  Supplementary  Dataset  2).  This  phenomenon  was  significantly

reversed after the reintroduction of 25mM glucose alone (Fig. 3B and S2, glucose alone: 3.95
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 1.20) (see also Supplementary Dataset 2), indicating that a high SBPM can be sustained in

absence of the oxidative substrate pyruvate.  

Figure 3. Glucose depletion decreases SBPM. A) Cartoon schematic of substrate depletion-

repletion experimental  protocol described in Materials  and Methods. Each wash-incubate-

equilibrate-record  epoch  was  performed  using  fresh  media  regardless  of  substrate

composition.  B)  Synchronous burst frequency decreases following 10min incubation in the

absence of extracellular glucose (25mM) and pyruvate (0.22mM), and significantly further

still following a second 10min incubation. Replenishment of glucose alone is sufficient to

restore a significantly higher SBPM. No substrate 20min  versus glucose and pyruvate P =

0.013; no substrate 20min  versus no substrate 10min P = 0.003; glucose alone  versus no

substrate 20min P = 0.012; N=4. C) Only the metabolically active D-isoform of glucose (not

L-glucose) can sustain a significantly higher SBPM in physiologically-relevant conditions

containing 5mM D- or L-glucose, 5mM DL-lactate (racemic mixture) and 0.22mM pyruvate.

L-glucose 20min  versus D-glucose control  P < 0.001;  L-glucose 20min  versus L-glucose

10min P = 0.027; D-glucose replenishment versus L-glucose 20min P = 0.014; N=4.

In order to confirm our observations are not related to the artificially high levels of glucose

(25mM) conventionally used in cell culture media, a consequence of osmotic stress possibly

experienced  upon  exchange  of  the  growth media,  or  complete  absence  of  an  alternative

oxidative substrate altogether, we repeated the substrate depletion-repletion protocol under

more  physiologically-relevant  conditions  (57).  We  retained  0.22mM  pyruvate  and

supplemented with 5mM DL-lactate (racemic mixture) at all time points, reducing the total

concentration of extracellular glucose to 5mM. To control for the possible effect of osmotic

stress during periods of glucose depletion we replaced D-glucose with its non-metabolically-
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active  isoform  L-glucose.  In  accordance  with  previous  experiments,  we  found  that

substituting 5mM D-glucose with 5mM L-glucose led to a slight decrease in synchronous

burst frequency after 10min incubation followed by a significant drop in SBPM during the

second 10min recording (Fig. 3C and S3, D-glucose: 7.02  1.02; L-glucose 10min: 2.65 

0.60;  L-glucose 20min:  1.0   0.35) (see also Supplementary  Dataset 3).  This  effect  was

significantly reversed upon replacement of L-glucose with D-glucose (Fig. 3C and S3, D-

glucose replenishment: 5.48  1.51) (see also Supplementary Dataset 3), confirming that the

metabolically  active  form  of  glucose  alone  can  sustain  a  high  synchronous  bursting

frequency. The continued presence of substrates that can only be used to generate ATP by

oxidative phosphorylation implies that the glycolytic substrate glucose is required to sustain a

high SBPM. Specificity for glucose was further supported by substituting 5mM glucose for

5mM galactose, a glycolytic substrate whose transport and pre-processing means it passes

through glycolysis more slowly, but yields the same ATP molar equivalent to glucose during

oxidative phosphorylation (Chapter 16.1.11. in (58)), which also failed to rescue the higher

synchronous bursting frequency (Fig. S4) (see also Supplementary Dataset 4).    

Finally, to conceptualize how these features lead to the emergence of synchronous bursting

initiated by spontaneous action potential firing we have built upon the results of Guerrier et

al.  (42) to describe our excitatory network with a model based on random, sparse synaptic

connections equipped with short-time synaptic plasticity (STSP), three synaptic vesicle pools,

and  a  mechanism  linking  vesicle  maintenance  and  recovery  rates  to  energetic  substrate

availability. In our implementation of this computational model we explored the possibility of

simplifying STSP dynamics further and found that the assumption of just a single vesicle

pool  (Fig.  4A)  remains  sufficient  to  recapitulate  the  synchronous  bursting  phenotype we
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observed experimentally during glucose depletion (Fig.  4B, Material  and Methods and SI

Appendix).

Figure 4. Computational model of synchronous bursting. A) Cartoon schematic showing

that  presynaptic  vesicle  recycling  involves  several  steps  suggested  to  depend  on  ATP

supplied by glycolysis, including endocytosis and vesicle re-acidification by the v-ATPase. In

our computational model we encompassed contributions from all pathways in a single term

describing the rate of synaptic vesicle recovery and maintenance. B) Simulations reveal that

in  high  levels  of  extracellular  glucose  (left),  synchronized  bursting  persists  at  a  higher

frequency than when extracellular glucose is low (right), as modelled by reducing the rate of

vesicle recovery and maintenance. Upper panels display raster plots of spike timings from all

400 neurons in the simulated network, middle panels the total spike count across the network

as a function of time, and lower panels the corresponding fluctuations in membrane potential

of a representative neuron.

Discussion

In this work we used cultured networks of excitatory human iNs and rat  astrocytes as an

experimental model system to study the influence of energetic substrate availability on global

network behavior. Glucose depletion dramatically reduced the prevalence of network-wide

synchronous bursts  mediated by excitatory neurotransmission,  an effect that  could not be

rescued by a purely respiratory substrate such as lactate or pyruvate. Our results build upon

earlier work focused on the effects of energetic substrate availability on neuronal function,

which revealed that glucose is essential for synaptic transmission even though intracellular

ATP levels remain normal in the presence of oxidative fuel sources (59)(60)(61)(62). 
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Using  CNQX  to  inhibit  synaptic  transmission  we  found  that  network-wide  synchronous

bursts  are  an  emergent  property  of  excitatory  synaptic  communication  rather  than

synchronization  of  intrinsically  bursting  neurons.  In  a  simple  computational  model,  we

demonstrated that this type of synchronized bursting is sensitive the rate of synaptic vesicle

recycling and maintenance, which is in turn sensitive to energetic substrate availability. Our

model  revealed  that  a  single  vesicle  pool  was  sufficient  to  recapitulate  our  experimental

observations,  which  is  particularly  important  given  the  lack  of  conclusive  experimental

evidence for the involvement of different pathways and vesicle pools during synaptic vesicle

recycling (33)(34), about which we prefer to remain agnostic. An exception however, is our

acceptance  that  synaptic  vesicle  re-acidification  is  a  central  component  of  all  vesicle

recycling and maintenance pathways,  which explains the decrease in SBPM we observed

following pharmacological  inhibition  of  the  v-ATPase.  Our  study therefore  suggests  that

vesicle  re-acidification  plays  an important  role  as  a  determinant  of  synchronous bursting

frequency.

Recent lines of evidence indicate that fully-functional presynaptic transmission is dependent

on activity-induced glycolysis  (31)(32)(26)(28) and this has led to a proposal that a rapid

supply of ATP is required to power the synaptic vesicle cycle at nerve terminals  (36). This

claim is further supported by studies demonstrating a decrease in vesicle recovery rates and

impaired  vesicle  maintenance  within  individual  synapses  in  the  absence  of  extracellular

glucose (19)(37)(38), but we note other factors such as the inability of the presynaptic action

potential to trigger vesicle release cannot be fully excluded (55). Our experimental results are

consistent with the idea that efficacy of the synaptic vesicle cycle may diminish upon a drop

in extracellular glucose concentration, and as a proof-of-concept we have accommodated this
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in our computational description of excitatory cultures. Following the approach of Lucas et

al.  (38), we modified the time constant for vesicle recovery in the model to account for the

fact that under low glucose conditions, when energy charge (ATP:ADP/AMP ratio) is more

sensitive to increased ATP consumption rates, the proportion of functional vesicles available

for  release  is  reduced  (31)(32)(26)(28)(27).  As  observed  experimentally,  when  vesicle

recovery and maintenance is compromised in response to a decrease in extracellular glucose

concentration, there is a corresponding decrease in synchronous burst frequency (Fig. 4B). A

possible explanation for why a reduction in glucose availability might impair the synaptic

vesicle cycle is that v-ATPase activity is more reliant on glycolytically-derived ATP  (31)

(32).  However,  other  stages  of  vesicle  recycling  are  likewise  energetically  demanding

processes that depend on both oxidative  (63) and non-oxidative supply of ATP  (26)(28).

Therefore,  although it has been argued that availability of vesicles does not become rate-

limiting during ATP depletion  (64)(65), and despite the fact that in our hands the inhibitor

dynasore had no effect on synchronous bursting frequency, the impairment of endocytosis

upon  glucose  restriction,  particularly  involving  rapid  “kiss-and-run”  (34) or  dynamin

independent (66) mechanisms, cannot be completely ruled out.

Dependence  on  glucose  might  be  relevant  for  presynaptic  function  beyond  the  synaptic

vesicle cycle  (67) because many nerve terminals are thought to lack mitochondria  (23)(24)

suggesting that a considerable proportion of presynaptic ATP supply may be glycolytic in

origin.  Our  experiments  do  not  exclude  the  possibility  that  postsynaptic  function  also

becomes  compromised  by  the  removal  of  glucose  since  reduced  excitatory  postsynaptic

potential  propagation  also  leads  to  a  decrease  in  SBPM  in  our  computational  model.

Postsynaptic  compartments  of  neurons  have  considerable  energy  requirements  associated

with reversal of ion fluxes and membrane potential maintenance, but ATP for these processes
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is thought to be supplied almost exclusively via oxidative metabolism (3)(4)(5). The inability

of pyruvate or lactate to sustain a high SBPM in our experiments suggests that the observed

dependence  on glucose is  not  limited  to  its  role  as  a  substrate  for  oxidative  metabolism

however,  because these substrates  have been shown to support many aspects of neuronal

function  (17)(18)(38) that can be left to depend exclusively on ATP supplied by oxidative

phosphorylation.  Galactose  was  also  unable  to  sustain  a  high  SBPM,  implying  that

glycolytically-derived ATP is likely an important energy contributor to synchronous bursting.

Alternatively, it has been hypothesized that astrocytically-derived lactate can be used as a

substrate for oxidative metabolism by neurons (15)(16), and thus in principle could become

rate-limiting for neuronal activity during glucose depletion, in a fashion that simply cannot be

rescued  by  the  presence  of  lactate  and  pyruvate  in  the  extracellular  media.  As  well  as

providing vital  support  for  synaptic  function,  the  presence  of  astrocytes  in  co-cultures  is

known to critically  shape  the metabolic  profile  of  both  neurons and astrocytic  metabolic

gene-expression profiles (68) that may in turn affect the glycolytic capacity of both cell types

in vitro. How well these expression patterns correspond to those of intact brain is currently

not  completely  clear  however  (67),  and  the  finding  that  culture  microenvironments

potentially  alter  preferences  in  bioenergetic  pathway  use  (69) should  be  taken  into

consideration when using experimental results to infer the relative contributions of various

metabolic pathways in vivo. In addition, metabolic reprogramming from aerobic glycolysis to

oxidative  phosphorylation  has  been  shown  to  occur  during  neuronal  differentiation  (70)

meaning dependence on glucose as a non-oxidative fuel source may depreciate after further

maturation.           

It  is  also important  to  highlight  the  effects  that  glucose depletion  can exert  on neuronal

activity  through cellular  signaling.  Most  likely  this  would occur  indirectly  via the AMP-
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activated protein kinase pathway that regulates the activity of proteins involved in fuel supply

and ATP turnover in response to changes in energetic demands (71). In the brain there is no

good  evidence  for  a  direct  glucose-sensing  mechanism  such  as  that  thought  to  exist  in

pancreatic  -cells  (72),  but  it  is  understood that  many neuronal  cell  types  express  ATP-

sensitive  potassium  channels  that  provide  an  additional  level  of  coupling  between

intracellular  energy  status  and  membrane  excitability  (73)(74).  This  finding  has  been

suggested to underpin the effect that ketogenic diets can have to reduce risk propensity to

epileptic seizures (75). As such, treatment with inhibitors of glycolysis including 2-deoxy-D-

glucose has recently been suggested as a route towards effective seizure management  (76).

The rationale for such treatments is based on the observation that inhibition of glycolysis

suppresses network excitability and epileptiform bursting both  in vivo and in hippocampal

slices  (77)(78)(79),  which complements  the results  we present  here showing that  glucose

depletion decreases synchronous bursting frequency in cultured networks and that this can

potentially be attributed to glycolytic cessation.                   

In  summary,  our  results  show  how  network-wide  synchronous  activity  emerging  from

excitatory  coupling  and  synaptic  vesicle  dynamics  is  regulated  by  energetic  substrate

availability in a simplified cultured network model of neurons and astrocytes. The failure to

sustain a high synchronous bursting frequency in the absence of any metabolic fuel source

can be explained by the fact that synaptic transmission is a highly energetically-demanding

process that requires ATP for vesicle maintenance and recovery at the presynapse in addition

to reversal and restoration of ion fluxes and membrane potential at the postsynapse. Sources

of ATP for these processes may involve contributions from neuronal or astrocytic glycolysis,

which would necessitate  the particular  dependence of synchronous bursting frequency on

glucose. However, it is very likely that glucose oxidation also contributes toward the supply
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of ATP required to sustain synaptic activity. Thus, our combined experimental-computational

approach paves the way for establishing an effective and pragmatic model for (dys)regulation

of  metabolism  in  the  (un)healthy  human  brain.   By  making  experimental  data  and

computational code available to the wider community we hope to contribute to the further

advancement of knowledge on this important subject.

Materials and Methods

Cell culture

Human embryonic stem cells H9 [Wisconsin International Stem Cell (WISC) Bank, WiCell

Research Institute, WA09 cells] were cultured according to WiCell stem cell protocols in 6-

well plates on Matrigel (Corning, hESC-Qualified) in StemFlex (Gibco). Use of stem cell line

H9 was approved by the Steering Committee of the UK Stem Cell Bank and for the Use of

Stem Cell Lines (ref: SCSC18-05). 

Primary mixed glial  cultures were derived from P0-P2 neonatal  Spraque Dawley rats and

were generated along the previous guidelines (80), with minor modifications (81). The pups

were euthanized following Schedule 1 rules and regulations from the Home Office Animal

Procedures Committee UK (APC). Mixed glia cells were maintained for 10 days in culture

after which flasks were shaken for 1h at 260rpm on an orbital shaker to remove the loosely

attached microglia,  and then overnight at  260rpm to dislodge oligodendrocyte precursors.

Astrocyte  cultures  were  then  maintained  in  glial  culture  medium  (Dulbecco’s  modified

eagle’s medium (DMEM) supplemented with 10% fetal bovine serum (FBS), glutamine and

1% pen/strep) and passaged at a ratio of 1:3, every 10-14 days. Cells were passaged at least

once before co-culturing with iNs and were only used between passages 2 and 5. 
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Induction of NGN2- hESCs and culturing iNs on MEAs

Gene targeting and generation of dual GSH-targeted NGN2 OPTi-OX hESCs was performed

as described previously (40). The day prior to initiation of the reprogramming process (day

0), NGN2-hESC colonies grown to 70-80% confluency were disassociated using Accutase

(Sigma-Aldrich) and isolated NGN2- hESCs were seeded in 6-well plates at  a density of

25,000cells/cm2 on Matrigel (Corning, hESC-Qualified) in StemFlex (Gibco) supplemented

with RevitaCell (Gibco). Inducible overexpression of NGN2 began on day 1 by transferring

cells into D0-2 induction medium (DMEM/F12, 1% Pen/Strep, 1x non-essential amino acid

solution  (NEAA,  Gibco),  1% (v/v)  N-2  supplement  (Gibco),  1x  Glutamax  (Gibco),  and

doxycycline  (dox)  at  4g/ml).  On  day  3,  cells  were  dissociated  using  Accutase  and  re-

suspended  at  a  density  of  4000cells/l  in  >D2  medium  (Neurobasal-A  Medium

(ThermoFisher),  1% pen/strep,  1x Glutamax, 1x B27 supplement  (Gibco),  10ng/ml brain-

derived neurotrophic factor  (BDNF), 10ng/ml human recombinant  neurotrophin-3 (NT-3),

and dox at  4g/ml)  supplemented  with RevitaCell.  Rat  astrocytes  were dissociated  using

0.05%  trypsin-ethylenediaminetetraacetic  acid  (EDTA)  and  re-suspended  at  a  density  of

4000cells/l in >D2 medium supplemented with RevitaCell. Astrocytes were then mixed at a

ratio  of  1:1  with  dox-treated  NGN2-  hESCs in  >D2 to  make  a  final  seeding  density  of

2000cells/l for each cell type.

Cells were seeded onto a selection of 8x8 (60 electrodes in total, excluding corners) electrode

MEAs (60MEA200/30iR-Ti or 60ThinMEA100/10iR-ITO, Multichannel Systems) covered

by Teflon-sealed lids (Multichannel Systems) and pre-coated overnight at 4C with 500g/ml

poly-D-lysine (PDL) in ultrapure water. For seeding, MEAs were first incubated for 1h at

37C, 5% CO2 with a 20l drop of laminin solution (20g/ml laminin in DMEM) covering

the  electrode  region.  The  laminin  drop  was  aspirated  immediately  prior  to  seeding  and
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replaced with a 15l drop of re-suspended cell mixture (total density of 4000cells/l). MEAs

were incubated with 15l drops of cell suspension for 1h at 37C, 5% CO2 to allow cells to

adhere before being topped up to 1ml with >D2 medium (without RevitaCell). Cultures were

maintained throughout lifespan at 37C, 5% CO2 with 500l media replenished every second

day. 2M cytosine -D-arabinofuranoside was added to cultures on day 5 to inhibit astrocyte

proliferation and kill undifferentiated NGN2- hESCs and dox was excluded from >D2 media

from day 8 onward. 

Recording procedures

For recordings, MEAs incubated at 37C, 5% CO2 were transferred to the MEA recording

device (MEA2100-2x60-System, Multichannel Systems). All recordings were performed in

atmospheric conditions with stage and custom-built heated lid held at 37C. Developmental

time course recordings took place every second or third day, 10min after a 37C, 5% CO2

incubation following half-media change. MEAs were allowed to equilibrate for 200sec on the

MEA recording device and recording sessions lasted 10min with local field potentials from

all electrodes sampled at 25kHz. 

A strict regime of media exchange, incubation, equilibration, and recording was enforced for

all pharmacological and substrate depletion-repletion experiments. For drug treatments, MEA

cultures were first washed (2x total media exchange) in >D2 media with vehicle (all drugs

were diluted in DMSO or ddH2O as required for treatment and corresponding concentration

of the dissolving agent  used as vehicle  controls)  to control  for the effects  of mechanical

perturbation, and subsequently incubated at 37C, 5% CO2 for precisely 10min. MEAs were

then transferred to the recording device (pre-heated to 37C) and equilibrated for 200sec prior

to  a  10min  recording  sampling  at  25kHz.  This  procedure  was  repeated,  immediately
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following each recording, under the multiple test conditions (inclusion of pharmacological

compound in fresh >D2 media) necessary for each experiment. Cultures were exchanged into

fresh >D2 media on termination of the final recording and returned to incubation at 37C, 5%

CO2. The same protocol was employed for substrate depletion-repletion experiments using

>D2  media  based  on  Neurobasal-A  medium  lacking  glucose  and  sodium  pyruvate

(ThermoFisher). In this case media supplemented with the appropriate combinations of 25 or

5mM  D-  or  L-glucose,  0.22mM  sodium  pyruvate,  5mM  sodium  DL-lactate  (racemic

mixture), and 5mM D-galactose served as test conditions.  

Recorded  data  were  processed  and  analyzed  using  the  MC  Rack/MC  Tools  software

(Multichannel Systems) and a custom-built synchronous burst detection algorithm described

in the SI Appendix. The algorithm calculates the number of synchronous bursts per minute

(SBPM) for each recording and was used to extract this value from all biological replicates

and conditions for further statistical analysis. Two-way analysis of variance (ANOVA) was

performed in GraphPad Prism to assess the influence of biological conditions (time, energy

substrate composition, or drug) and biological replicates (N = number of cultures) on SBPM;

resulting p-values for conditions and number of replicates for each experiment are displayed

in the figure legends. Student’s t-tests were used to compare mean SBPMs from pairs of

biological  conditions  relevant  to  experimental  interpretation;  corresponding  p-values  are

displayed  in  figure  legends  and annotated  in  figures  with  *  signifying  P  < 0.05  and **

signifying P < 0.01.  Error  bars are standard error of the mean (SEM) and SBPM values

reported in main text are mean  SEM. Representational experimental data (Supplementary

Datasets 1- 4) have been deposited in Figshare (see Data Deposition for link and DOIs).

Computational modelling
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We  simulated  a  modified  version  of  the  excitatory  neural  network  model  described  by

Guerrier  et  al.  (42) consisting  of  20x20 (400)  connected  neurons  organized  on a  square

lattice.  Membrane potential  of  each  neuron was modelled  using  the  simplified  Hodgkin-

Huxley model and neurons were connected randomly according to a probability distribution

that decays as a function of distance between pairs on neurons (see SI Appendix and (42)).

We believe this type of random synaptic connectivity accurately reflects that which emerges

in our experimental cultures over the course of development. In the original work (42), the

fraction  of  available  free,  docked,  and  recovering synaptic  vesicles  are  simulated,

corresponding to the proposed existence of multiple vesicle pools and recovery pathways (33)

(34).  Here we simulated  only  the  fraction  of  docked vesicles,  assuming that  recovery  is

described by a single rate constant encompassing these mechanisms and have shown that this

is  sufficient  to  recapitulate  the  emergence  of  synchronous  bursting  across  the  simulated

network  (SI  Appendix).  To  model  the  effect  of  glucose  depletion  on  synaptic  vesicle

recovery, we allow for modulation of this rate by energy substrate availability, assuming that

when the levels of extracellular glucose are low the overall rate of recovery decreases as a

function  of  recent  presynaptic  energy consumption.  Although we take  inspiration  from a

similar approach used in  (38), we do not intend to model the exact functional form of this

glucose  dependence  and  instead  sought  only  to  capture  the  desired  properties  using  a

simplified model of presynaptic metabolism (SI Appendix).               
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