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Abstract—In the post-genome era, many problems in bioin-
formatics have arisen due to the generation of large amounts of
imbalanced data. In particular, the computational classification
of precursor microRNA (pre-miRNAs) involves a high imbalance
in the classes. For this task, a classifier is trained to identify RNA
sequences having the highest chance of being miRNA precursors.
The big issue is that well-known pre-miRNAs are usually just a
few in comparison to the hundreds of thousands of candidate
sequences in a genome, which results in highly imbalanced
data. This imbalance has a strong influence on most standard
classifiers and, if not properly addressed, the classifier is not able
to work properly in a real life scenario. This work provides a
comparative assessment of recent deep neural architectures for
dealing with the large imbalanced data issue in the classification
of pre-miRNAs. We present and analyze recent architectures in
a benchmark framework with genomes of animals and plants,
with increasing imbalance ratios up to 1:2,000. We also propose a
new graphical way for comparing classifiers performance in the
context of high class imbalance. The comparative results obtained
show that, at very high imbalance, deep belief neural networks
can provide the best performance.

Index Terms—bioinformatics, pre-miRNA classification, deep
neural architectures, high class imbalance.

I. INTRODUCTION

THE imbalanced data problem has been largely recognized
as an important issue in machine learning [1]–[3]. Most

machine learning algorithms work well with balanced datasets,
but with imbalanced datasets supervised classifiers tend to
be biased towards the majority class and have a very low
performance on the minority one. Classification algorithms
are designed to maximize the number of correct predictions.
When the class sizes differ considerably, the classifiers better
recognize the larger class obtaining a high accuracy, while
the minority class has a very low recall. The classification
task where one class is significantly underrepresented relative
to another still remains among the leading challenges in the
development of novel classification models nowadays [4]. This
is of particular importance in bioinformatics in the post-
genome era in studies that involve, for example, disease
diagnosis based on gene expression data, protein function
classification, activity prediction of drug molecules and recog-
nition of precursor microRNAs (pre-miRNAs).
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(sinc(i)), FICH-UNL, CONICET, Argentina. *corresponding author email:
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MicroRNAs (miRNAs) are a special type of non-coding
RNA of 21 nucleotides in length, which can be critical regu-
lators in the post-transcriptional regulation of gene expression
[5]. Since their discovery, these molecules have revolution-
ized and reshaped the bases of gene regulation. They may
determine the genetic expression of cells and influence the
state of the tissues. MiRNAs play important regulatory roles
in many fundamental biological processes such as disease de-
velopment and progression. Very recent studies demonstrated
that miRNAs can serve as oncogene or tumor suppressor
in various cancer types [6]; thus they can assist in a better
diagnosis, prognosis prediction, and therapeutic assessment of
such disease [7].

However, it is very hard to identify new miRNAs experi-
mentally [8], and this difficulty has led to the development of
several computational approaches for miRNAs classification
in the last ten years [9]–[11], mainly based on support vector
machines (SVM) [12]–[25]. The discovery of novel miRNAs
involves identifying small RNA sequences having the highest
chance of being real miRNA precursors, named candidates,
which can be later validated in wet experiments. In order to
do that, a binary classifier is trained with the well-known pre-
miRNAs of a genome. The big issue with this task is that
well-known pre-miRNAs are, usually, just a few in comparison
to the hundred of thousands sequences that can be found in a
genome. This results in a highly imbalanced dataset. In a real-
life scenario, the number of known pre-miRNAs is in the order
of hundreds for most genomes, and in the order of thousands
for the human genome (there are 1,982 human miRNAs up-
to-date in the release v19 of mirBase1). This represents an
imbalance ratio (IR) larger than 1:1,000 (1 positive class
sample and 1,000 negative class samples). Furthermore, in this
context, the minority class often contains very few instances
with a high degree of variability, making it difficult for a
classifier to generalize on unknown data [2]. A recent study has
shown that most existing machine learning classifiers, in this
context, cannot provide reliable performances on independent
testing data because of the imbalance [26]. Very recently,
deep learning and novel deep neural network architectures
have been proposed to deal with this imbalanced data issue in
bioinformatics. Deep learning models have shown to perform
very well because they can use the multi-layer architecture
to learn multiple internal levels of representation of the data

1The miRBase database (http://www.mirbase.org/) is the public database of
published miRNA sequences and annotations.
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features [27], [28], [29].
In [30] a deep belief neural network (deepBN) for identify-

ing pre-miRNA sequences was proposed. This model has an
unsupervised stage with hidden layers pre-trained as restricted
Boltzmann machines, followed by a supervised tuning of the
network. In [31] a deep architecture of self-organizing maps
(SOMs) was proposed to overcome the problem of having very
few positive class samples and a very large negative class. This
model named deepSOM has several layers of hidden SOMs,
where each inner SOM discards less probable candidates to
pre-miRNAs. The well-known pre-miRNAs samples are used
in every deep level as positive class while less likely pre-
miRNA sequences are filtered level after level. The deepSOM
model, however, in spite of having very good specificity and
recall, has low precision because a very large number of false
positive sequences remain at the last level. Although it has a
heuristic rule to automatically change the map size according
to data size, layer after layer, this change is static and limited.
We present here two variants to the deepSOM model: the deep
elastic SOM (deSOM) and the deep ensemble elastic SOM
(deeSOM), which overcome the mentioned issues. In deSOM
the number of deep levels not only grows automatically, but
also the size of each layer changes adaptively, becoming larger
or smaller as necessary according to the data at each level. The
deeSOM uses an ensemble strategy to mitigate the high class
imbalance, mainly at the initial levels.

In this work, we analyze and compare these very recent
deep neural network approaches to deal with the imbalanced
data problem in the context of pre-miRNAs classification. We
provide a comprehensive study and comparative assessment,
including many animal and plant genomes and increasing IR
much larger than commonly published, with fair comparisons
of the classifiers with the same features and datasets.

This manuscript is organized as follows. Section II presents
and explains in detail the deep neural network approaches that
are compared in this study. Section III presents the datasets
used, the experimental setup, and performance measures. Sec-
tion IV shows the results obtained and their discussion. Finally,
the conclusions of this work can be found in Section V.

II. DEEP NEURAL NETWORK APPROACHES FOR
PRE-MIRNAS CLASSIFICATION

A. The deep belief neural network

A deepBN can be built from several layers of nonlinear
feedforward networks. Each layer can be pre-trained as a
restricted Boltzmann machine (RBM) [32]. Each single RBM
consists of a layer that receives the input vectors x, and has a
set of connection weights wij in a hidden layer of neurons with
activation outputs h = [h1, ..., hP ]. The joint distribution of
hidden variables h and observation samples x can be written
as p(x,h) ∝ e−E(x,h), where E(x,h) = hTWx+bTx+cTh
is the energy function, W is the weight matrix, and b and c are
bias vectors for the input and the hidden layer. The parameters
{W, b, c} can be learnt by an unsupervised algorithm based on
Gibbs sampling [32]. Then, a final supervised stage of training
is applied. It has been shown that RBMs have the universal
approximation property [33].

Fig. 1. The deepSOM topology. Example of an architecture with 5 levels.
Dark blue neurons are pre-miRNA neurons, which provide the input to the
next SOM (black lines). Levels are sequentially generated until no change is
observed in the map sizes.

DeepBN models precisely based on RBMs are beginning to
appear for pre-miRNA classification, with very good results
[30]. These models can capture the properties of the data,
learning the low-dimensional hidden features. However, the
architecture of the network has to be optimized according to
the task. The most relevant hyperparameters for this model
are the number of deep layers, number of hidden neurons,
dropout, and number of training epochs.

B. The deep self-organizing map

The first SOM-based model proposed for pre-miRNA classi-
fication has appeared very recently in [31]. It is an architecture
with several levels of hidden SOMs, named deepSOM, that
can be seen in Figure 1. It is based on the SOMs capability
of identifying similar input patterns in the feature space and
assigning them to the same neuron or a group of adjacent
neurons on the map, in an unsupervised way [34]. A hierarchy
of SOMs in deep nested levels refines the previous map by
discarding samples that are distant to neurons with positive
class samples, level after level.

The training process of deepSOM starts with a root SOM on
the first layer (h = 1). This SOM undergoes standard training
with the complete set of input data, using an initial large map
size. During training, each input data point is assigned to a map
unit, according to the minimum Euclidean distance between
the feature vector representing each sequence and each neuron
centroid. When this first SOM becomes stable, that is to say,
no further adaptation of the weight vectors occurs, only the
data in the neurons having at least one positive class sample
are chosen for training the next map. This neuron labeling
occurs by taking into account the positive class data only
if there is at least one positive sample in a neuron, it is
labeled as a pre-miRNA neuron, no matter how many other
data points are grouped there as well. In fact, there are much
more candidates than true positive class samples due to the
existing high class imbalance. During training, only sequences
assigned to pre-miRNA neurons remain for training the next
level of deepSOM. To set the size of the next deepSOM level
h, the number of neurons nh is determined according to an
heuristic suggested by Kohonen [35], which states that the
total number of neurons in a map is related to the number of
data points to train it. This is repeated until consecutive maps
do not change. After training, the best pre-miRNAs candidates
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Fig. 2. The deep elastic SOM (deSOM) topology consists of several layers
of SOMs, where map size in each level is adapted according to the filtering
process, level after level.

are those sequences in the pre-miRNA neurons at the last level
of the deepSOM. The most relevant hyperparameter for this
model could be the maximum number of levels, but the last
level is defined automatically when no changes are observed
in the output of two consecutive SOMs.

C. The deep elastic SOM

The deep elastic SOM (deSOM) is a set of SOMs organized
into a sequence of deep levels (see Figure 2), where the size
of each layer is determined automatically like in deepSOM,
according to the data distribution in that layer. However, in
the deSOM the size of a layer can be increased if, at a
certain level of depth, the map is no longer able to reduce the
number of sequences. That is, the worst pre-miRNA candidates
were removed and the remaining candidates are very close to
the well-known pre-miRNAs. On this case, these sequences
are very difficult to split with a small SOM. To do it, the
adaptive algorithm of deSOM expands the map size, thus
pre-miRNA neurons can be re-organized in a larger space.
Therefore, several deep layers are added with this self size-
adjusting method, which is triggered automatically with data
reduction until only known pre-miRNA samples remain at the
last layer. After training, analogously to deepSOM, the best
pre-miRNAs candidates can be identified as the ones closer to
the prototypes of the pre-miRNA neurons in the last levels.
The high class-imbalance is being naturally tackled by this
model during training, since the worst candidates (farthest to
pre-miRNAs) are filtered in the initial levels and do not pass to
the next ones. Another particular feature of this model is that
a ranked set of candidates (for example, for further wet-lab
experiments) can be obtained by checking the neurons of the
next-to-last map and going back to each previous map, until a
desired number of candidates is obtained. This model has not
relevant hyperparameters to tune because the most important
architectural configuration is self adaptive according to the
training data.

D. The deep ensemble elastic SOM

As an additional way to address the high class imbalance
in the initial levels, an ensemble scheme is proposed for
the deSOM architecture, named deeSOM (see Figure 3). It
consists of generating an ensemble of Q` SOMs at each level
` of the deSOM. Several parallel SOMs are used at each level

Fig. 3. The deep ensemble elastic SOM (deeSOM) architecture. It has layers
of SOM-based ensembles.

and data is split among them, preserving the positive class
samples and dividing the remaining ones, thus reducing the
imbalance at each SOM of the ensemble. For example, let us
suppose Q1 SOMs at the initial level. These maps are trained
in parallel, where all positive samples are presented to every
SOM and all other samples are randomly split. This way, each
SOM models just a fraction of the unlabeled space. At each
map, pre-miRNA neurons are identified as those having, at
least, one well-known positive sample. The sequences that are
in pre-miRNA neurons are selected to pass to the next level.
In the next level of deeSOM, there will be Q2 maps. Each
one receives all the positive class samples and a fraction of
the unlabeled samples of the previous level.

The size and number of members in each ensemble are
determined from the training data at each layer. Thus, Q`

is adjusted automatically depending on data distribution. The
hypothesis is that ensembles can lead to better classification
performance by reducing the layer imbalance, distributing the
majority-class samples among the members. This way, Q` can
be automatically set to reach an appropriate imbalance in each
ensemble member according to the size of the data feeding
the layer. Reducing the imbalance also reduces the training
data size for each ensemble member. However, there should
be enough data to train each map. Thus, when the input has
a high imbalance, the number Q` is set to approximate an
optimal imbalance at each SOM. After a number of ensemble
layers, when the IR of the output is lower than optimal, the
model takes Q` = 1 and the following layers behave as in
deSOM. The most important hyperparameter of this model is
the optimal imbalance for SOMs, to set each Q`.

III. DATASETS, PERFORMANCE MEASURES AND
EXPERIMENTAL SETUP

For the comparisons we have created a number of datasets
of varying IRs using already available public data from a
benchmark dataset [35]. This provides a positive set with
all well-known pre-miRNAs in miRBase v19 [36] and a
negative set including random sequences from the genomes
of a set of animals and plants2, with the same sequence

2Source code and datasets are freely available at:
https://sourceforge.net/projects/sourcesinc/files/miRimbal
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TABLE I
NUMBER OF POSITIVE SAMPLES FOR DIFFERENT IR ON ANIMALS AND

PLANTS DATASET.

IR Animals Plants

1:1 7,053 2,172
1:100 2,181 1,149
1:500 436 229
1:1000 218 114
1:1500 145 76
1:2000 109 57

length distribution than the corresponding positives. In each
dataset, all the positive samples are concatenated as originally
provided in [35]. Since these data points are actually mixed
in the feature space (see Supp. Mat. Fig. S1), they provide
homogeneous examples of positive class in a wide-variety of
plants and animals genomes. In fact, since a large number of
miRNAs are conserved between species in the same kingdom,
a wide dispersion between well-known pre-miRNAs is not
expected.

For each sequence data, commonly used features in lit-
erature have information about sequence, topology, structure
[36], and motifs [37]. For fair comparisons with state-of-the-art
classifiers, we have used the 28 features originally provided
in [35]. These are the result of a feature selection process
and have shown high discriminative power: triplets, maximal
length of the amino acid string, cumulative size of internal
loops found in the secondary structure, and percentage of low
complexity regions detected in the sequence.

Class imbalance has been defined as the ratio of the number
of positives to the number of negative samples. A wide-range
of possible IR have been taken into account, from low and
moderate to very high. To this end, different artificial IRs
have been produced by selecting the number of positives and
negatives, ranging from 1:1 (no imbalance) up to 1:2,000 (very
high imbalance). The number of positives samples for each
IR is shown in Table I. The total number of samples in the
animals dataset is 7,053 positives and 218,154 negatives. In the
1:100 case, there are 2,181 positives and 218,154 negatives.
From this point, due to the restriction of the available data,
the number of negatives is always the same and the higher
imbalances are generated by reducing the number of positive
cases. In the plants dataset, there are 2,172 positive and
114,929 negative samples. In 1:100, there are 1,149 positives
and 114,929 negatives. Similarly to the animals datasets, for
higher imbalances, the number of negative samples remains
fixed. The datasets have been created starting with a random
permutation of the samples and taking groups of positive cases
incrementally to generate the imbalanced datasets. Thus, the
smaller ones are included into the larger ones, in order to
represent a real situation where there are a number of newly
positives discovered each year and the total of well-known
miRNAs is constantly increasing. For each model tested, a
stratified 4-fold cross validation (CV) procedure has been used,
giving reliable estimates of classification performance. Thus,
for each imbalance in each fold, 75% of the data was used for
training and the remaining 25% for testing.

In this work we focus on providing a broad spectrum of
comparative results for deep neural architectures in front of
very high imbalance. The aim of the comparisons is to analyze
the classifiers robustness regarding how each deep neural
model is able to manage the high imbalance by itself. We
compared the deep neural architectures versus classical clas-
sifiers such as support vector machines (SVM) and multilayer
perceptrons (MLP) [38]. Although the proposed deep models
were designed to be robust to high imbalance, it is interesting
to evaluate how they could work with some class balancing
strategy as well. Thus, we have also included comparative
results for Synthetic Minority Over-sampling (SMOTE) [2],
[39]–[41]. In fact, SMOTE is the most used technique nowa-
days in supervised pre-miRNA classifiers [40].

The classification quality of each model was assessed by the
following classical classification measures: sensitivity (s+),
specificity (s−), precision (p), and harmonic mean of sensitiv-
ity and precision (F1),

s+ =
TP

TP + FN
, p =

TP

TP + FP
,

s− =
TN

TN + FP
, F1 = 2

s+p

s+ + p
,

where TP , TN , FP and FN are the number of true positive,
true negative, false positive and false negative classifications,
respectively. The s+ measures how good is a classification
method for recognizing (and not missing) the true positives
of the problem. The s− instead, measures the recognized true
negatives. The precision p measures the relation between true
positives and false positives, which in this large imbalance
context is very important because false positives, regardless
of being just a fraction of the total of negatives, are a very
large number of samples in comparison to true positives. This
is of relevance especially when thinking in a realistic scenario
and a practical application. Considering the characteristics of
the classification problem under study and given the large class
imbalances, it is important to take into account both sensitivity
and the number of false positives. Therefore, F1, being the
harmonic score between precision and sensitivity, is used as a
global comparative measure among classifiers.

The precision versus recall curve (PRC) is also a well-
known performance indicator. Recent studies [2], [42] have
shown that this representation is preferred over the receiver
operating characteristics (ROC) plot to assess binary classifiers
with highly imbalanced data. In these problems, a classifier
could reach a good performance in terms of the ROC curve,
but the number of false positives could be very high because
of the size of the majority class, providing a bad quality list
of pre-miRNA candidates in this context. PRC plots, instead,
can provide a more clear assessment of performance due to
the fact that they evaluate the fraction of true positives among
the total number of candidates. Thus, an objective comparison
between models has been performed with the area under the
curve of precision-recall ( ˆAUCPR). As datasets have different
imbalances and precision changes exponentially, a logarithmic
ratio is defined as
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ˆAUCPR = 1− log (AUCPR)

log (AUCPRG)
,

where AUCPRG is the area under the curve for a random
guess classifier, which is smaller for higher imbalances. This
way, ˆAUCPR takes values in the interval [0,1] and results
can be compared more easily between datasets with different
imbalances.

Each model hyperparameters were determined with an in-
ner grid search within each training partition, with internal
validation subsets. In the case of the deeSOM, the optimal
imbalance for the ensemble members (for defining Q`) was
determined in preliminary experiments using a single SOM
with different imbalances. The best trade-off was found around
1:1,000. Thus, Q` is automatically adjusted to approximate
this imbalance in each SOM. For smaller imbalances Q` = 1,
exactly like a deSOM. For the deepBN hyperparameters, it has
been already shown in diverse benchmarks that best results can
be achieved with up to 3 layers, with a variable number of neu-
rons each [43]. Thus, several architectures were evaluated, up
to 3 layers and the number of hidden units in {23, 24, ..., 29}.
Furthermore, different number of training epochs were used,
from 16 to 512. In addition to the grid search, a random search
strategy was applied in a wider range of hyperparameters
[44]. However, optimal hyperparameters were very similar and
yielded results equivalent to the grid search ones, but with a
time cost substantially higher. Thus, grid search was used in
the final experiments. An hyperparameter sensitivity evaluation
was performed (Supp. Mat. Fig S2), where an optimal region
can be seen with the learning rate in the range [0.05,0.1] and
the batch size in the range [16,32]. Dropout was found to be
in detriment of performance in all cases. The optimal number
of training epochs was found to be between 64 and 256.
In those ranges, performance variances were very small, that
is, the approach was stable. Therefore, it can be considered
that in those ranges the performance is insensitive to the
hyperparameters chosen.

The performance in each experiment is reported as the
average measures for the test partitions. In order to statistically
evaluate the differences between classifiers, that is, to detect
differences in methods across multiple imbalanced datasets, a
Friedman rank test at significance level α = 0.05 is carried
out for F1. After that, the Nemenyi test are used as a post-hoc
test in order to show which methods are significantly different
from each other according to the mean rank differences of the
groups [45].

IV. RESULTS AND DISCUSSION

Table II to V show the results after testing all the ap-
proaches included in this study, ranging from low to very
high imbalance, without and with SMOTE for balancing the
data. In Table II, for animals dataset, it can be clearly seen
how imbalance has a direct (and very negative) impact on
MLP and SVM, which is the approach most widely used in
this application domain. For the no imbalance case (1:1), all
measures for SVM are equally very high, above 90%. But
for 1:100, precision holds being higher than 90% and s+ has

dramatically drop to less than 30%, impacting on F1 that has
reduced to half its value in comparison to the situation of no
class imbalance. From 1:500 and on, s+ keeps decreasing (and
so does F1) up to an extremely low value of less than 5% at
1:1,000 IR, being zero at the highest imbalances. This means
that most positive samples (well-known pre-miRNAs) will not
be correctly recognized with this method at such IR. The
SVM precision begins at a high 95.96% but then it decreases,
reaching an extremely low p at the highest IR because of the
high false positives count. It should be mentioned that this bad
performance would not has been correctly reported if accuracy
had been used as performance measure, because it is biased
towards the majority class and does not take into account p
and s+ together. Instead, F1 reflects this performance decrease
as IR growths, showing how SVMs can have, in a very high
IR situation, an extremely poor performance. Regarding s−,
it can be seen that in both datasets and for most methods, the
specificity is always very high, between 90.00% and 100.00%.
This is an expected as well as a useless result, because, from
a practical point of view, the true interest is in the minority
(positive) class. Actually, looking at the s+ and p together
(or the global measure F1), one can really understand how
hard this problem is, as imbalance increases. Table III reports
models performance when SMOTE is used for balancing the
classes. Of course, it has no effect when there is no imbalance.
SMOTE begins to impact the performance of SVM in 1:500
and from this point forward. SVM with SMOTE can reach
some F1 > 0 at the highest imbalance levels. However, it has
no competitive results with any of the deep neural models.
For example, at 1:2,000, F1 is now 8.51%, being anyway
half the value of the F1 of the worst deep neural model for
animals (deepSOM) without SMOTE. In Table IV and V, for
the case of pre-miRNA classification in plants without and
with SMOTE, a similar analysis and the same trends for the
SVM classifier can be found. The exactly same global analysis
can be applied for the MLP classifier, in both datasets.

The deep architectures evaluated in this work have all shown
that deep layers seems to be the most appropriate processing
model for this type of highly imbalanced data. In Table II and
Table IV, all deep models without SMOTE, at 1:1 have similar
high performances, with balanced results. For 1:100, all deep
models loose around a 10-20% in s+ and around a 10% in
precision, reflected by the F1 score, that drops to almost half
its previous value, in some cases. However, in relation to SVM,
deSOM and deeSOM still have high values for F1, higher than
60%. Moreover, in Table IV, all deep architectures have 20%
more F1 than SVM, and the deepBN has double F1 than SVM,
a remarkably high 85.44%. From 1:500 and on, imbalance has
effect on F1 in all deep SOMs architectures and variants, being
however always much better than SVM that drops to less than
10%. Notably, deepBN holds a global performance around
50% at the higher IRs. In particular, for the deepSOM, s−

is close to 100.00% in almost all imbalances and both types
of genomes. In the imbalances shown at the middle of the
tables, sensitivity is between 40% and 60%. At the highest IR,
deepSOM is affected by the imbalance and classifies with low
precision, less than 20%. At the largest imbalance, deepSOM
has F1 of 15% for animals and 20% for plants. It can be
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noticed that these values are improved by the other deep SOM
architectures. The deSOM and deeSOM models boost all the
scores of the original deepSOM model, in Table II and Table
IV as well. In animals, the s+ remains the same for these
approaches, except in the case of highest imbalance, where
deeSOM is better. The exactly same behaviour can be seen
with the plants dataset. As a consequence, F1 presents the
same trend, in both tables: deeSOM is better than deSOM,
which is better than the deepSOM. In Tables III and V,
where all models have been applied after SMOTE, it has
not improved the results of the deep neural architectures. In
both tables the precision drops significantly, with a much
more larger rate than s+ increases, thus negatively affecting
the F1 scores. It has to be remembered that the SOM-based
deep models have been specifically designed to manage large
imbalance without needing any artificial balancing schema.
The artificial positive samples inserted by SMOTE produce
too many positive class neurons during training. This increases
the amount of false positives, as many samples get associated
with positive neurons, and thus the precision drops. It can be
clearly seen that, globally, even the SMOTE improvements to
SVM and MLP do not reach the high F1 scores of the deep
neural models without SMOTE. This is a remarkable result
for the deep neural architectures. From the point of view of
the application for pre-miRNA prediction, these deep models
do not require additional balancing of data.

The deepBN is the best of all models and outperforms them
in almost all configurations. In Table I for animals, for IR
1:100, deepBN has a very high precision (90.26%). Such high
value is not reached by none of the other deep SOM-based
models. Precision is high only for SVM, but at the price of
a very poor s+. DeepBN, instead, has an acceptable s+ of
around 70%, with a very good F1 (77%). In 1:500 and 1:1,000,
deepBN has yet F1 values higher than 50%. The same happens
in Table IV, for plants. Finally, at the highest imbalance of
1:2,000, it is clearly seen how the deepBN model outperforms
all other architectures in animals, with s+ 36%, a very high
precision for this hard problem (68%), and F1 approximately
40%. In the case of animals dataset, F1 is twice as good
as deeSOM (the best SOM-based architecture). In the plants
datasets, deepBN is always better than the other models, in
all configurations and IRs, except only in 1:2,000 where it is
similar to deeSOM, being both the best ones at this extremely
high IR. In Tables III and V, where deepBN has been used
after SMOTE, some slightly better results are achieved for both
datasets in terms of F1. However, as SMOTE leads to a higher
s+ in exchange for a lower p, it may be considered an inferior
result in terms of practical applications, where the reduction
of false positives is very important. The better performance
of deepBN for highly imbalanced data, in comparison to the
other deep approaches, can be explained on the fact that this
model can be considered as an hybrid learner. It includes
an unsupervised learning stage at the beginning of training,
combined with a supervised backpropagation afterwards. The
first unsupervised step does not need nor uses class labels.
Therefore, it can model the complete feature space, regardless
of class labels, reducing the bias induced by the imbalance in
the dataset under analysis.

In order to summarize the previous results, the statistical
analysis and the global behavior of the approaches are shown
in Figure 4. This figure includes the F1 score obtained by
all methods in each dataset, and for each IR. From the figure
it can be easily seen how all methods decrease performance
as imbalance increases. However, three kind of behavior are
detected: the very poor performance of SVM and MLP, the
deep SOMs topologies in the middle, and the best performance
of deepBN. In 1:1, all methods are equally good. In 1:100 an
abrupt drop in performance begins, and the three groups of
behavior appear. At the highest imbalance, deepBN is easily
identified as the best; deepSOM, deSOM, and deeSOM are,
together, the second best models; and SVM and MLP have
an extremely low performance. It should be noticed that, for
1:1,500 and 1:2,000, the deep SOM architectures are closer
to the deepBN in performance, being deepBN and deeSOM
the best approaches at the extreme IR in plants. In order to
statistically evaluate differences among all the classifiers in
high class imbalance, for both datasets and with all folds,
a Friedman rank test for F1 was applied and resulted in
p = 4.43 × 10−30 at α = 0.05, indicating that there is
a statistically significant difference among the scores. The
corresponding critical difference (CD) diagram for post-hoc
Nemenyi test [45], which obtained a CD = 1.088, is also
shown in Figure 4. The difference between the groups of clas-
sifiers is statistically significant. This statistical analysis clearly
indicates that, for the imbalance present in the pre-miRNAs
classification problem in bioinformatics, the best model is
the deepBN. SVM and MLP are the worst models for this
problem. Therefore, they will not be included in the following
analyzes. While the three SOM-based deep architectures are
equivalent according to F1, deeSOM is capable of providing
a much better precision. At maximum IR, deeSOM has a
precision that is twice as good as the deepSOM precision.
This final comparative result shows that the more recent deep
neural network models can better handle the large imbalance
present in this hard task. The deepSOM architecture and its
variants can intrinsically handle the imbalance by filtering
data from level to level, reducing the number of negative
class samples. As explained above, the deepBN has an initial
training stage in which the class labels are not used because its
objective is to better model the complete feature space. This
first unsupervised stage is very important to obtain a good
internal representation while reducing the impact of the high
imbalance present in the data.

The mean times taken to train each deep neural model in
each imbalance level are reported in Figure 5, for the animals
and plants datasets. It can be seen that all SOM models
drop execution time as the imbalance ratio increases. Instead,
deepBN significantly increases execution time. This can be
explained by the fact that all layers of deepBN are trained
with the complete training data, in each imbalanced situation.
Instead, the deep SOM models discard a large amount of data
during training, especially in the first levels. In the deeper
levels, only the data that gets into the positive class neurons
remains. The important time difference for 1:100 in the ani-
mals dataset can be explained by the deSOM training process.
Since this IR has many positive samples in comparison to the
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Fig. 4. F1 score evolution for the deep versus classical approaches to the
problem of pre-miRNA classification, with increasing IR in both datasets.
Critical difference (CD) diagram for Nemenyi tests is shown above the curves.
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Fig. 5. Performance times in both datasets for each imbalance ratio.

other imbalances (see Table I), and positive samples are more
spread in the feature space, there will be many more positive
neurons in the first layers. As many samples get associated
with these positive neurons, a low number of samples is
discarded at the initial layers. Thus, the increased number
of deep layers and their sizes require more training time.
However, in the highest imbalances, for which the SOM-based
models have been designed, the advantage in computing time
is very important because the number of positive neurons is
low. Therefore, the number of candidates is quickly reduced
level after level.

As stated in Section III, the area under the precision recall
curve (AUCPR) is the best measure to analyze the perfor-

TABLE VI
ˆAUCPR FOR ANIMALS DATASET

IR deepSOM deSOM deeSOM deepBN
1:100 0.72 0.83 0.83 0.96
1:500 0.68 0.78 0.78 0.94
1:1000 0.66 0.75 0.75 0.91
1:1500 0.67 0.73 0.75 0.90
1:2000 0.63 0.71 0.71 0.87

TABLE VII
ˆAUCPR FOR PLANTS DATASET

IR deepSOM deSOM deeSOM deepBN
1:100 0.82 0.86 0.86 0.97
1:500 0.79 0.79 0.79 0.95
1:1000 0.78 0.83 0.83 0.94
1:1500 0.75 0.79 0.78 0.87
1:2000 0.67 0.76 0.80 0.91

mance in front of large class imbalance. The corresponding
ˆAUCPR for the methods are presented in Tables VI and

VII for the animals and plants datasets, respectively. These
tables show that results are consistent with previous analysis,
with deSOM and deeSOM improving deepSOM, and deepBN
always reaching the highest scores. For deepBN, it can be
seen that the score is very high in all cases. Moreover,
from a very practical point of view, biologists often want to
know how many wet experiments should be done to discover
novel miRNAs in a given genome. In order to answer this,
a detailed example of the pre-miRNA candidates returned by
each method is presented in Figure 6. In this figure we propose
a new graphical way for comparing classifiers performance in
front of high class imbalance. Given the classification score
of each method, for all test samples, the curves in the figure
were generated from the sensitivity and number of candidates
(C = TP + FP ) found at each threshold level of the scores.
Each figure shows the number of sequences considered as
candidates at each level of sensitivity measured in the testing
partitions, with IR ranging from 1:500 to 1:2,000. At the upper
left corner is the total number of sequences for each dataset.
Each point in the figure represents the output of each model
in terms of number of candidates for a given sensitivity. It is
important to note that the lower the value in the plot, the better
is the model performance. In these plots, the curve where
FP = 0 (that is, where all candidates are true positives), is
the lowest bond for all methods. For example, let us take the
case of imbalance 1:1,000 for animals dataset. In order to get a
0.90 of sensitivity, the deepBN model provides around 1,000
candidates, while for the same s+, the deSOM architecture
provides more than 10,000 candidates. Even worst, deepSOM
would provide more than 100,000 candidates in order to
discover the same number of new miRNAs.

For all imbalances in Figure 6, it can be seen that candidates
are rapidly decreasing by several orders of magnitude. The
initial slope in the curves shows how large quantities of low-
quality candidates are being discarded. As it can be seen, for
maximum recall all methods have the minimum precision, that
is, a high number of false positives. As C falls, low-quality
candidates are discarded (thus, precision is improved), at the
cost of losing recall. In this experiment, the deepSOM was
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Fig. 6. Novel pre-miRNA candidates (C = TP + FP ) versus sensitivity (s+), on animals and plants datasets. The lower the curve, the better model
performance. The dashed line is the theoretical curve in which there are no false positives (FP = 0).

unable to reduce the candidate number further than ∼600
sequences. This is because, differently from the elastic and
ensemble topologies, it cannot adapt its size dynamically
according to the data distribution in each level. Following now
the evolution along the increasing imbalance, it can be seen
that there is an increasing difference between deepSOM and
the new SOM-based methods, which can reach better perfor-
mance in the worst case scenario. The main differences can be
seen in the right part of the curves, which is the most important
from a practical point of view. It is interesting to note that
even for very high imbalances, the methods can provide a
small number of good quality candidates. For example, one
could ask for the best 50 candidates of each method, which
could be a reasonable number for wet experiments. In the
plants dataset, for an IR of 1:2,000, deepSOM fails in this
task as the smallest number of candidates that it can provide
is 100, with sensitivity near 0.30. The deSOM can provide
a s+ of 0.25 (this is, 14 TP within the 50 candidates), the
deeSOM provides a s+ of 0.35 (20 TP) and deepBN reaches
a sensitivity of 0.55 (31 TP). It can be seen that deepBN has
an almost ideal behaviour for the top candidates, with a curve
very close to FP = 0 for C < 100. These examples illustrate
a very important aspect that should be measured in all the
methods for pre-miRNA classification. Drastically reducing
the number of candidates is an important factor to lower the
costs of wet experimental confirmation of new pre-miRNAs.
It can be stated that the deepSOM limitation in terms of the
quality of candidates has been overcome by the novel adaptive
SOM layers, which reached higher resolution. This fine grain
reduction of candidates, up to only a few, allows the user to

choose at which level each model should stop training, thus
adjusting the precision and recall. Moreover, it can be seen
that deepBN can provide a really low number of candidates,
which are almost all TP, with very high precision. This can
be of value from a practical point of view, where the number
of high quality candidates is more important than a global
accuracy measure.

V. CONCLUSION

In this work we have provided a comparative assessment
of recent deep neural approaches for dealing with a highly
imbalanced data problem in bioinformatics: the classification
of pre-miRNAs. We presented and analyzed recent deep neural
architectures proposals in a fair and controlled benchmark
framework. Moreover, two novel deep SOM topologies ca-
pable of handling large class imbalance have been presented.
The models have been compared in several classification tasks
involving many genomes and increasing imbalance ratios,
much larger than commonly published IRs. The comparative
results obtained have shown that the model with deep learning
including unsupervised generative training was the one capable
of maintaining good performance rates, even at increasing IRs
up to a very high imbalance.
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Figure S 1. Animals and plants data distribution in the feature space (t-SNE projection) of the positive class samples. A different color has been used for each
species well-known pre-miRNAs. The complete list of genomes contained in the dataset is the following. In Animals: Aedes aegypti (aae), Anopheles gambiae
(aga), Apis mellifera (ame), Acyrthosiphon pisum (api), Amphimedon queenslandica (aqu), Branchiostoma floridae (bfl), Brugia malayi (bma), Bombyx mori
(bmo), Bos taurus (bta), Caenorhabditis briggsae (cbr), Caenorhabditis elegans (cel), Canis familiaris (cfa), Cricetulus griseus (cgr), Ciona intestinalis (cin),
Cerebratulus lacteus (cla), Culex quinquefasciatus (cqu), Caenorhabditis remanei (crm), Capitella teleta (cte), Drosophila melanogaster (dme), Drosophila
pseudoobscura (dps), Danio rerio (dre), Drosophila simulans (dsi) Echinococcus granulosus (egr), Gallus gallus (gga), Hydra magnipapillata (hma),
Heliconius melpomene (hme), Haliotis rufescens (hru), Lottia gigantea (lgi), Locusta migratoria (lmi), Monodelphis domestica (mdo), Macaca mulatta (mml),
Mus musculus (mmu), Nematostella vectensis (nve), Nasonia vitripennis (nvi), Ornithorhynchus anatinus (oan), Ovis aries (oar), Oikopleura dioica (odi),
Oryzias latipes (ola), Petromyzon marinus (pma), Pristionchus pacificus (ppc), Pan troglodytes (ptr), Rattus norvegicus (rno), Schistosoma japonicum (sja),
Saccoglossus kowalevskii (sko), Schmidtea mediterranea (sme), Strongylocentrotus purpuratus (spu), Sus scrofa (ssc), Tribolium castaneum (tca), Taeniopygia
guttata (tgu), Xenoturbella bocki (xbo), Xenopus laevis (xla), and Xenopus tropicalis (xtr). In Plants: Arachis hypogaea (ahy), Arabidopsis lyrata (aly),
Brachypodium distachyon (bdi), Brassica napus (bna), Brassica rapa (bra), Citrus clementina (ccl), Carica papaya (cpa), Chlamydomonas reinhardtii (cre),
Citrus sinensis (csi), Citrus trifoliata (ctr), Gossypium arboreum (gar), Gossypium hirsutum (ghr), Glycine max (gma), Gossypium raimondii (gra), Glycine
soja (gso), Hordeum vulgare (hvu), Medicago truncatula (mtr), Oryza sativa (osa), Picea abies (pab), Populus euphratica (peu), Physcomitrella patens (ppt),
Pinus taeda (pta), Populus trichocarpa (ptc), Phaseolus vulgaris (pvu), Ricinus communis (rco), Rehmannia glutinosa (rgl), Solanum lycopersicum (sly),
Selaginella moellendorffii (smo), Triticum aestivum (tae), Vitis vinifera (vvi), and Zea mays (zma).
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Figure S 2. F1 score stability for different hyperparameters of deepBN on plants dataset, with imbalance 1:1000. On the left, batch size versus learning rate
comparison. On the right, dropout versus the number of training epochs.
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