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Abstract
In this work we address the problem of supervised audio source separation within a reverberant

environment. We make use of a nonnegative representation in order to model the mixture along
with reverberation. This kind of models often pose the problem that the number of variables to
learn is large with respect to the data, which is to say there are many possible choices of the
elements that result in the same approximation of the mixture. We use a probabilistic approach
in order to derive a penalized cost function that aims to overcome this issue by inducing a cer-
tain structure over the representation elements. Preliminary results account for a considerable
improvement in restoration quality with the introduction of penalizers.
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2000 AMS Subject Classification: 92C55 - 68T10

1 Introduction

One of the main problems arising in audio signal processing is that of source separation. That is, given
a recording of sound coming from two or more sources, we want to isolate the signals produced by
each one.

In this work we shall use a nonnegative matrix factorization (NMF) model to address the problem of
speech separation. Some early approaches have made use of training data in order to build a dictionary
that encompass the spectral characteristics of each speaker and separate the sources by isolating the
activation components ([6]). This works reasonably well for purely additive mixtures, but in reality we
are usually faced with reverberation and noisy environments. A more recent approach ([5]) made use
of a mixture of NMF and convolutive NMF (CNMF) in order to address this issue. This kind of model
entails learning many coefficients from limited data, and thus poses a practical problem: an observed
power spectrogram can be accurately represented by a set of parameters that is not representative of
the phenomenon we intend to model.

In this work we make use of a Bayesian approach to define proper penalization terms over a cost
function. Then, we build an algorithm for minimizing such function which results in effectively learning
a mixed NMF-CNMF representation by inducing certain structure over its elements.

2 A reverberant mixture model
Let us consider a setting with I speakers and R microphones. In order to model the reverberant
mixture, we begin by defining the continuous, compactly supported functions si, hr,i : R → R, i =
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1, . . . , I, r = 1, . . . R, where si is the signal from the i-th source, and hi,r is the impulse response signal
from the i-th source to the j-th microphone. Then, under the hypothesis that the phenomenon can be
accurately represented by a linear time invariant (LTI) system, we can define

xr(t)
.
=

I∑
i=1

(hr,i ∗ si)(t), r = 1, . . . , R, (1)

where xr is an approximation to the recording yr, obtained from the r-th microphone.
Since speech signals present large oscillations, we switch to the time frequency domain by means of

the Short Time Fourier Transform (STFT). That is, we define Yk,n,r
.
= |ŷr;k(n)|2, Xk,n,r

.
= |x̂r;k(n)|2,

Hk,n,r,i
.
= |ĥr,i;k(n)|2 and Sk,n,i

.
= |ŝi;k(n)|2, where ·̂k(n) denotes the STFT at frequency k and time

n. With these definitions, Equation 1 leads to

Yk,n,r = Xk,n,r + εk,n,r =

I∑
i=1

M∑
m=1

Hk,m,r,iSk,n−m+1,i + εk,n,r, (2)

where ε ∈ RK×N×R is a tensor modeling both the representation error and noise. Details on how this
model can be built from (1) can be found in [2].

Finally, let us assume that each source signal can be well represented by using NMF. This means
that ∃W ∈ RK×J×I0,+ , U ∈ RJ×N×I0,+ such that Sk,n,i ≈

∑
jWk,j,iUj,n,i. Making a small abuse of

notation, model (2) now reads

Yk,n,r = Xk,n,r + εk,n,r =

I∑
i=1

M∑
m=1

J∑
j=1

Hk,m,r,iWk,j,iUj,n−m+1,i + εk,n,r. (3)

We now need a way to find representation elements in (3) that allow for a good separation.

3 Cost function
Given that we do not know the model components, we shall treat them as realizations of random
variables, and from there, build a cost function whose minimizer will provide a good representation.

Firstly, given that no information is available on the error, we shall assume εk,n,r to be a realization
of a zero-mean normal distribution. This corresponds to Yk,n,r having the following distribution,
conditioned on Xk,n,r:

πlike(Yk,n,r|Xk,n,r) =
1√
2πσ

exp

(
− (Yk,n,r −Xk,n,r)

2

2σ2

)
.

On the other hand, an NMF representation of a clean spectrogram is expected to exhibit a sparse
use of the atoms (columns of W ) to build a representation, unlike the smooth structure expected for
a reverberant one. Sparsity can be favored by assuming the elements of U to be realizations of an
exponential distribution. This corresponds to the following Probability Density Function (PDF):

πprior(Uj,n,i) =
λu
2

exp(−λu
2
Uj,n,i).

Finally, we would expect the components of the impulse response tensor H to exhibit a smooth
decay over time. This can be induced by assuming the time gradient of the associated random tensor
has a normal distribution. If we let Hk,r,i be the row vector with components Hk,m,r,i,m = 1, . . . ,M ,
this leads to

πprior(Hk,r,i) =
1

det(2π(LΣ−1LT )−1)
exp

(
−1

2
Hk,r,iLΣ−1L

T
H

T

k,r,i

)
,
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where L is a finite difference matrix associated to the gradient, and Σ
.
= 1

λh
I(M−1×M−1), for some

λh > 0.
In order to get a representation whose elements are representative of the aforementioned PDFs, we

can find the maximum-a-posteriori (MAP) estimator, which amounts to minimizing

− log πpost(X|Y ) = − log[πlike(Y |X)πprior(U)πprior(H)].

Under the assumption that the underlying random variables are uncorrelated, this is equivalent to
minimizing

f(U,H)
.
=
∑
k,n,r

(Yk,n,r −Xk,n,r)
2 + σ2λu

∑
j,n,i

Uk,n,i + σ2λh
∑
k,r,i

‖Hk,r,iL‖2. (4)

Next, we introduce a procedure for minimizing this cost function.

4 Optimization
In order to minimize the cost function f , defined in (4), we resort to a minimization-majorization
method. This essentially consists of building a new function in a larger space that is easier to minimize
than f , and use it to iteratively approach a minimizer of f .

Let Ω ⊂ RP and f : Ω → R+
0 . Then, g : Ω × Ω → R+

0 is called an auxiliary function for f if
g(ω, ω) = f(ω) and g(ω, ω′) ≥ f(ω), ∀ω, ω′ ∈ Ω.

Then, given an arbitrary ω(0) ∈ Ω and ωt .= arg minω g(ω, ωt−1), t ∈ N, it can be shown ([4]) that
the sequence {f(ωt)}t≥1 is non-increasing.

With this in mind, we can define an auxiliary function for f with respect to U as

gu(U,U ′)
.
=

∑
k,n,j,m,r

Wk,j,iU
′
j,m,iHk,n−m+1,i,r

X ′k,n,i

(
Yk,n,r −X ′k,n,r

Uj,m,i
U ′j,m,i

)2

+ σ2λu
∑
j,n,i

Uj,n,i,

where U ′j,m,i is arbitrary, and X ′k,n,r
.
=
∑
i,m,j Hk,m,r,iWk,j,iU

′
j,n−m+1,i. The proof that this is indeed

an auxiliary function for f w.r.t. U is omitted due to space limitations, but the reader is referred to
[3] for an analogous, detailed proof.

Now, given that gu is quadratic w.r.t. U , it can be minimized simply by meeting its first order
necessary condition, which readily leads to the updating rule

U
(t)
j,m,i = U

(t−1)
j,m,i

[ ∑
k,n,r

Yk,n,rWk,j,iHk,n−m+1,r,i − σ2λu

]
ε∑

k,n,r

X
(t−1)
k,n,r Wk,j,iHk,n−m+1,r,i

, (5)

where the operation [·]ε
.
= max{·, ε} is meant to preclude the elements of U from dropping to zero (or

below), given that within a multiplicative rule, if an element drops to zero it cannot regain positive
values.

An analogous procedure leads to an iterative updating rule for H. By defining, for every k, r

and i, the diagonal matrix A(k) ∈ RM×M0,+ with A
(k,r,i)
m,m =

∑
j,nWk,jUj,n−mX

(t−1)
k,n and the vector

b(k,r,i) ∈ RM0,+ as b(k,r,i)m =
∑
j,nWk,j,iUj,n−m+1,iYk,n,rH

(t−1)
k,m,r,i. Then, H can be updated by solving for

H
(t)
k,r,i, the linear system (

A(k) + σ2λuL
T
L
)(

H
(t)
k,r,i

)T

= b(k). (6)

It can be shown that the matrix A(k) + σ2λuL
T L is strictly positive definite (unless A(k) is null), and

hence the linear system (6) has a unique solution, whose elements are non-negative.
All of the above shows that the cost function f can be minimized by iteratively and sequentially

updating U and H according to (5) and (6).
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Figure 1: Separation measures results. Those obtained without penalization are on the left, and
those using penalization on the right on every plot.

5 Experiments
In order to analyze the improvement (if any) accomplished by the introduction of the penalizers into
the model, we tested our method against the one described in [5]. To do so, we randomly chose two
male and two female speakers from the TIMIT database ([7]). We then chose a signal from each and
built an artificial mixture by convolution with impulse responses generated with the software Room
Impulse Response Generator1, based on the model in [1]. The reverberation time was set to 450[ms].

The dictionaries for each speaker were built from seven signals, different from those used for the
mixture. We do not delve into details on this matter due to space limitations, but the reader is again
referred to [3] for details.

In order to evaluate the results, we used three standard separation measures: the Signal-to-
Distortion Ratio (SDR), the Signal-to-Interference Ratio (SIR) and the Signal-to-Amplitude Ratio
(SAR). Figure 1 depicts the obtained results, which clearly suggest an improvement when using our
penalization approach.

6 Discussion
A penalization model based on a Bayesian approach over a mixed NMF model was introduced and
tested. Although the results are preliminary, they clearly suggest a quality increment over the standard
NMF-CNMF approach.

There is certainly much room for improvement. For one thing, exploring the use of probability
density functions that take the correlation between the variables into account. Also, the model pa-
rameters can be set to depend on the speaker or frequency band and a way to optimally choose them
is yet to be found. Finally, it is worth mentioning that the model can be easily extended to use a
generalized β-divergence as a fidelity measure.

Acknowledgements
This research was funded by ANPCyT under projects PICT 2014-2627 and PICT 2015-0977, by UNL
under projects CAI+D 50420150100036LI, CAI+D 50020150100059LI, CAI+D 50020150100055LI and
CAI+D 50020150100082LI.

1https://github.com/ehabets/RIR-Generator
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