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Abstract—A brief analysis on the use of two deep neural ar-
chitectures, the U-Net and Mask R-CNN for the segmentation of
skin lesions in dermoscopic images is presented. The two systems
were adapted to use the dataset provided by the International
Skin Imaging Collaboration (ISIC) for its 2017 challenge and
different experiments were carried out. Results showed that the
Mask-R-CNN obtained better performance than U-Net, also with
lower computation times, being a feasible architecture to further
analysis and application also to skin lesion classification.

Index Terms—segmentation, melanoma, skin lesions, dermo-
scopic images, deep learning

I. INTRODUCTION

Malignant skin lesions have become a very common disease
in the last years due to higher levels of ultra violet sun ray
exposure, as the ozone layer becomes more fragile. In many
cases, the disease remains undetected until its last stages.
People often underestimate the impact of the sun radiation,
where a 10% of its whole energy is in the from of ultraviolet
light (UVA, UVB) the main culprit of skin lesions in the world
[1]. The lesions include skin cancer, the most common cancer
in the US (with more than 5 million cases annually) and its
most lethal form, the melanoma, causes around 9000 deaths
per year [2].

The ability to isolate the lesion and diagnose it with a
high enough precision becomes a major problem in medicine
because there are cases where doctors in the area skip certain
processes due to its complexity or simply they trust more in
their professional expertise, which can lead to wrong diagnos-
tics [2]. Furthermore, often patients have to wait long times
before an appointment with skin lesion expert in public health
services, or have to invest significant time moving to the main
hospitals and clinics [3]. Therefore, an automatic skin lesion
assessment for a computer assisted diagnosis would enable
more accurate, faster, and even remote diagnosis of patients.
It also would enable dermatologists to focus in patients with
the most dangerous skin lesions and treat them sooner, an

usual problem specially in the case of public health services
with long wait lines.

In this work we propose a system based on deep neural
networks for the segmentation of skin lesion in dermoscopic
images. Skin lesion segmentation is the first step in its analysis
in most of computer based skin lesion analysis systems [4].
We compare the performance of two fully convolutional archi-
tectures, U-net and the R-Mask convolutional network. Up to
our knowledge, the R-Mask convolutional network have not
been used for this task.

II. STATE OF THE ART

The segmentation of dermoscopic images is not a new
topic, and actually the ISIC has made challenges for three
consecutive years since 2016 and so a wide range of papers
have been released on the matter. One of the first deep learning
approaches reported consists on an improved Convolutional
Neural Network (CNN) architecture, with the original image
pixels as input in a hierarchical way to learn a set of nonlinear
transformations that represent the contents of the image. The
method achieved a high accuracy score, but the melanoma test
results lagged due to the lack of image intensity, uniformity,
and presence of imaging artifacts, which resulted in a few false
positive results [5].

In [6], a multitask network is proposed based on the
GoogleNet network; the outputs are then passed as input to
three main components where one is devoted to the segmen-
tation (4 deconvolutional layers) and the other two output the
probability of the lesion being a melanoma or a seborroic
keratosis (two fully connected layers each). In [7] authors
proposed a multi-stage Fully Convolutional Network (FCN)
which iteratively learns the lesion boundaries while a parallel
integration join all the segmentation results during the process
to approach a higher segmentation level.

On these works it has been noted a common coarse in
the segmentation generated by FCN and SegNet since they
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Fig. 1: Mask R-CNN architecture.

do not obtain anatomically plausible masks. To overcome
this a Recurrent Neural Network (RNN) was trained to learn
contextual relationships between pixels, preserving a local and
global perspective with the use of a Long Short Term Memory
(LSTM), obtaining a Jaccard score of 0.93 on the ISBI 2016
challenge [8].

There are papers submitted on the ISBI 2017 challenge
where the participants accomplished great results, beginning
with a Resnet network which adds various convolutional-
deconvolutional layers that upsample the Resnet feature maps
to output the score mask, also adding up to 8,000 images
to the original 2,000; the training phase used the pre-trained
Imagenet weights and went on fine tuning the network to reach
the third place on the challenge [9]. The second place used a
modified U-Net architecture with predictions were equal sized
as its inputs, a Relu activation function was used with for all
non-linear layers, and a significant amount of transformations
was used to increase the training dataset from 2,000 to 20,000
[4]. As for the segmentation accuracy, a Jaccard index of 0.71
was achievec. Finally, the first place focused on creating a
robust CDNN framework capable of handling images under
various conditions instead of dealing with complex pre and
post processing algorithms; as a pre-processing step they
added three more channels to the images and in the post-
processing they used a high threshold on the output map to
determine the lesion center, then a lower one to look around
it and finally taking as segmentation the area which embraces
this center [10]. The authors yielded a Jaccard index of 0.784.

III. MATERIALS AND METHODS

The Mask R-CNN architecture is described in [11], which
consists of three main sections: the backbone, the region
proposal network (RPN) and the head as can be seen in Figure
1. The backbone for our purposes was the Resnet-101 with its
five stages.

The input image is first processed by the backbone which
result is later fed into the RPN to search for potential regions

of interest (ROI). Here, the purpose is to focus the labor of
the following layers only on these regions instead of the whole
image; the head layers consists of three branches (essentially
composed of fully connected layers) each processing in par-
allel and predicting a different aspect of the ROIs, having as
final outputs the regions mask, class and bounding box.

However, as we are only focusing on, binary segmentation
our primary interest will be the mask output which is used on
a post-processing stage to generate the actual image segmen-
tation as asked by the ISIC. This is because Mask R-CNN
can predict multiple masks when a big lesion comes in; even
though this can be seen as over-segmentation, when they are
joined together to actually make a better boundary detection.
This point will be explained in next sections.

A. Implementation

The network was trained and evaluated using the released
ISIC 2017 challenge dataset [8], [12] which has 2000 training
images, 150 validation images and 600 test images.

The method was implemented with Python 3.5 using py-
torch 0.3. The experiments were conducted on a system with
a 12 Gb Geforce Titan GPU and a Intel(R) Core(TM) i7-8700
CPU @ 3.20GHz.

B. Pre-processing

The network is designed to work with the COCO dataset
[13], and expects an annotations file. So, the training sub-set
had to be processed to generate this files in order to initiate
the network training. No other pre-processing was made.

C. Training

The total number of epochs was set to 360 divided as
follows: 40 to train only the network head with a learning
rate of 0.01; 120 to train only the Resnet backbone from the 4
stages and up with a learning rate of 0.01, and finally 200 to
fine-tune the whole network with a learning rate of 0.001. A 5-
fold cross validation scheme was applied. All these stages used
the Adam optimizer and, as a common practice, a validation
was executed after each epoch.

The network itself makes a resize of every image which
was set to 1024 × 1024 pixels, but the output image has the
same dimension as the input image. Although, the network’s
output is not actually an image as we can observe in the post-
processing section.

D. Post-processing

For prediction purposes, the results of the network must be
post-processed because its actual output is an array of masks
(usually one per each ROI). These masks were overlapped over
the original image with different colors and an alpha factor for
transparency, as can be seen in Figure 2a. We modified this
format to make all the masks black-and-white binary images,
which let us join all the possible different masks into a final
binary mask, as shown in Figure 2b.
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(a) Original Mask R-CNN output
format

(b) Out modified output format

Fig. 2: Comparison between our outputs and Mask R-CNN
original outputs.

TABLE I: Evaluation over validation subset with U-Net

Number of epochs Dice Jaccard
160 0.606299 0.515993
180 0.616017 0.539274
200 0.630315 0.521581

IV. EXPERIMENT AND RESULTS

All the predictions made by the network were evaluated
using the well-known similarity indexes for images segmenta-
tion, Dice and Jaccard, being the last one the one used by the
ISIC to officially rank the participants’ predictions. To ensure
comprehension these indexes are calculated as follows:

Jaccard(A,B) =
|A

⋂
B|

|A
⋃
B|

Dice(A,B) =
2|A ·B|
|A|+ |B|

with A being the ground truth mask and B the prediction of
the network.

A. Experiments with U-Net

The results obtained using the U-Net as a stand-alone
classifier are shown in Tables I and II.

It can be observed that for 180 epochs the network reach
its best performance in terms of the Jaccard index. The
number of epochs reflects the final portion of the training,
but approximately at 75 epochs the training gets almost its
final performance.

B. Experiments with Mask R-CNN

We chose to take various checkpoints from the training
processes as the potential best model, so we tested the models
from the epochs 160, 180 and 200 against the test subsets
to check whether or not more epochs conducted to better
predictions. It turns out not to be the case as shown in Tables
III and IV where it can be seen that the model at 180 epochs
gives better average results than the 200 epochs model. It
also seems to be the case of the differences in the predictions
between models trained with different number of epochs. As
an example, Figure 3 shows that the validation loss tends
to jump in certain range, not varying much from the mean

TABLE II: Evaluation over test subset with U-Net.

Number of epochs Dice Jaccard
160 0.675687 0.575864
180 0.676534 0.581769
200 0.681308 0.562630

TABLE III: Evaluation over validation subset with R-CNN.

Number of epochs Dice Jaccard
160 0.785716 0.780492
180 0.790384 0.785926
200 0.776682 0.773677

value, therefore the changes made from epoch to epoch on
later training do not really make a significant improvement on
the predictions. An example of a good prediction can be seen
in Figure 4 where both, ground truth and prediction, are very
similar.

Fig. 3: Network loss during training.

It is important to notice two issues about the network
in its current state. First, that the network gives very good
predictions when the lesion is small and centered; however
it turns out problematic when the lesion is bigger and/or if
borders are touching a wide area of the image frame, as can
be seen in Figure 5. Second, when the prediction mask is too
small or the lesion is not identified, the network cannot handle
this situation and crashes.

(a) Input image (b) Ground truth (c) Prediction

Fig. 4: Good segmentation example.

Despite these problems and considering the very few
changes applied to the network, it performed relatively well.
The highest Jaccard score obtained was 0.743 on the test set,
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TABLE IV: Evaluation over test subset with R-CNN.

Number of epochs Dice Jaccard
160 0.776743 0.739569
180 0.781558 0.743864
200 0.781415 0.740744

(a) Ground truth (b) Prediction

Fig. 5: Bad segmentation example.

close to the best score reported in the ISIC 2017 results, a
Jaccard index of 0.76 [14].

V. CONCLUSIONS

In this work, an analysis of two deep neural architectures to
the segmentation task of skin lesions is presented. Particularly,
the U-Net and the Mask-R-CNN were adapted and tested using
data of the ISIC challenge.

Results showed that the Mask-R-CNN reaches significant
better performance than U-Net when comparing both, the pre-
dictions binary masks obtained and the required computation
time for training (much lower for Mask-R-CNN).

Future works will be focused on improving the performance
coefficients with two ideas: the use of data augmentation tech-
niques and the addition of extra layers to the input image with
texture or some other information about the lesion that could
help the networks, for instance morphological information
[15] and enhancement. These neural architectures could also
carry out the classification of the lesion in different type of
skin diseases, which is very important in order to generate a
complete identification and diagnosis of the lesions. Clearly,
this topic will be addressed in future works.
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