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Abstract. This work deals with the development of features for the au-
tomatic classification of infant cry, considering three categories: neutral,
fussing and crying vocalisations. Mel-frequency cepstral coefficients, to-
gether with standard functional obtained from these, have long been the
most widely used features for all kind of speech-related tasks, including
infant cry classification. However, recent works have introduced alter-
native filter banks leading to performance improvements and increased
robustness. In this work, the optimisation of a filter bank is proposed for
feature extraction and two other spectrum-based feature sets are com-
pared. The first set of features is obtained through the optimisation of
filter banks, by means of an evolutionary algorithm, in order to find
a more suitable speech representation for the infant cry classification.
Moreover, the classification performance of the optimised representation
combined with other spectral features based on the mean log-spectrum
and auditory spectrum is evaluated. The results show that these feature
sets are able to improve the performance for the cry classification task.

Index Terms: evolutionary algorithms, features optimization, crying classifica-
tion

1 Introduction

Crying is an important communication tool for infants to express their emo-
tional states and psychological needs [10]. Since infant may cry for a variety of
reasons, parents and childcare specialists need to be able to distinguish between
different types of cries through their auditive perceptions. However, this requires
experience and this can be subjective from one person to another. Also, it has
been demonstrated that the experienced subjects are often not able to explain
the basis of such skills [10]. This motivates the work on the development of au-
tomatic tools for the analysis and recognition of infant cry applicable to real
life.
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2 L. D. Vignolo et al.

Many approaches have been proposed to deal with the problem of feature
extraction from audio signals, and many of them are focused on aspects like
human auditory perception. Among them, the MFCC are the most widespread
features for any kind of sound signals [9]. Since their use is not limited to voice
signals [27], as in speaker identification [3], emotional state recognition [17], or
spoken language classification [7]. These features have also been used for tasks
involving other sound signals such as music information retrieval [26] and the
detection of acoustic events [33]. The MFCC features have also been used for
the recognition of pathologies in recently born babies through their crying [21],
for the analysis of infant cry with hypothyroidism [37] and for classification of
normal and pathological cry [12]. Also, the use of MFCC features was proposed
for cry signal segmentation and boundary detection of expiratory and inspiratory
episodes [1].

The MFCC features are based on the mel filter bank, which mimics the
frequency response in the human ear. However, since the physiology of human
perception is not yet fully understood, the parameters for the optimal filter bank
are not known. Moreover, what is the relevant information contained in a signal
spectrum depends on the application. Thus, it is doubtful that only one filter
bank would be able to enhance the information that is relevant for any partic-
ular task. This has motivated the development of many approaches for tuning
the filter bank in order to obtain better representations [2, 15, 16]. The use of a
weighting function based on the harmonic structure was also proposed for im-
proving the robustness of MFCC [13]. Similarly, other tuning to the parameters
of the mel filter bank have been introduced [34, 36]. Although, to our knowledge,
an evolutionary strategy for the optimisation of a filter bank for cry recognition
has not yet been proposed.

A common approach that has been used for many different machine learning
problems is to introduce learning in the pre-processing step for producing opti-
mised features [28, 19]. That is the case in [25], where a deep learning approach
was used to optimise the features used in an end-to-end approach. The versatility
of genetic algorithms has motivated many approaches for feature selection [20,
30], like the optimisation of wavelet decompositions for speech recognition [29].
Also, many other strategies for developing optimised representation for speech
related tasks have been presented [31, 32]. Evolutionary approaches have also
shown success for the development of new features for stressed speech classifica-
tion [6]. Although, the evolutionary optimisation of representations for the cry
recognition task has not been explored.

This work tackles the automatic classification of crying vocalisations to al-
low automatic mood monitoring of babies for clinical or home applications [24].
Particularly, an approach based on an evolutionary algorithm (EA) for the opti-
misation of a filter bank for feature extraction is presented. The approach relies
on an EA and introduces a scheme for parameter encoding based on spline in-
terpolation, with the goal of finding an optimised filter bank which takes part in
the extraction of cepstral features. In this proposal the EA is designed to evolve
a filter bank that is part of the process for computing cepstral features, using a
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Feature set optimisation for infant cry classification 3

classifier to assess the fitness in the evaluation of the evolved individuals. This
approach provides an alternative representation to improve the performance of
cry recognition.

In this work, the use of a set of features based on a bio-inspired model is also
proposed. These features, which were first introduced for emotion recognition [5],
are based on an auditory model to mimic the human perception [35]. Since these
features have not yet been used for cry recognition, it is interesting to inquire if
the properties provided by the auditory model are useful for this purpose.

2 Materials and methods

2.1 Speech corpus and baseline systems

For the experiments the Cry Recognition In Early Development (CRIED) corpus
was used, which is composed of 5587 utterances [24]. The vocalisations were
produced by 20 healthy infants (10 male and 10 female), each of which was
recorded 7 times. The corpus consists of audio-video recordings, though only
audio is considered in this work. The original audio is sampled at 44.1 kHz and
was down-sampled to 8 kHz in this work for the filter bank optimisation. This
database was made available for the Crying Sub-Challenge of the Interspeech
2018 Computational Paralinguistics ChallengE (ComParE) [24].

The database is split into training and test partitions. The utterances were
classified into the following three categories: (i) neutral/positive mood vocalisa-
tions, (ii) fussing vocalisations, and (iii) crying vocalisations. The categorisation
process was done on the basis of audio-video clips by two experts in the field of
early speech-language development [18]. In the experiments only audio record-
ings were considered and, since the labels for the instances of the test partition
are not available, cross validation was performed using the training data.

In order to compare the proposed features with a well known representation,
a set of features based on the MFCCs [9] was considered as a baseline. The first
17 MFCCs were computed on a time frame basis, using a 20-ms window with 10-
ms step. Then, the feature set was obtained by applying a number of functionals
(listed on Table 1) on the MFCCs, resulting in 531 attributes. These features
are considered because they are widely used in many speaker state recognition
tasks.

2.2 Evolutionary filter bank optimisation

In order to analyse the appropriateness of the mel filter bank for infant cry recog-
nition, the mean log-spectrum was computed along the frames (30 ms long) for all
the training utterances in each class of the CRIED corpus. As it can be observed
on top of Figure 1, the plots corresponding to different classes show different
peaks at different frequency bands, suggesting that the relevant information is
not mainly at low frequency bands.

Also, the first-order difference of the mean log-spectrums were computed,
which are shown at the bottom of Figure 1. These plots present peaks at high
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4 L. D. Vignolo et al.

Table 1. Functionals applied to MFCCs [11, 23].

quartiles 1-3 mean value of peaks - arithmetic mean
3 inter-quartile ranges linear regression slope and quadratic error
1 % percentile (≈ min) quadratic regression a and b and quadratic error
99 % percentile (≈ max) arithmetic mean, standard deviation
percentile range 1 %-99 % standard deviation of peak distances
simple moving average contour is below 25 % range
skewness, kurtosis contour is above 90 % range
mean of peak distances contour is rising/falling
mean value of peaks linear prediction of MFCC contour (coefficients 1-5)
contour centroid gain of linear prediction

frequency bands showing different relative energy and shape, which could be
useful for classification. Since the mel filter bank (shown on top of Fig. 3) pri-
oritizes low frequencies with higher resolution and amplitude, all these remarks
suggest that it is not entirely appropriate for this task. This motivates the work
in a methodology useful for finding an optimal filter bank for the task at hand.

The proposed optimisation approach, referred to as Evolutionary Spline Cep-
stral Coefficients (ESCCs), is based on an EA to search for the optimal filter bank
parameters. In this approach, instead of encoding the filter bank parameters di-
rectly, the candidate solutions in the EA use spline functions to shape the filter
banks. In this way, the chromosomes (candidate solutions) in the population of
the EA hold spline parameters instead of filter bank parameters, which reduces
the chromosome size and the search space. With this encoding, the chromosomes
within the EA population contain spline parameters instead of filter bank param-
eters, reducing the size and complexity of the search space. The spline mapping
was defined as y = c(x), with y ∈ [0, 1], and x taking nf equally spaced values
in (0, 1). Then, for a filter bank with nf filters, value xi was assigned to filter
i, with i = 1, ..., nf . For a given chromosome, the yi values were computed for
each xi by means of cubic spline interpolation. The chromosomes encoded two
splines: one to determine the frequency values corresponding to the position of
each triangular filter and another to set the amplitude of each filter.

Optimisation of filter frequency locations A monotonically increasing
spline is used here, which is constrained to c(0) = 0 and c(1) = 1. Four pa-
rameters are set to define the spline I: yI1 and yI2 corresponding to fixed values
xI1 and xI2, and the derivatives, σ and ρ, at the fixed points (x = 0, y = 0)
and (x = 1, y = 1). Then, parameter yI2 was obtained as yI2 = yI1 + δy2

, and
the parameters actually coded in the chromosomes were yI1 , δy2 , σ and ρ. Given
a particular chromosome, which set the values for these parameters, the y[i]
corresponding to the x[i] ∀ i = 1, ..., nf were obtained by spline interpolation.

The y[i] values obtained through the spline were then mapped to the fre-
quency range from 0 Hz to fs/2, so the frequency values for the maximum of
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Fig. 1. Mean log-spectrums (top) and first-order difference of mean log-spectrums
(bottom) for each of the three classes in the Cry Recognition In Early Development
(CRIED) database.

each of the nf filters, f ci , were obtained as

f ci =
(y[i]− ym)fs
yM − ym

, (1)

where ym and yM are the spline minimum and maximum values, respectively.
Then, the filter spacing was controlled by the slopes of the corresponding points
in the spline.

Also a parameter 0 < a < 1 was defined to limit the range of yI1 and yI2 to
[a, 1− a], with the purpose of keeping the splines within [0, 1].

Optimisation of filter amplitudes The spline used for optimising filter am-
plitudes were restricted to the range [0, 1], but y was free at x = 0 and x = 1.
Therefore, the parameters to be optimised here were the y values yII1 , yII2 , yII3
and yII4 , corresponding to the fixed x values xII1 , xII2 , xII3 and xII4 . These four
yIIj were limited to [0, 1]. In this manner, nf interpolation values were obtained
to set the amplitude of each filter. This is shown in Figure 2, where the gain of
each filter was set according to the value given by spline II at the corresponding
points.

2.3 ESCC optimisation process

Every chromosome in the EA the contains a set of spline parameters that en-
code a particular filter bank. The search performed by the EA is guided by
the classification performance, which is evaluated for each candidate solution.
In order to evaluate a candidate solution, the ESCC feature extraction process
was performed on the corpus based on the corresponding filter bank (Figure 2).
Then, the classifier is trained and tested using the features obtained through
this process in order to assign the fitness to the corresponding individual.

The spline codification scheme allowed to reduce the chromosome length
from 2nf to the number of spline parameters. Since 26 filters were used, the
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6 L. D. Vignolo et al.

Fig. 2. Schematisation of the optimisation strategy. The output vectors of each block,
si, fi, li and di, indicate that each window vi is processed isolated and, finally, the
mean and variance for each coefficient is computed from the di vectors in order to feed
the classifier.

number of free parameters in the optimisation was reduced from 46 to 8 (4
parameters for each spline). The spline parameters were randomly initialized in
the chromosomes using uniform distribution.

Based on previous works, the population size was set to 30 individuals, while
crossover and mutation probabilities were set to 0.9 and 0.12, respectively [31,
32]. In this EA, tournament selection and standard one-point crossover methods
were used, while the mutation operator was designed to modify splines param-
eters. The parameters were randomly chosen by the operator and the modifica-
tions were performed using a uniform random distribution.

2.4 Log-spectrum and auditory-spectrum based coefficients

A set of features obtained from the mean of the log-spectrum (MLS) was also
considered. The MLS is defined as

S(k) =
1

N

N∑
n=1

log |f(n, k)|, (2)

where k corresponding to the frequency band, N is the total number of frames
in the utterance, and f(n, k) is the discrete Fourier transform of the signal in
frame n. The spectrograms were computed using from non-overlapped Hamming
windows of 25 ms. For 16kHz sampled signals, in this way 200 coefficients corre-
sponding to equally spaced frequency bands are obtained. This processing was
successfully applied for different speech related tasks [4].

Another set of features is used as well, which is based on the auditory spec-
trogram and the neurophysiological model proposed by Yang et al. [35]. This
model consists in two stages, though only the first one is used here, which cor-
responds to the early auditory spectrogram. In this spectrogram the frequency
bands are not uniformly distributed and 128 coefficients are thus obtained.
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Feature set optimisation for infant cry classification 7

The mean of the auditory spectrogram (MLSa) is computed as

Sa(k) =
1

N

N∑
n=1

log |a(n, k)|, (3)

where k is a frequency band, N is the number of frames in the utterance and
a(n, k) is the k-th coefficient obtained by applying the auditory filter bank to
the signal in frame n. The MLSa was computed using auditory spectrograms
calculated for windows of 25 ms without overlapping. In order to obtain the
representation of sound in the auditory model, a Matlab implementation of the
Neural System Lab auditory model was used4.

All MLS and MLSa features were computed on a frame by frame basis in
order to compute statistics (mean and standard deviation) for each utterance.

In order to reduce the number of features obtained with MLS and MLSa,
maintaining the most relevant for this classification problem, a ranking feature
selection procedure was performed based on the F-Score measure [8]. The F-
Score rates the features based on their discriminative capacity. Given a feature
vector FVk, this score was computed considering the True instances (NT ) and
the False instances (NF ) as follows:

F (i) =

(
x̄
(T )
i − x̄i

)2
+
(
x̄
(F )
i − x̄i

)2
1

NT−1

NT∑
j=1

(
x
(T )
j,i − x̄

(T )
i

)2
+ 1

NF−1

NF∑
j=1

(
x
(F )
j,i − x̄

(F )
i

)2 (4)

where x̄i is the average of the ith feature, x̄i
(F ) and x̄i

(T ) are the average False
and True instances respectively, and xj,i is the ith feature in the jth instance.

This work proposes the use of MLS and MLSa features separately and also
both sets combined. In order to combine the feature sets two approaches were
considered. In the first approach the features in each set are ranked separately
according to F-Score, and the higher ranked features are kept for each set. In
the second approach all the MLS and MLSa features are ranked together by
F-Score, in order to select the higher ranked features.

2.5 Classifier

Extreme Learning Machines (ELM) [14] are proposed to learn on the non-linear
feature set. The primary implementation of ELM theory is a type of artificial
neural network with one hidden layer. The main differences with classical models
are in the training algorithm. The hidden units are randomly generated, thus the
parameter tuning of this layer is avoided. As a direct consequence, the training
time is reduced significantly compared with other training methods that have to
use more complex optimisation techniques.

4 Neural Systems Lab., Institutes for Systems Research, UMCP. http://www.isr.

umd.edu/Labs/NSL/
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8 L. D. Vignolo et al.

Table 2. Summary of the best results on training.

Features FV size UAR[%] ACC[%]

Baseline (MFCC & functionals) 531 62.15 79.84
MLS 110 65.88 85.73
MLSa 110 68.61 87.88
ESCC 45 68.67 86.05
all MLS+MLSa 328 67.37 85.73
MLS+MLSa (Added) 230 68.76 87.74
MLS+MLSa (Combined) 230 68.94 86.82
ESCC + MLS 155 68.30 85.16
ESCC + MLSa 155 69.60 87.95
ESCC + MLS + MLSa 265 69.04 87.91

3 Results and discussion

Since the examples composing the test set of the CRIED database are not la-
belled, for the experiments the train set consisting on 2838 instances was used
in this work. Each of the instances in the train set is labelled as one of three cat-
egories: Positive Mood (2292), Fussing (368) or Crying (178). The experiments
were carried out with a stratified cross-validation schemed in 10 folds and the
best results for different configurations of the ELM classifier are presented. Since
the dataset is not balanced, in order to evaluate the performance appropriately
the Unweighed Average Recall (UAR) [22] measure was considered, in addition
to the classification accuracy.

Table 2 shows the results obtained in the evaluation of the different feature
sets. The described feature sets (MLS, MLSa and ESCC) were evaluated sepa-
rately and combined together. In Table 2, “all MLS+MLSa” refers to the feature
set composed of all the MLS and MLSa coefficients, without reducing dimen-
sionality with F-Score. Also, the MLS and MLSa feature set were combined to
apply F-Score for dimensionality reduction.

When reducing dimensionality with F-Score, in order to select the appropri-
ate number of features to maintain, the classification performance is evaluated
for incremental feature subsets containing the top ranked features. The subset of
the top 10 features is evaluated first, then the top 20 and so on. Then the subset
that provides the best performance is kept. In this manner, it was determined
that for both MLS and MLSa the best feature subset consists of the first 110
features in the rank. The MLS and MLSa were combined applying F-Score first
to keep the 110 best features from each set (Added), and were also combined all
together to apply F-Score keeping the 230 best features from the complete set
(Combined). As the table shows MLS and MLS where also combined, together
and separately, with the ESCC features.

As it can be seen in Table 2, the MLS, MLSa and ESCC feature sets signif-
icantly outperform the Baseline in both UAR and Accuracy (ACC). Moreover,
different combinations of these feature sets are able to provide even better per-
formance. Also, it is important to note that all of these representations have
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Fig. 3. Mel filter bank (top) and optimised filter bank (bottom).

lower dimensionality than the Baseline. For instance, the ESCC features pro-
vides an improvement of 6.52% of UAR with less than 10% of the attributes of
the Baseline, showing that this representation is much more convenient for this
task. The combination of MLS and MLSa also improves their individual perfor-
mances when the F-Score measure is applied to keep the most discriminative
attributes. Finally, the best result is provided by the combination of ESCC and
MLSa, in both UAR and Accuracy, with a relatively small feature set.

Figure 3 shows the filter bank that was obtained by the optimisation process
for the ESCC features. As it can be seen, the information on frequency band
from 500Hz to 2500Hz, approximately, is enhanced with higher amplitudes in this
filter bank. This corresponds to the frequency bands that show more inter class
variance in the corpus (as seen in Figure 1). Also, at low frequencies (below
1000Hz) it shows higher resolution to capture the information related to the
peaks in the mean log-spectrums of Figure 1. These remarks, together with
results obtained, show that the optimisation provided a filter bank that is much
more appropriate for this task.

4 Conclusions

In this work spectrum-based feature sets were proposed to improve the perfor-
mance in infant cry classification, which is a challenging and relevant problem
to be tackled by the affective computing community.

The proposal relies on three different feature sets: the first one based on the
mean log-spectrum, a second feature set based on an auditory spectrum and
the third one is optimised for this task by means of an evolutionary algorithm.
The performance obtained through cross validation outperforms the baseline,
showing significantly improved results with reduced sets of features.
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The results show that the proposed features are useful as improved speech
representations for cry recognition system, suggesting that there is further room
for improvement over the classical mel filter bank for specific tasks.

It is important to note that this study was limited to clean signals, though
it would be interesting to evaluate the impact of noise on the shape of the filter
banks. Thus, further experiments will include noisy signals, as well as other types
of cry and recording conditions. Also, other parameters regarding filter banks,
such as the filter bandwidth could be also optimised in future work.
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