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ABSTRACT

Spontaneous brain activity is characterized in part by a balanced asynchronous chaotic state. Cortical
recordings show that excitatory (E) and inhibitory (I) drivings in the E-I balanced state are substantially
larger than the overall input. We show that such a state arises naturally in fully adapting networks
which are deterministic, autonomously active and not subject to stochastic external or internal drivings.
Temporary imbalances between excitatory and inhibitory inputs lead to large but short-lived activity
bursts that stabilize irregular dynamics.

We simulate autonomous networks of rate-encoding neurons for which all synaptic weights are plastic
and subject to a Hebbian plasticity rule, the flux rule, that can be derived from the stationarity principle of
statistical learning. Moreover, the average firing rate is regulated individually via a standard homeostatic
adaption of the bias of each neuron’s input-output non-linear function. Additionally, networks with and
without short-term plasticity are considered.

E-I balance may arise only when the mean excitatory and inhibitory weights are themselves balanced,
modulo the overall activity level. We show that synaptic weight balance, which has been considered
hitherto as given, naturally arises in autonomous neural networks when the here considered self-limiting
Hebbian synaptic plasticity rule is continuously active.

Introduction
It is well established that a balance between excitation and inhibition, usually denoted as E-I balance,
arises during spontaneous cortical activity, both in vitro1–4 and in the intact and spontaneously active
cortex4–7. This balance, which refers to a relatively constant ratio between excitatory and inhibitory inputs
to a neuron, has been theoretically predicted as way to explain how cortical networks are able to sustain
stable though temporally irregular, and even chaotic, dynamics8–10. Since then, the ramifications of such a
balanced state in terms of both dynamics and computation have been widely studied, showing how E-I
balance results in critical-state dynamics of avalanches and oscillations11, with direct implications for the
dynamic range12, storage of information13, and computational power14 of networks.

Recurrent neural networks can use E-I balance to generate asynchronous states even in the presence of
strongly shared inputs15. Indeed, nearby cortical neurons with similar orientation tuning show low corre-
lated variability, potentially simplifying the decoding of information by a population of such neurons16.
Balanced networks have also been shown to work potentially in at least two different regimes, linking
richness of the internal dynamics, connectivity strength, and functionality: a weak coupling state favoring
information transmission, and a strongly coupled state, characterized by complex internal dynamics which
could be employed for information processing17. Modulating the ratio between excitation and inhibition it

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

P.
 T

ra
pp

, R
. E

ch
ev

es
te

 &
 F

. G
ue

ri
n;

 "
E

-I
 b

al
an

ce
 e

m
er

ge
s 

na
tu

ra
lly

 f
ro

m
 c

on
tin

uo
us

 H
eb

bi
an

 le
ar

ni
ng

 in
 a

ut
on

om
ou

s 
ne

ur
al

 n
et

w
or

ks
"

Sc
ie

nt
if

ic
 r

ep
or

ts
, V

ol
. 8

, N
o.

 1
, p

p.
 8

93
9,

 2
01

8.



is furthermore possible to selectively switch information gating and rerouting between different circuits on
and off18.

The direct link between E-I balance and information transmission, together with observations of
an atypical ratio of excitation/inhibition in neurobehavioral syndromes such as autism, has led to the
hypothesis that an abnormal degree of E-I balance might be behind a series of psychiatric disorders19.
Indeed, later causal experimental studies in mice have shown how further elevation of E-I balance, above
typical physiological levels, produce a strong impairment of information processing and result in social
deficits consistent with those of humans suffering from these conditions20.

It has been shown that networks of supralinear excitatory and inhibitory neurons, namely of neurons
whose non-linearities are purely expansive (no saturation) and which would therefore tend to exhibit
unstable behavior, can be stabilized choosing the right type of connectivity matrices, resulting in stabilized
loosely balanced dynamics21. These networks, denoted stabilized supralinear networks (SSN), are able to
capture a wide range of experimental findings of visual cortical neurons including contextual modulation
and normalization, spatial properties of intracortical connections22, as well as stimulus dependence of
neural variability23.

Different approaches have been taken in the past to construct balanced neural networks for numerical
simulations. When van Vreeswijk and Sompolinsky introduced the balanced network model8 they
constructed the connectivity matrix using sparse random connections, where the overall connection
strength was forced to be inversely proportional to the square root of the number of connections. The
conditions for stability of the (SSN) have also been studied analytically21, and the weights in these type of
networks are typically selected so that the network is stable22, 23. Balance has also been a topic of study in
non-chaotic networks designed for generation of complex movement. Termed “stability-optimized circuits”
(SOCs)24, in these networks balance is achieved by an optimizer modifying inhibitory connections,
together with a mechanism able to prune or add new synapses.

These approaches did not however tackle the issue of how the brain could find those weight configura-
tions. In particular, a key question is whether E-I balance in the brain is the result of genetically encoded
synaptic strengths or, alternatively, whether ongoing internal synaptic adaption may lead to a dynamic
configuration of balanced synaptic weights. In other words, whether the distribution of synaptic weights is
a priori given or the result of a self-organizing process.

Several studies in recent years have proposed the use of inhibitory synaptic plasticity (ISP) to attain
balance (see25, for a comprehensive review). Within those, an important step towards the understanding of
how balance can be achieved in an unsupervised fashion in the brain has been the work of Vogels et al.26,
who have shown in simulations how single neurons with constant (or controlled) E weights and plastic I
weights, receiving an external stimulus can attain balance, and also restore it after the excitatory synaptic
weights are modified. Moreover the authors also show how balance can be attained in random recurrent
networks where only the connections from I cells to E cells are plastic via ISP.

Both excitatory and inhibitory connections, as well as the overall excitability of neurons are plastic
and constantly evolve together with the neural activity in the brain, with a variety of plasticity mechanisms
operating at different timescales27–31. The key question we address here is whether it would be possible for
balance to be attained under these conditions in the brain, in a completely unsupervised way. We find here
that this is indeed a plausible option. Namely, we show how simulated networks of non-linear excitatory
and inhibitory neurons, evolving autonomously under local, online intrinsic and synaptic plasticity rules,
generically achieve states which are balanced both with respect to the distribution of the synaptic weights
and with respect to the inputs individual neurons receive. Hence we refer to this type of networks with
continuously evolving synaptic and intrinsic parameters as Self-organized Plastic Balanced Network
(SOPBN). No external optimization is here employed and the procedure is shown to be robust also to the
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Figure 1. Left. In red the nonlinear transfer function relating membrane potentials and rates in the neural
model (1). The typical activity rates enforced by the intrinsic plasticity rule (yt = 0.2) result in the neuron
operating at the foot of the non-linearity, where it is practically indistinguishable (m.s.e. = 0.027 for
x ∈ [−5 : 0]) from a threshold-powerlaw with exponent n = 2.5 (in blue), typically considered a suitable
model for experimental findings in cortical neurons32–34. Right. The effective synaptic strength multiplier
ϕ(t)u(t) of the Tsodyks-Markram model (4). Here β = α = 0.01 and Umax = 4 was used. The red/violet
curves correspond to the values as measured respectively for excitatory synapses in the medial prefrontal
cortex of ferrets35 and for inhibitory layer 2-4 neurons of the somatosensory cortex layer of Wistar rats36.
The presynaptic neuron is active for t ∈ [100,300] (ms), and inactive otherwise.

addition of external noise.

Methods
We consider autonomous Erdös-Rényi networks containing N neurons characterized by a linking probabil-
ity p. The membrane potential xi of the rate-encoding neurons obeys

ẋi =
1
τ

(
x(inp)

i − xi

)
x(inp)

i = ∑
j

wi jy j, yi =
1

1+ ebi−xi
, (1)

where yi is the firing rate, bi the threshold and wi j are the internal synaptic weights. There is no external
input. In particular, no external source of noise is present in the main analysis of the system (we show
in the Supplementary Material how these results are robust to the addition of a finite amount of external
noise). The membrane time constant τ is set to 10 ms for inhibitory and respectively to 20 ms for excitatory
neurons.

The neural model we employ is described by a non-linear relation between membrane potentials and
firing rates and has been used in previous work37 to derive the Hebbian plasticity rules we will later
employ. This transformation is expansive for low firing rates and saturates for very high rates. While a
saturation of this type is unavoidable for any realistic biological system, cortical neurons have always
been observed to behave in the low firing rate regime, where this saturation is not visible, and the transfer
function is typically described by a threshold-powerlaw y ∝ bxcn with exponent n between 1 and 532–34.
We show however in Fig. 1 how, for low firing rates (encouraged by the intrinsic plasticity rule we employ)
both functions are virtually indistinguishable.
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Adaption of the synaptic weights
The recurrent synaptic weights are continuously adapted using the multiplicative self-limiting Hebbian
rule37

ẇi j = εw G(xi)H(xi)y j, G(xi) = x0 + xi(1−2yi), H(xi) = 2yi−1+2xi(1− yi)yi , (2)

where the membrane potential xi and the activity yi of the postysynaptic neuron are related in this model
via (1) by a deterministic sigmoidal transfer function. This allows us to write functions G and H as
functions of xi only, where yi is then simply shorthand for yi(xi). This update rule may be derived from an
information theoretical principle, the stationarity principle for statistical learning38, which states that the
distribution function of the postsynaptic neural activity continuously evolves during the weight adaption
process, becoming stationary only once learning is completed. Being autonomous the network considered
here is however not confronted with an explicit learning task. Learning denotes in our context therefore
the unsupervised process of weight adaption, which minimizes in our case the the Fisher information of
the activity of the postsynaptic neuron37.

The limiting term G(x) in (2) changes sign when the postsynaptic activity yi is either too large or
too small in comparison with x0, reversing hence the Hebbian learning regulated in turn by H(x). This
property of G(x) is useful for the learning rule as it prevents runaway synaptic growth, operating as an
effective homeostatic synaptic plasticity mechanism, mounted on top of the Hebbian part of the rule39.
Our adaption rule, which is also denoted flux rule37, is robust with respect to the actual value selected for
the references scale x0 of the membrane potential, as we checked performing test runs with x0 = 1 and
x0 = 8. For the simulations presented here we used x0 = 4.

We note that Hebbian learning rules like (2) are normally formulated not with respect to the bare
presynaptic activities, but with respect to the deviation δy j = y j−〈y j〉 of the presynaptic activity y j with
respect to its time-averaged mean 〈y j〉. The adaption rule (2) performs in that case a principal component
analysis for which the signal-to-noise ratio increases with increasing x0

37, being otherwise sensible to
input directions y j characterized by a negative excess kurtosis.

For the study presented further below we use the same adaption rule for all synapses, namely (2),
whose self-limiting behavior stabilizes firing rates, rather than trying to reproduce a particular instance of
the wide variety of experimentally observed phenomenological spike time dependent synaptic plasticity
(STDP) rules for inhibitory connections25. This route would involve therefore the introduction of not well-
constrained parameters, transcending in addition the central aims of our investigation. We are interested
here to investigate if ongoing Hebbian plasticity and balanced asynchronous dynamics are compatible.

The threshold bi = bi(t) entering the transfer function in (1) sets, as usual, the average firing rates.
Here we use

ḃi = εb(yi− yt) (3)

for the adaption rule for the threshold, which reduces, for y ≈ yt = 0.2, to the somewhat extended
expressions one may derive from homeostatic principles for neural activity40–42. For the adaption rates we
used 1/εb = 10 and 1/εw = 100 (in seconds).

Synaptic pruning
Dale’s law states that neurons are either excitatory or inhibitory, namely that wl jwk j ≥ 0 for all l and
k. For a Hebbian plasticity rule like (2) to respect Dale’s law one needs to prune a synaptic connection
whenever the respective wi j changes sign. We do this every 1000 ms of mathematical simulation time,
reinserting the pruned link with a weight corresponding to 10% of the correspondingly average excitatory
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or inhibitory links. Performing test runs where the pruned links where reinserted with a strength 1% of the
averages mean did yield nearly identical results. For the reinsertion process the postsynaptic neuron i is
connected to a random and previously unconnected presynaptic neuron m, with the sign of the new link
wim respecting Dale’s law. There are two possible versions.

Annealed pruning: Links may change sign when the new presynaptic neuron m is selected freely. The
overall number of excitatory and inhibitory links may then drift over the course of the simulation, with
only the total connectivity remaining constant.

Frozen pruning: Links do not change in character when the new presynaptic neuron m is selected only
among those neurons which are of the same type as j. Frozen pruning would correspond from a biological
perspective to a separate reshuffling of Gaba and Glutamate receptors.

For the results presented here we considered frozen pruning.

Short-term synaptic plasticity
We also included short-term plasticity (STSP), a mostly presynaptically induced modulation of the synaptic
efficacy lasting hundreds of milliseconds to seconds43. STSP may lead both to synaptic potentiation and
depression, resulting respectively from an influx of Ca2+ ions into the presynaptic bulb and from a depletion
of the available reservoir of neurotransmitters. These effects are captured within the Tsodyks-Markram
model44 by two variables, u(t) and ϕ(t), encoding respectively the presynaptic Ca2+-concentration and
the number of vesicles with neurotransmitters. The transient plasticity rules

u̇ j =
1−u j

Tu
+α(Umax−u j)y j, ϕ̇ j =

1−ϕ j

Tϕ

−βϕ ju jy j, w̃i j = wi jϕ j(t)u j(t) (4)

then describe the time evolution of the effective synaptic weight w̃i j which is proportional to the bare
synaptic weight wi j, to the number of available vesicles ϕ j and to the vesicle’s release probability u j. In
simulations where STSP is present, w̃i j replaces wi j in (1). STSP is transient in the sense that both u j
and ϕ j relax to unity in the absence of presynaptic activity y j→ 0. Typical time evolution curves for the
synaptic efficiency multiplier ϕ j(t)u j(t) are presented in Fig. 1.

With the introduction of STSP and making an explicit distinction between E and I inputs, the driving
current x(inp)

i defined in (1) is then generalized to

x(inp)
i = x(exc)

i + x(inh)
i , x(exc)

i = ∑
j∈{exc}

wi jϕ ju jy j, x(inh)
i = ∑

j∈{inh}
wi jϕ ju jy j , (5)

where {exc} and {inh} denote respectively the set of excitatory and inhibitory neurons. One can define
analogously with

w(exc) =
∑i, j∈{exc}wi jϕ ju j

∑i, j∈{exc}
, w(inh) =

∑i, j∈{inh}wi jϕ ju j

∑i, j∈{inh}
(6)

the average excitatory and inhibitory effective synaptic weights.
We note that the original Tsodyks-Markram model44 describes STSP for the case of spiking neurons

and that one can derive (4) by assuming α = β = 0.01 and that a maximal neural activity of y j → 1
corresponds to firing rate of 40Hz. Typical values for the time scales entering (4) are Tu = 500ms and
Tϕ = 200ms for excitatory synapses in the medial prefrontal cortex of ferrets35 and Tu = 20ms and
Tϕ = 700ms for inhibitory layer 2-4 neurons of the somatosensory cortex of Wistar rats36. It has been
pointed out, that these time scales are also relevant for behavioral control tasks45.
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Figure 2. Selected activities and the average input current for an autonomous SOPBN containing 320
(80) excitatory (inhibitory) rate-encoding neurons, as defined by (1), (2), (3) and (4). The target activity
is yt = 0.2. The time interval is two seconds and the system is shown for the first two seconds after
initialization (left), and for two seconds after a previous evolution of 3600 seconds of simulated biological
time (right). Shown are the activities of three random excitatory (red) and inhibitory (blue) neurons,
together with the averaged E-I balance. The E-I balance is given here in terms of the network-average of
excitatory 〈x(exc)

i 〉 and inhibitory 〈x(inh)
i 〉 inputs (red and blue curves), as defined by (5). The sum (green)

is substantially smaller in magnitude for both time intervals. While the neural activities show a large
spectrum of activities reaching from nearly completely silent to almost constantly firing neurons at the
beginning, the averaged activity after 1h shows irregular bursts which are characterized by asynchronous
neural activities. Note that the large fluctuations in the inputs of the rate-encoding neurons making up the
network induce ‘spike like’ activities.

For our simulations we used Umax = 4, α = β = 0.01, Tu = 500ms and Tϕ = 200ms for all synapses.
We did also run control runs involving 500/200 and 20/700 Tu/Tϕ pairs respectively for excitatory and
inhibitory synapses, which led however only to minor quantitative changes.

Results

We are interested in investigating under which conditions an autonomous neural network, whose dynamics
is described by (1), (2), (3) and (4), evolves towards a stable, irregular and balanced state (SOPBN). The
results here presented correspond to networks of both excitatory and inhibitory neurons, where 80% of
neurons are excitatory and 20% are inhibitory, and whose connections respect Dale’s principle, even when
plasticity mechanisms are at play. We have taken membrane time constants of 20 and 10ms for excitatory
and inhibitory cells, respectively. As checks, we have also repeated the simulations with networks
consisting of 50% excitatory and 50% inhibitory neurons and with equal membrane time constants,
observing no qualitative differences. Unless otherwise stated, we will present results with a total number
of neurons N = 400, a fixed 80% fraction of excitatory cells, a link probability p = 0.2 and a target
average activity of yt = 0.2. The initial synaptic weights are drawn from Gaussians with means 7.5 (-30.0)
and standard deviations 0.375 (1.5) for excitatory and inhibitory synapses, respectively. Our simulations
simulations were performed in all cases with a C++ code running on a standard desktop computer.
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Rate encoding neurons with asynchronous activity spikes
We find that the SOPBN tends to evolve to an irregularly bursting state characterized by time scales of
the order of 100-200 ms. The data presented in Fig. 2 illustrates typical two second intervals of activity,
as obtained directly at initialization and after one hour of mathematical simulation time. It shows the
following:

– The system state is very different at the beginning and after one hour: While some neurons are
constantly quiet or active directly after initialization, the network exhibits pervading bursts after
evolving for one hour.

– The mean excitatory 〈x(exc)
i 〉 and inhibitory 〈x(inh)

i 〉 inputs a neuron receives are both large in
magnitude. The substantially smaller value for the overall mean input expresses E-I balance. This
E-I balance is present for arbitrary timeframes within the systems evolution. Averaged over time we
have

〈x(exc)
i 〉t=0s ≈ 144.8, 〈x(inh)

i 〉t=0s ≈−147.3, 〈x(exc)
i 〉t=0s + 〈x

(inh)
i 〉t=0s ≈−2.5 ,

〈x(exc)
i 〉t=1h ≈ 41.9, 〈x(inh)

i 〉t=1h ≈−44.1, 〈x(exc)
i 〉t=1h + 〈x

(inh)
i 〉t=1h ≈−2.2 ,

for the system at different times where the brackets denote now averages over the network and over
time.

– Deviations from the average E-I balance lead to large swings to the membrane potentials and
hence to sharp activity spikes. A remarkable feature for rate-encoding neurons evolving with (1)
continuously in time.

– Bursts in the late network state involve the entire network. All excitatory and inhibitory neurons
are active one or more times during a burst, as we have checked. The activities of the individual
neurons are however asynchronous.

We also examined the E-I balance x(exc)
i + x(inh)

i for individual neurons, obtaining results very close to
the network averages shown in in Fig. 2. A detailed analysis of the corresponding cross correlations is
presented further below.

In21 the authors compare the degree of cancellation (or tightness of the balance) between the van
Vreeswijk and Sompolinsky balanced networks, and the SSN, showing that while the first kind requires
a very high degree of cancellation, the SSN can operate in a regime of loose balance. These networks
have however constant synaptic weights and intrinsic parameters. We observe in SOPBNs, where several
parameters are plastic, that while most of the time the network follows a high degree of balance (with
correlations close to unity as shown in Fig. 7), this tightness is transiently broken to allow for bursts of
activity.

Autonomous networks with balanced and increasingly large, but otherwise random synaptic weight
distributions, are known to produce a chaotic state in the thermodynamic limit9. Testing this prediction
we considered the non-adapting case with εb = εw = 0. By additionally switching off short-term synaptic
plasticity, we find that a N = 400 network leads, depending on the initial weight distribution, either to
fixpoints, limit-cycles, or to states of highly irregular activity. We however did not try to determine the
relative incidence rates of theses three states. The two types of irregular spiking states, which are illustrated
in Fig. 3, as resulting from adapting and from non-adapting dynamics, differ with respect to activity bursts
(which are observed also in Fig. 2), which are conspicuously absent in our non-adapting networks.

As a note, these irregular spiking states show signs of corresponding to a transient chaotic state (see
subsection Analysis of the irregular activity, in the Supplementary Material).
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Figure 3. The superimposed 10 sec traces of the membrane potentials of a network of N = 400 neurons
and a relative fraction of excitatory to inhibitory neurons of 80:20. Left: After a simulation of 3600 sec for
the same SOPBN considered in Fig. 2 and Fig. 4. Right: For a network with only short-term synaptic
plasticity, namely with εb = 0 = εw. Note that the synaptic weights are in this case as drawn from the
initial distribution, which is balanced with means 7.5 (-30.0) and widths 0.375 (1.5) for excitatory and
respectively for inhibitory synapses. Turning off additionally the short-term synaptic plasticity changes
the irregular state only quantitatively.

Evolution of balanced synaptic weights
We present in Fig. 4 the evolution of the network averages (6) of the synaptic weights. We find that the
Hebbian plasticity rule (2) renormalizes the synaptic weights while retaining approximately the balance

fexcw(exc)〈y(exc)
i 〉 ≈ finhw(inh)〈y(inh)

i 〉, 4w(exc) ≈−w(inh) (7)

between the mean excitatory w(exc) and the mean inhibitory w(inh) weights, where we have denoted with
fexc/ finh and 〈y(exc)

i 〉/〈y(inh)
i 〉 the fractions and the mean activities of excitatory and inhibitory neurons.

For the present study we have 〈y(exc)
i 〉= 〈y(inh)

i 〉= yt . The second relation in (7) refers to 80/20 networks,
which contain four times as many excitatory as inhibitory neurons.

– The balance presented in Fig. 4 is not perfect, with the inhibitory weights being slightly dominating
on the long run.

– We also considered networks for which the initial weight distribution was strongly not balanced,
finding that the adaption rule (2) leads to balanced mean synaptic weights. We will discuss the self
organization of E-I balance in more detail further below for the case of 50/50 networks.

In Fig. 5 the full distribution of synaptic weights is presented, with the results obtained from a 3600 sec
simulation contrasted to the initial weight distribution. It is evident that the redistribution of synaptic
weights is substantial, reaching far beyond a simple overall rescaling of the mean, as presented in Fig. 4.
The excitatory weights, and to a certain extent also the inhibitory weights, tend to pile up at the pruning
threshold, which has been set to zero. Trying exponential and log-normal fits we found that the excitatory
weight distribution follows fairly well a log-normal distribution.

System size and simulation time effects
The comparison between networks with N = 400 and N = 3200 presented in Fig. 5 shows that the overall
functional form of the weight distribution changes qualitatively for the inhibitory weights, but not for the
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Figure 4. Time evolution of the average effective excitatory (violet) and inhibitory (green) synaptic
weights w(exc) and w(inh), as defined by (6). The network contains 320 and 80 excitatory and inhibitory
neurons. Also shown is the average balanced weight (red, enlarged in the insets), given by 4w(exc)+w(inh).
Left: With short-term plasticity. Right: Without short-term plasticity, namely for ϕ j ≡ 1 and u j ≡ 1.

excitatory weights. The small additional peak visible for N = 3200 for the inhibitory links corresponds to
the synaptic weights of the links reinserted after pruning.

The mean weights, which are also presented in Fig. 5, scale down with increasing systems size. For the
data presented in Fig. 5 the connection probability is p = 0.2 for both N = 400 and N = 3200. It is then
an interesting question which kind of scaling autonomous Hebbian learning would produce. Our attempts
to determine how the synaptic weights scale with respect to the mean number of afferent synapse Z = pN
were however not successful. For the data presented in Fig. 5 we note that the ratio of the mean synaptic
weights is about a factor two for N = 400 and N = 3200, with the corresponding ratio of Z being 1/8.

Comparing weight distributions for a fixed simulation time is not meaningful for systems, as our
SOPBN, that do not stop evolving. Average weights continue to drop even for long-term simulations, as
evident in part in Fig. 4. We find that the system switches to a new state (characterized either by limit
cycles, fixpoints or by very long quiet periods) after extended transients, which are at least of the order of
several hours. The irregular state observed, as in Fig. 3, corresponds therefore to a transient state. The
transients last however orders of magnitude longer than the time scales relevant for information processing
in biological networks, which range typically from milliseconds to seconds.

Self-organized balanced synaptic weights
The results presented hitherto in Figs. 2, 3, 4 and 5 have been for 80/20 systems where the initial synaptic
weights had been drawn from balanced distributions. Going one step further we now examine whether
the Hebbian plasticity rule (2) is able to transform a non-balanced weight distribution into a balanced
distribution.

We present in Fig. 6 the evolution of the synaptic weights for a 50/50 system, for which the initial
synaptic weights had been drawn from Gaussians with means 7.5 (-15.0) and standard deviations 0.375
(1.5) for excitatory and inhibitory synapses, respectively. One notices that the autonomous Hebbian
learning rule (2) balances the initially unbalanced synaptic weight distribution as fast as possible, that is,
on the timescale 1/εw = 100s. Equivalent results were obtained for initially unbalanced 80/20 systems.

The distribution of synaptic weights self-organizes, as evident from the data presented in Fig. 6,
becoming fully symmetric within one hour of Hebbian adaption. The same is found for initially non-
balanced 80/20 networks (not shown), for which the final synaptic weight is also balanced, albeit non-
symmetric.
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N = 400
µ σ

exc→exc 3.0 2.9
exc→ inh 2.2 2.4
inh→exc -12.6 5.2
inh→ inh -9.0 4.4

N = 3200
µ σ

exc→exc 1.6 1.9
exc→ inh 1.3 1.5
inh→exc -6.5 5.1
inh→ inh -5.4 4.3

Figure 5. Top: The distribution of the synaptic weights wi j for N = 400 site networks with a link
probability of p = 0.2 and 80% excitatory and 20% inhibitory neurons. Bottom: The same for N = 3200
neurons. Shown are in the right panels the histograms of the initial distribution (violet, top part truncated)
and the distribution as obtained after a mathematical simulation time of 3600 seconds. Black: the overall
distribution of synaptic weights and (reflected with regard to the x-axis) the individually normalized
partial distributions (excitatory/inhibitory)→ (excitatory/inhibitory) neurons. The respective means µ and
standard deviations σ of the partial distributions are given in the panels on the right.

Would any Hebbian learning rule lead to balanced synaptic weights?
A range of distinct synaptic plasticity rules are Hebbian in the sense that they perform a principal
component analysis (PCA) whenever a direction in the space of input activities presents a larger variance
with respect to all other input directions37. Examples are the flux rule (2), which may be derived from the
stationarity principle for statistical learning38, and Oja’s rule46,

ẇi j = εojayi
(
y jϕ ju j−αyiwi j

)
, α = 0.1 . (8)

In order to work with average synaptic weight changes 〈ẇi j〉 of comparable magnitude, one needs to
rescale the adaption rate εoja with respect to εw, which enters the flux rule (2). We use εoja = 10εw,

In Fig. 8 the time evolution of the average excitatory and inhibitory synaptic weights, as produced
by Oja’s rule (8), are presented. Oja’s rule leads to a complete rescaling of the inhibitory weights and
hence to a maximally unbalanced synaptic weight distribution, which is furthermore characterized by
intermittent periods of abrupt changes.

Synaptic weight growth is limited by both Oja’s and by the flux rule, namely as a consequence of the
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Figure 6. Left: The evolution of the effective synaptic weights, as for Fig. 4, but for 200 excitatory and
200 inhibitory neurons. The membrane integration time in (1) is set to τ = 20ms for both excitatory and
inhibitory neurons. Synaptic weight balance (7), as expressed by w(exc)+w(inh) (red curve), is achieved on
the time scale 1/εw = 100s of Hebbian learning (see inset). Note that the initial synaptic weight balance
has been selected to be off by a factor of two. Right: The synaptic weight distributions, as for Fig. 5,
obtained after one hour of mathematical simulation time. The two small peaks are located at the value
for the weight reinserted after pruning. The final distributions are symmetric, apart from some stochastic
fluctuations, with standard deviations of 2.7 and means of ±4.1 for excitatory and inhibitory neurons.
Note that the initial weight distribution (violet) is highly unbalanced.

additive damping factor for the case of Oja’s rule (8) and as the result of the multiplicative limiting factor
G(x) = x0 + x(1−2y) for the case of the flux rule (2). For comparison we performed simulations where
we replaced G(x) in (2) by a constant. We find in this case that the excitatory weights are rescaled to
zero. The synaptic weight distribution is therefore also maximally unbalanced. The runaway growth of the
inhibitory synaptic weights showing up in Fig. 8, which is due to the removal of the limiting factor G(x)
in (2), is accompanied by a respective evolution of the threshold, via (3), such that the average activity
remains close to yt = 0.2.

The flux rule (2) is manifestly only a function of the membrane potential xi and of the effective
presynaptic activity ϕ ju jy j, which is in turn positive. The overall functional form follows closely that of a
cubic polynomial38,

ẇi j ≈ −εw (xi−b/2)
(
xi− x−

)(
xi− x+

)
ϕ ju jy j, x± ≈−b

2
± x0 , (9)

where the x± denote the roots of G(x) = x0 + x(1−2y). Stationarity is achieved when the time average of
(9) vanishes, that is when the average membrane potential 〈xi〉 is on the order of the size of the roots x±

and b/2 of G(x)H(x).

• The threshold b, which is determined via the sigmoidal (1) by the target activity yt , is of order unity
whenever this is the case for the average membrane potential 〈xi〉.

• It is viceversa true, that the average membrane potential 〈xi〉 will be of order unity, as long as this is
the case for the roots x± and b/2 of G(x)H(x).

These two conditions are mutually compatible. It is from this point not surprising that the flux rule leads
on the average to small membrane potentials, as evident in Fig. 3, and consequently also to approximately
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balanced synaptic weight distributions. We note in contrast, that Oja’s rule (8) is explicitly dependent in
addition on the weight wi j of the adapting synapse.

We conclude that not every Hebbian learning rule will produce balanced irregular dynamics. While we
have pointed out here at some differences between the Flux rule and Oja’s rule, which may hint at the
conditions for a rule to achieve this state, further work is necessary to determine which families of rules
can and cannot perform this task.

E-I balance in terms of E-I correlations
To now quantify the degree of balance between excitation and inhibition, we compute for a given neuron
the cross-correlation C±i between the total excitatory incoming synaptic current x(exc)

i , as defined by (5),
and the total inhibitory synaptic current x(inh)

i , averaged first with respect to time and then across all
neurons of the network:

C±i =

〈(
x(exc)

i −
〈

x(exc)
i

〉
t

)(
x(inh)

i −
〈

x(inh)
i

〉
t

)〉
t

σ
(exc)
i σ

(inh)
i

, ρ
± =

〈
C±i
〉

i . (10)

Here we have denoted with σ
(exc)
i and σ

(inh)
i the standard deviations of x(exc)

i and respectively of x(inh)
i .

In Fig. 7 we present the cross correlation |ρ±| for the 50/50 system discussed in Fig. 6, for which
the initial weight configurations are not balanced. Note that the time scale for Hebbian learning is
1/εw = 100sec, which is a order of magnitude larger than the interval of 10 sec used for evaluating ρ± via
(10). Analogous investigations for an 80/20 system can be found in the Supplementary Material in Fig. S3.

The cross correlation characterizing the E-I balance of the initial state is only marginally dependent on
whether short-term and/or intrinsic plasticity are active. Its surprisingly large overall value, about (45-
50)%, reflects the presence of substantial inter-neuronal activity correlations, which we did not investigate
further. Comparing with the data presented in Fig. 6 one notices that ρ± is a somewhat less sensible
yardstick for E-I balance than the bare synaptic weight balance, which renormalizes to small values in a
balanced state. The data shown in Fig. 7 confirms otherwise that the Hebbian plasticity rule (2) leads to a
highly balanced state.

We have so far considered here networks without any external noise, which would not be the case in
the brain. A state characterized by irregular neural activity is generically expected to be robust against
moderate noise levels. Performing simulations with additive input noise, characterized by zero means and
a standard deviation of (5-10)%, with respect to the mean of the bare input, we found this expectation
to hold. The cross correlation ρ± barely changes as long as the level of noise present remains moderate.
The situation changes gradually with increasing noise strength, with E-I balance breaking down when the
noise level reaches about 50% of the bare input strength (cf. Fig. S1 in the Supplementary Material).

Discussion
We have examined here the question of whether it would be plausible for a neural network in which both
intrinsic and synaptic (E as well as I connections) parameters are continuously evolving to achieve balance
both in terms of weights and activities, in a fully unsupervised way, finding that this is indeed possible.
The resulting balanced network (which we have denoted here SOPBN) arises in a self-organized fashion,
in analogy to the critical state characterizing possibly certain aspects of cortical dynamics47. We studied
for this purpose the influence of continuously ongoing Hebbian plasticity within autonomous networks of
rate-encoding neurons, finding that the synaptic plasticity rule that follows from the stationarity principle
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Figure 7. The E-I cross-correlation between excitatory and inhibitory inputs for a 50/50 system with
N = 400 neurons. Shown is |ρ±|=−ρ±, as defined in (10), which was measured either after 1 hour (gray
bars), or right at the start (green bars). For the time average a period of 10 sec has been used in both cases.
The error bars have been evaluated with respect to 100 initial weight configurations drawn each time
from Gaussians with means 7.5 (-15.0) and standard deviations 0.375 (1.5) for excitatory and inhibitory
synapses, respectively. The initial synaptic weight configuration is therefore not balanced (as for Fig. 6).
Shown are the results for distinct scenarios with Hebbian plasticity (Hebb), short-term synaptic plasticity
(STSP) and intrinsic plasticity (intrinsic) being either turned on (green checkmark) or off (red cross).

of statistical learning, the flux rule, does indeed induce a balanced synaptic weight distribution, even when
the initial distribution is strongly unbalanced.

E-I balance induced by Hebbian learning
Comparing the flux rule with and without the self-limiting term and Oja’s rule, we have found that Hebbian
learning leads to a balanced distribution of synaptic weights, and hence also to a balanced state, whenever
the learning rule favors small average membrane potentials. It is not necessary, for this to happen, that the
learning rule constrains the overall input to strictly vanish on average, it suffices that the time averaged
input remains of the order of the neural parameters, such as the inverse slope of the transfer function in (1).
We found that the flux rule, as defined by (2) and (9), fulfills this requirement. An example of a Hebbian
rule not leading to a balanced weight distribution is on the other side given by Oja’s rule (8).

Rate encoding neurons showing spike-like neural activity
An E-I balanced state is characterized in addition to the small average membrane potential by the near
cancellation of two large drivings in the form of large excitatory and inhibitory inputs. Such a state is
highly sensible to small imbalances resulting either from additional external signals or from internal
fluctuations. We find these imbalances to be strong enough in SOPBNs to induce short spike-like bursts in
the neural activity, as observed e.g. in Fig. 2. This is quite remarkable, as one could have expected that
the rate-encoding neurons used for the present study would be more likely to lead to slowly and hence to
smoothly varying dynamical states.
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Figure 8. Time evolution of the average effective excitatory (violet) and inhibitory (green) synaptic
weights w(exc) and w(inh), as defined by (6). The network contains 200 and 200 excitatory and inhibitory
neurons. Also shown is the average balanced weight (red), given by w(exc)+w(inh). Left: Using Oja’s rule
(8). Right: Using the flux rule (2), as for Fig. 6, but this time with the limiting factor G(x) = x0+x(1−2y)
replaced by a constant, G→ 10. Both approaches fail to produce a balanced synaptic weight distribution.

Asynchronous neural activity
The near cancellation of large excitatory and inhibitory drivings stabilizes asynchronous neural activity,
as illustrated in Fig. 3 in terms of the membrane potential. Using the 0-1 test for chaos48 we found the
asynchronous state in SOPBNs to be at least strongly irregular (cf. Fig. S2 in the Supplementary Material).
As indicators for chaos one may have analyzed the time intervals between activity spikes49 or the Lyapunov
exponents of the system. The observation that the synaptic weight distribution changes continuously, as
demonstrated in Fig. 6, over time scales of hours, proves in any case that the neural activity is irregular
on extended times scales. The limit of infinitely long times is not the focus of this study, as real neural
systems are not expected to function for prolonged periods in the absence of stimuli.

Absence of a stationary autonomous state
We find, as shown in Fig. 4, that the size of the mean synaptic weights decays slowly but continuously.
Experimenting with different ensembles of initial weight statistics we found no instance where Hebbian
learning retaining E-I balance would lead to a systematic increase in magnitude of the overall mean
synaptic weights. We note, however, that this observation holds only for the here considered case of
isolated networks, hence without an additional external driving. An adaption rate εw that would fade out
slowing, being only initially large, would also preempt the long term decay of average synaptic weights.

Theory vs. experiment
The dynamic balance of excitation and inhibition is observed experimentally within a range of distinct
settings1, 5. Multielectrode recordings in human and monkey neocortex suggests that E-I balance is caused
in essence by local recurrent activity50, and not by external inputs, with irregular bursting activity showing
up on a range of time scales that starts, as for SOPBNs, at a few hundred milliseconds. It is also interesting
that the independent adjustment of synapses connecting inhibitory to layer 2/3 pyramidal neurons in the
mouse primary visual cortex has been found to be key for E-I balance to occur on a single-neuron level51.
These findings concur with the results for the single neuron cross correlation presented in Fig. 7, for which
the network average has been performed only as a second step. Furthermore we note that both the self
organized bursting states observed in SOPBNs, see Fig. 6, and the alternating up and down states observed
for in vitro prefrontal and occipital ferret slices are characterized by the asynchronous participation of all
neurons2.
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Outlook
Which configuration of synaptic weighs results from continuously ongoing internal Hebbian learning?
We presented here a first inroad into this subject, focusing in particular on the self-organized emergence
of E-I balance in terms of large but nearly canceling excitatory and inhibitory inputs. We find that not
all self-limiting Hebbian plasticity rules are able to do the job. There is on the other hand no need for a
Hebbian learning rule to enforce E-I balance explicitly. We find that E-I balance already emerges when
the Hebbian learning rule favors membrane potentials which are small with respect to the variance of the
inputs, being nevertheless large enough to be relevant for the neural transfer function.
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