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Abstract

Markov networks are extensively used to model complex sequential, spatial, and

relational interactions in a wide range of fields. By learning the Markov network

independence structure of a domain, more accurate joint probability distribu-

tions can be obtained for inference tasks or, more directly, for interpreting the

most significant relations among the variables. Recently, several researchers

have investigated techniques for automatically learning the structure from data

by obtaining the probabilistic maximum-a-posteriori structure given the avail-

able data. However, all the approximations proposed decompose the posterior

of the whole structure into local sub-problems, by assuming that the posteriors

of the Markov blankets of all the variables are mutually independent. In this

work, we propose a scoring function for relaxing such assumption. The Blankets

Joint Posterior score computes the joint posterior of structures as a joint distri-

bution of the collection of its Markov blankets. Essentially, the whole posterior

is obtained by computing the posterior of the blanket of each variable as a con-

ditional distribution that takes into account information from other blankets

in the network. We show in our experimental results that the proposed ap-

proximation can improve the sample complexity of state-of-the-art competitors

when learning complex networks, where the independence assumption between
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blanket variables is clearly incorrect.

Key words: Markov network, structure learning, scoring function, blankets

posterior, irregular structures

1. Introduction

A Markov network (MN) is a popular probabilistic graphical model that

efficiently encodes the joint probability distribution for a set of random variables

of a specific domain [1, 2, 3]. MNs usually represent probability distributions by

using two interdependent components: an independence structure, and a set of

numerical parameters over the structure. The first is a qualitative component

that represents structural information about a problem domain in the form

of conditional independence relationships between variables. The numerical

parameters are a quantitative component that represents the strength of the

dependences in the structure. There is a large list of applications of MNs in

a wide range of fields, such as computer vision and image analysis [4, 5, 6],

computational biology [7], biomedicine [8, 9], and evolutionary computation

[10, 11], among many others. For some of these applications, the model can be

constructed manually by human experts, but in many other problems this can

become unfeasible, mainly due to the dimensionality of the problem.

Learning the model from data consists of two interdependent problems:

learning the structure; and given the structure, learning its parameters. This

work focuses on the task of learning the structure, which is useful for a variety

of tasks. The structures learned may be used to construct accurate models for

inference tasks (such as the estimation of marginal and conditional probabili-

ties) [12, 13, 14], and may also be interesting per se, since they can be used

as interpretable models that show the most significant interactions of a domain

[15, 16, 17, 18, 19]. The first scenario is known in practice as the density estima-

tion goal of learning, and the second one is known as the knowledge discovery

goal of learning [Chapter 16 [3]].

An interesting approach to MN structure learning is to use constraint-based
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(also known as independence-based) algorithms [20, 21, 22, 23]. Such algorithms

proceed by performing statistical independence tests on data, and discard all

structures inconsistent with the tests. This is an efficient approach, and it is

correct under the assumption that the distribution can be represented by a

graph, and that the tests are reliable. However, the algorithms that follow this

approach are quite sensitive to errors in the tests, which may be unreliable for

large conditioning sets [20, 3]. A second approach to MN structure learning is

to use score-based algorithms [24, 25, 15, 26]. Such algorithms formulate the

problem as an optimization, combining a strategy for searching through the

space of possible structures with a scoring function that measures the fitness of

each structure to the data. The structure learned is the one that achieves the

highest score in the search.

It is important to mention that both constraint-based and score-based ap-

proaches have been originally motivated by distinct learning goals. According

to the existing literature [3], constraint-based methods are generally designed

for the knowledge-discovery goal of learning [22, 21], and their quality is often

measured in terms of the correctness of the structure learned (structural errors).

In contrast, most score-based approaches have been designed for the density es-

timation goal of learning [12, 13, 14], and they are in general evaluated in terms

of inference accuracy. For this reason, score-based algorithms often work by

considering the whole MN at once during the search, interleaving the parameter

learning step. This makes them more accurate for inference tasks. However,

since learning the parameters is known to be NP-hard for MNs [27], it has a

negative effect on their scalability.

Recently, there has been a surge of interest towards efficient methods based

on a strategy that follows a score-based approach, but with the knowledge dis-

covery goal in mind. Basically, an undirected graph structure is learned by

obtaining the probabilistic maximum-a-posteriori structure given the available

data [28, 19, 29]. This hybrid strategy achieves scalability, as well as reliable

performance. Such contributions consist in the design of efficient scoring func-

tions for MN structures, expressing the problem formally as follows: given a
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complete training data set D, find an undirected graph G? such that

G? = arg max
G∈G

Pr(G|D), (1)

where Pr(G|D) is the posterior probability of a structure given D, and G is the

familiy of all the possible undirected graphs for the domain size. This class of

algorithms has been shown to outperform constraint-based algorithms in the

quality of the learned structures, with competitive computational complexities.

The method proposed in this paper follows this approach.

Since there are no feasible exact methods for computing the posterior of

MN structures, different approximations have been proposed. An important as-

sumption commonly made by the current state-of-the-art methods is to suppose

that the posterior of the structure is decomposable [30, 31, 3, 28, 19, 29]. It

means that the whole posterior can be computed as a product of the posteriors

of the Markov blankets that compose the structure, which are smaller posteri-

ors that can be computed independently. In fact, this is a good approximation

that improves the efficiency of search. The research line of this work aims at

designing a better approximation of the posterior, by relaxing this independence

assumption. This work’s contribution is the Blankets Joint Posterior (BJP),

a scoring function that estimates Pr(G|D) as the joint posterior probability of

the Markov blankets of G. This is achieved by formulating Pr(G|D) in a novel

way that relaxes the independence assumption between the blankets. Essen-

tially, the whole posterior is obtained by computing the posterior of the blanket

of each variable as a conditional distribution that takes into account informa-

tion from other blankets in the network. In our experiments we show that the

proposed approximation can improve the sample complexity of state-of-the-art

scores when learning networks with complex topologies, that commonly appear

in real-world problems.

After providing some preliminaries, notations and definitions in Section 2,

we introduce the BJP scoring function in Section 3. Section 4 presents the

experimental results for several study cases. Finally, Section 5 summarizes this

work, and poses several possible directions of future work.
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2. Background

We begin by introducing the notation used for MNs. Then we provide some

additional background about these models and the problem of learning their

independence structure, and also discuss the state-of-the-art of MN structure

learning.

2.1. Markov networks

Let V be a finite set of indexes, with lowercase subscripts for denoting par-

ticular indexes, e.g., i, j ∈ V , and uppercase subscripts for subsets of indexes,

e.g., W ⊆ V . Let XV be the set of random variables of a domain, denoting sin-

gle variables as single indexes in V , e.g., Xi, Xj ∈ XV where i, j ∈ V . For a MN

representing a probability distribution P (XV ), its two components are denoted

as follows: G, and θ. G is the structure, an undirected graph G = (V,E) where

the nodes V = {0, ..., n − 1} are the indices of each random variable Xi of the

domain, and E ⊆ {V × V } is the edge set of the graph. A node i is a neighbor

of j when the pair (i, j) ∈ E. The edges encode direct probabilistic influence

between the variables. Similarly, the absence of an edge manifests that the de-

pendence could be mediated by some other subset of variables, corresponding

to conditional independences between these variables.

A variable Xi is conditionally independent of another non-adjacent variable

Xj given a set of variables XZ if Pr(Xi | Xj , XZ) = Pr(Xi | XZ). This is

denoted by 〈Xi ⊥ Xj |XZ〉 (or 〈Xi 6⊥Xj |XZ〉 for the dependence assertion). As

proven by [32], the independences encoded by G allow the decomposition of

the joint distribution into simpler lower-dimensional functions called factors, or

potential functions. The distribution can be factorized as the product of the

potential functions φc(Vc) over each clique Vc (i.e., each completely connected

sub-graph) of G, that is

P (V ) =
1

Z

∏
c∈cliques(G)

φc(Vc), (2)

where Z is a constant that normalizes the product of potentials. Such potential

functions are parameterized by the set of numerical parameters θ.
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For each variable Xi of a MN, its Markov blanket is composed by the set

of all its neighbor nodes in the graph. We denote the blanket of a variable Xi

as BXi . An important concept that is satisfied by MNs is the Local Markov

property, formally described as:

Local Markov property. A variable is conditionally independent of all

its non-neighbor variables given its MB. That is

〈Xi ⊥ {XV \ (BXi ∪Xi)} | BXi〉. (3)

By using this property, the conditional independences of P (XV ) can be read

from the structure G. This is done by considering the concept of separability.

Each pair of non-adjacent variables (Xi, Xj) is said to be separated by a set

of variables XZ ⊆ XV \ {Xi, Xj} when every path between Xi and Xj in G

contains some node in XZ [1].

In machine learning, statistical independence tests are a well-known tool to

decide whether a conditional independence is supported by the data. Examples

of independence tests used in practice are Mutual Information [33], Pearson’s

χ2 and G2 [34], the Bayesian statistical test of independence [35], and the Par-

tial Correlation test for continuous Gaussian data [20]. Such tests require the

construction of a contingency table of counts for each complete configuration of

the variables involved; as a result, they would have an exponential cost in the

number of variables [36]. For this reason, the use of the local Markov property

has a positive effect for learning independence structures, allowing the use of

smaller tests. Accordingly, the BJP score introduced in this work takes advan-

tage of this property by computing a set of conditional probabilities that are

more reliable and less expensive.

2.2. Scoring metrics for MN structure learning

The MN structure is learned from a training dataset D = {D1, ..., Dd},

assumed to be a representative sample of the underlying distribution P (XV ).

Commonly, D has a tabular format, with a column for each variable of the do-

main XV , and one row per data point. This work assumes that each variable is
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discrete, with a finite number of possible values, and that no data point in D has

missing values. As mentioned in the introduction, this work focuses on meth-

ods for computing Pr(G|D). For this reason, in this subsection we review two

recently proposed scoring functions that approximate it: the Marginal Pseudo-

Likelihood (MPL) score [19], and the Independence-based score (IB-score) [28].

2.2.1. Marginal pseudo-likelihood score

Marginal Pseudo Likelihood (MPL) is a recently proposed scoring func-

tion for MN structure learning [19], based on the computation of the pseudo-

likelihood score for Markov networks. In [19] it was shown that MPL is a small

sample analytical version of the pseudo-Bayesian information criterion (PIC)

score, a previous work introduced by [29] as a modification of the BIC score

for Markov networks. Both MPL and PIC scores approximate the posterior of

structures by considering P (G | D) ∝ P (D | G) × P (G). Since the data likeli-

hood of the graph P (D | G) is in general extremely hard to evaluate, they utilize

the well-known approximation called pseudo-likelihood [37]. The contribution

of MPL has been designed in order to be a tractable alternative, that can be

evaluated in closed form for chordal and non-chordal Markov networks.

The MPL score approximates the posterior of an independence structure by

using standard Bayesian calculations, with the closed-form expression

P (D | G) =

n∏
j=1

qj∏
l=1

Γ(αjl)

Γ(αjl + cjl)

rj∏
i=1

Γ(αijl + cijl)

Γ(αijl)
, (4)

where n is the number of variables in the domain, qj is the number of config-

urations of BXj , rj is the number of configurations of variable Xj , cijl is the

frequency in D of the ijl configuration (corresponding to the i-th configuration

of Xj and l-th configuration of its blanket BXj ), and αijl are the hyperparam-

eters, computed according to αijl = N
rj .qj

, with N being the equivalent sample

size, used to adjust the prior.

The above formula can be factorized into variable-wise marginal conditional

likelihoods, that is, a sum of variable-wise scores. This decomposition is ex-

ploited to speed-up the search procedure for finding the MPL-optimal structure.
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For this an efficient algorithm is proposed by its authors in order to ensure ap-

plicability in high-dimensional settings. The optimization technique proposed

exploits the structural decomposition of the score by breaking down the problem

into two phases. In a first phase, the problem is decomposed into n independent

Markov blanket discovery problems, locally optimizing the MPL for each node.

For this, it uses an approximate deterministic hill-climbing procedure similar

to the well-known IAMB algorithm [38]. In a second optimization phase, the

learned Markov blankets are combined into a coherent structure which is MPL-

optimal. This phase uses a greedy hill-climbing algorithm, searching for the

structure with maximum MPL score, but only restricting the search space to

the conflicting edges (i.e., edges learned for only one of its two variables). A

detailed description of this algorithm can be seen at [19, Section 4.2 on p. 10].

2.2.2. The Independence-based score

The independence-based score (IB-score) [28] is also based on the computa-

tion of the posterior, but uses the statistics of a set of conditional independence

tests. This score computes the posterior Pr(G | D) by combining the outcomes

of a set of conditional independence assertions that completely determine G.

Such a set is called the closure of the structure, denoted C(G). Thus, when

using IB-score, the problem of structure learning is posed as the maximization

of the posterior of the closure for each structure:

G? = arg max
G∈G

Pr(C(G) | D). (5)

Applying the chain rule over the posterior of the closure,

Pr(C(G) | D) =
∏

ci∈C(G)

Pr(ci|c1, . . . , ci−1, D), (6)

the IB-score approximates this probability by assuming that all the indepen-

dence assertions ci in the closure C(G) are mutually independent. The resulting

scoring funtion is computed as

IB-score(G) =
∑

ci∈C(G)

log Pr(ci | D), (7)
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where each term log Pr(ci | D) is computed by using the Bayesian statistical

test of conditional independence [35, 39]. Appendix C presents a summary of

the formulas used by this statistical test, which is also used in our BJP scoring

function, proposed in the next section.

The C(G) set proposed by the authors of the IB-score is the Markov blanket

closure [28, Definition 2], formally proven to correctly and completely deter-

mining a MN structure. This set is obtained by determining the blanket of

each variable Xi ∈ XV with the following set of conditional independence and

dependence assertions:{
〈Xi ⊥ Xj |BXi〉 : Xj /∈BXi

} ⋃ {
〈Xi 6⊥Xj |BXi\{Xj}〉 : Xj ∈BXi

}
. (8)

That is, for each neighbor of Xi (Xj ∈ Bi) a conditional dependence assertion

between both variables conditioning on Bi\{Xj} is added to C(G); and for each

non-neighbor of Xi (Xj /∈ Bi), a conditional independence assertion between

both variables conditioned on Bi is added to C(G);.

Together with the IB-score, an efficient algorithm called IBMAP-HC was

presented to learn the structure by using a heuristic local search over the space

of possible structures. IBMAP-HC has been proven to significantly outperform

its independence-based competitors in terms of quality. A detailed description

of this algorithm can be seen at [28, on p. 6]. The optimization made by

IBMAP-HC is a heuristic hill-climbing procedure. The search is initialized by

computing the score for an empty structure (with no edges), and n nodes.

The hill-climbing search starts with a loop that iterates by selecting the next

candidate structure at each iteration. A näıve implementation of hill-climbing

would select the neighbor structure with maximum score, computing the score

for the
(
n
2

)
neighbors that differ in one edge. Such an expensive computation

is avoided by selecting the next candidate with a heuristic that estimates the

optimal neighbor by fliping the most promising edge, that is, the edge with the

lowest local contribution to the score. For this, the heuristic simply decomposes

the posterior of the structure into
(
n
2

)
pairwise scores, since the number of

neighbors differing by one edge is the same than the number of different pairs
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of variables. Then, the heuristic simply flips the edge corresponding to the

pair with the lowest pairwise score. Once the next candidate is selected, its

score is computed to be compared to the best scoring structure found so far.

The algorithm stops when the neighbor proposed does not improve the current

score.

3. Blankets Joint Posterior scoring function

We introduce now our main contribution, the Blankets Joint Posterior (BJP)

scoring function. Consider some graph G representing the independence struc-

ture of a positive MN. It is a well-known fact that, by exploiting the graphical

properties of such models, the independence structure can be decomposed as

the unique collection of the blankets of the variables [3, Theorem 4.6 on p. 121].

Thus, the computation of the posterior probability of G given a dataset D is

equivalent to the joint posterior of the collection of blankets of G, that is,

Pr(G | D) = Pr(BX0 , BX1 , . . . , BXn−1 | D). (9)

In contrast with previous works, where the blanket posteriors are simply as-

sumed to be independent [19, 28, 29], we apply the chain rule to (9), obtaining

Pr(BX0 , . . . , BXn−1 | D) =

n−1∏
i=0

Pr

(
BXi

∣∣∣∣∣ {BXj}i−1

j=0
, D

)
. (10)

In this way, the posterior probability of each blanket can be described in terms

of conditional probabilities, using the training dataset D as evidence, together

with the blanket of the other variables. Thus, the joint posterior of all the

blankets can be computed taking advantage of how the blankets are mutually

related, instead of assuming them to be independent.

The computation of Pr(BX0 , . . . , BXn−1 | D) has to be done progressively,

first calculating the posterior of the blanket of a variable directly from data,

and then, the knowledge obtained so far can be used as evidence to compute

the posterior of the blankets of other variables. However, this decomposition

10
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is not unique, since each possible ordering for the variables is associated to a

particular decomposition. The basic idea underlying the computation of BJP

is to sort the blankets by their size in ascending order, where by size we mean

the number of configurations of the Markov blanket. This ordering is optimal,

because it avoids the computation of expensive and unreliable probabilities,

thus improving data efficiency. This is due to the fact that as the size of the

blanket increases, greater amounts of data are required for accurately estimating

its posterior probability. By using the proposed ordering, the posterior for

variables with fewer blankets are computed first, and this information is used as

evidence when computing the posterior for variables with bigger blankets. As

a result, the information obtained from the more reliable blanket posteriors is

used for computing less reliable blankets posteriors. It is important to note that,

in theory, the correctness of BJP does not depend on which ordering is used.

However, this is important for practical implementation because it can affect

the data efficiency of the score. In Section 3.1 we show a complete example

of the BJP computation which illustrates the importance of the ordering used.

Additionally, Appendix B extends the example with an empirical test for the

performance of BJP when different arbitrary orderings are used.

We now proceed to find a closed-form expression for computing the BJP

score. Given an undirected graph G, let ψ denote the ordering vector which

contains the variables sorted by their size in ascending order. Therefore, we

reformulate (10) as

BJP (G) =

n−1∏
i=0

Pr

(
Bψi

∣∣∣∣∣ {Bψj}i−1

j=0
, D

)
. (11)

We now proceed to express the posterior of a blanket in terms of probabilities

of conditional independence and dependence assertions. The computation of

Pr(Bψi |{Bψj}i−1
j=0, D) can be derived from the posterior of the independences

11
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and dependences represented by each blanket:

Pr

(
Bψi

∣∣∣∣∣ {Bψj}i−1

j=0
, D

)
=

∏
ψk /∈Bψi

Pr

(
〈ψi ⊥ ψk|Bψi〉

∣∣∣∣∣ {Bψj}i−1

j=0
, D

)
×

∏
ψk∈Bψi

Pr

(
〈ψi 6⊥ψk|Bψi \ {ψk}〉

∣∣∣∣∣ {Bψj}i−1

j=0
, D

)
.

(12)

In this way, the whole score is the product of the posterior probability of

each blanket, computed in terms of posterior probabilities conditioned on other

blankets. The particular way of determining the posterior of each blanket of

(12) is inspired by the Markov blanket closure (see Section 2.2.2).

The two factors in (12) can be interpreted as follows:

• The first product computes the probability of independence between ψi

and its non-adjacent variables, conditioned on its blanket, given the pre-

viously computed blankets and the dataset D. It is computed as

Pr

(
〈ψi ⊥ ψk|Bψi〉

∣∣∣∣∣ {Bψj}i−1

j=0
, D

)
=



Pr(〈ψi ⊥ ψk|Bψi〉 | D)

if i < k,

1 if i > k.

(13)

Here, i < k indexes over the variables for which the blanket posterior prob-

ability is not already computed. For the remaining variables the posterior

of independence will be simply inferred as 1.

• The second product in (12) computes the posterior probability of depen-

dence between ψi and its adjacent variables, conditioned on its remaining

neighbors, given the blankets computed previously and the dataset D. It

12
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is computed as

Pr

(
〈ψi 6⊥ψk|Bψi \ {ψk}〉

∣∣∣∣∣ {Bψj}i−1

j=0
, D

)
=



Pr(〈ψi 6⊥ψk|Bψi \ {ψk}〉 | D)

if i < k,

1 if i > k.

(14)

Here, again i < k indexes over the variables for which the blanket posterior

is not already computed. For the remaining variables the posterior of

dependence will be inferred as 1.

The only approximation in BJP is made in (12), by assuming that all the

independence and dependence assertions that determine the blanket of a variable

ψi are mutually independent. This is a common assumption, made implicitly

by all the constraint-based MN structure learning algorithms [23], and also by

the IB-score, MPL, and the PIC scoring functions. For the computation of the

posterior probabilities of independence Pr(〈ψi ⊥ ψk|Bψi〉 | D) and dependence

Pr(〈ψi 6⊥ψk|Bψi \ {ψk}〉 | D) used in (13) and (14), respectively, BJP uses the

Bayesian test of [39, 35, 40], in the same way as the IB-score explained in

the previous section. Precisely, this statistical test computes the posterior of

independence and dependence assertions, and has been proven to be statistically

consistent in the limit of infinite data. A summary of the formulas used by the

Bayesian test is shown in Appendix C.

An important property of a scoring function is the correctness. By correct-

ness we mean that, under the assumption that the generating distribution is

faithful to a Markov network structure, the probabilities computed in (11) and

(12) are sufficient to calculate the posterior probability of a MN structure. The

following theorem establishes that the BJP scoring function is indeed correct:

Theorem 1. Let G be an undirected independence structure of a positive graph-

isomorph distribution P (XV ). The BJP scoring function of G is “correct” in the

sense that the posterior probability that it computes is equivalent to the posterior

probability of a MN structure.
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0                               2

1

3

Figure 1: Example of an undirected graph with 4 nodes and hub topology

Proof of Theorem 1. The formal proof of this theorem is presented in Ap-

pendix A.

We now briefly discuss the computational complexity of the BJP scoring

function. For a fixed MN structure, the computational cost of BJP is directly

determined by the number of statistical tests that must be perfomed on the

data. As stated in (11), BJP computes the posterior probability of the blanket

for the n variables of the domain. For each variable, it must perform n − 1

statistical tests on data, by using (12). Then, one half of the tests are inferred

when computing the posterior of independences and dependences of (13) and

(14). Thus, only n(n−1)
2 tests are required for computing the BJP score of a

structure.

3.1. Example of BJP score computation

For the sake of clarity, this section shows the complete computation of the

BJP score for an illustrative example. Consider an example probability distri-

bution Pr(XV ) with four binary variables XV = {X0, X1, X2, X3}, represented

by a MN whose independence structure G is given by the graph of Figure 1.

Given a dataset D, the BJP score can be computed by following steps:

a) Build a vector ψ, with the nodes sorted by their size in ascending order.

Since all the variables have the same domain size, the following vector is optimal:

ψ = (X1, X2, X3, X0), according to their degree as shown in the graph.
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b) By following (11), the computation of BJP (G) is given by:

BJP (G) = Pr

(
B
X1

∣∣∣∣D)
×Pr

(
B
X2

∣∣∣∣BX1 , D

)
×Pr

(
B
X3

∣∣∣∣BX1 , B
X2 , D

)
×Pr

(
B
X0

∣∣∣∣BX1 , B
X2 , B

X3 , D

)
.

c) Compute each term of the above expression by following (12), resulting
in:

Pr

(
B
X1

∣∣∣∣D)
= Pr

(
〈X1 ⊥ X2|X0〉

∣∣∣∣D)
× Pr

(
〈X1 ⊥ X3|X0〉

∣∣∣∣D)
× Pr

(
〈X1 6⊥X0|∅〉

∣∣∣∣D)
.

Pr

(
B
X2

∣∣∣∣BX1 , D

)
= Pr

(
〈X2 ⊥ X1|X0〉

∣∣∣∣BX1 , D

)
× Pr

(
〈X2 ⊥ X3|X0〉

∣∣∣∣BX1 , D

)
× Pr

(
〈X2 6⊥X0|∅〉

∣∣∣∣BX1 , D

)
.

Pr

(
B
X3

∣∣∣∣BX1 , B
X2 , D

)
= Pr

(
〈X3 ⊥ X1|X0〉

∣∣∣∣BX1 , B
X2 , D

)
× Pr

(
〈X3 ⊥ X2|X0〉

∣∣∣∣BX1 , B
X2 , D

)
× Pr

(
〈X3 6⊥X0|∅〉

∣∣∣∣BX1 , B
X2 , D

)
.

Pr

(
B
X0

∣∣∣∣BX1 , B
X2 , B

X3 , D

)
= Pr

(
〈X0 6⊥X1|X2, X3〉

∣∣∣∣BX1 , B
X2 , B

X3 , D

)
× Pr

(
〈X0 6⊥X2|X1, X3〉

∣∣∣∣BX1 , B
X2 , B

X3 , D

)
× Pr

(
〈X0 6⊥X3|X1, X2〉

∣∣∣∣BX1 , B
X2 , B

X3 , D

)
.

d) By replacing Equations (13) and (14) in the factors of the above expres-
sion, one half of the tests can be inferred, and only the following probabilities
must be computed from data by using the Bayesian statistical test:

Pr

(
B
X1

∣∣∣∣D)
= Pr

(
〈X1 ⊥ X2|X0〉

∣∣∣∣D)
× Pr

(
〈X1 ⊥ X3|X0〉

∣∣∣∣D)
× Pr

(
〈X1 6⊥X0|∅〉

∣∣∣∣D)
.

Pr

(
B
X2

∣∣∣∣BX1 , D

)
= 1× Pr

(
〈X2 ⊥ X3|X0〉

∣∣∣∣D)
× Pr

(
〈X2 6⊥X0|∅〉

∣∣∣∣D)
.

Pr

(
B
X3

∣∣∣∣BX1 , B
X2 , D

)
= 1× 1× Pr

(
〈X3 6⊥X0|∅〉

∣∣∣∣D)
.

Pr

(
B
X0

∣∣∣∣BX1 , B
X2 , B

X3 , D

)
= 1× 1× 1.
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The inferred tests are the 1s in each equation. This example allows us to

illustrate the intuition behind BJP, since the sample complexity of the blanket

posterior for variables X1, X2, and X3 is lower than that of X0. Moreover,

in this example it is clear that the posterior distribution of BX0 depends on

the posterior distributions of BX1 , BX2 and BX3 . Clearly, the posterior of

BX0 is harder to evaluate than the posterior of the remaining variables, and

then, computing Pr(BX0 |BX1 , BX2 , BX3 , D) could be more informative than

only computing Pr(BX0 |D) independently of the rest of blankets. Appendix B

shows two experiments using the graph of Figure 1, which provide empirical

evidence of how the ordering affects the performance of BJP.

3.2. BJP versus existent methods

As mentioned before, MPL and IB-score are two recently proposed meth-

ods for computing the probabilistic maximum-a-posteriori structure given data.

It is important to note that they have been designed from different points of

view. On the one hand, MPL addressed the difficulty of evaluating likelihood-

based scores for non-chordal graphs by proposing a metric that does not as-

sume chordality. On the other hand, IB-score has been designed for tackling

the problems of constraint-based algorithms: these algorithms proceed by per-

forming statistical independence tests on data, trusting the outcome of each test

completely. In practice some tests may be incorrect, resulting in the possibil-

ity of errors propagating. IB-score tackles this problem through a probabilistic

maximum-a-posteriori approach that combines the outcomes of statistical inde-

pendence tests. The BJP score proposed in this work is strongly influenced by

the IB-score viewpoint. However, the research of this work aims at designing a

better approximation of the posterior, by relaxing the independence assumption

between blanket posteriors (made by both IB-score and MPL).

Another important difference is the decomposability properties of each score.

On the one hand, the MPL score has an analytic expression that factorizes into

variable-wise marginal conditional likelihoods, as can be seen in (4). This allows

MPL to be optimized as proposed by its authors, by decomposing the problem

16
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in n independent Markov blanket discovery problems, locally optimizing the

MPL for each node. By optimizing the score in this way, they are exploiting

the independence assumption between blankets in order to speed-up the search

procedure. Instead, BJP tackles the negative effects that this assumption has

on the quality of the learned structures. On the other hand, the IB-score has

an analytic expression that depends on the choice of the closure, as can be seen

in (7) and (8). The efficient optimization proposed for IB-score is called the

IBMAP-HC algorithm, and it does not decompose the score. This algorithm

optimizes the score of the whole structure, without assuming the blankets to be

independent.

The independence assumption affects the data efficiency of the scoring func-

tions. In the case of MPL, its main disadvantage is that it over-specifies the

node-wise conditional distributions. This has a negative effect on data efficiency,

especially for networks with hub nodes1. Regarding IB-score, its main drawback

is related to the use of the Markov blanket closure, which allows to correctly

compute Pr(G|D). Again, by assuming all Markov blankets to be mutually in-

dependent, the IB-score computes redundant probabilities. BJP mitigates the

data efficiency problems caused by the redundancies in the IB-score by sorting

the blankets of the graph by their size in ascending order and then computing

the conditional distributions that involve other blankets as evidence. Precisely,

in our approach only one probability is computed for each pair, and the redun-

dant ones are inferred. For this reason, it is expected that for data scarcity

conditions the BJP scoring function outperforms both MPL and IB-score.

3.3. Optimization

The goal of this work is to propose a score for approximating the posterior of

structures by relaxing the independence assumption between blankets. For this

1This is because the conditional distributions are specified in terms of complete Markov

blankets even if only a subset of a Markov blanket is sufficient for shielding a node from a

particular part of the network.
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reason, we want to evaluate and compare the scoring functions independently

of the search process used. The exact optimization consists in maximizing the

score over all possible undirected graphs for some specific problem domain, as

shown in (1). Since the discrete optimization space of the possible graphs G

grows rapidly with the number of variables n, this exhaustive search is clearly

intractable even for small domain sizes. For this reason, we have designed two

different sets of experiments. Firstly, in Section 4, we show a comparison of the

performance of BJP against MPL and IB-score for low-dimensional problems,

using brute force maximization (i.e., exhaustive search). It allows us to study

the convergence of the scoring functions to the exact solution, without the bias

that would be introduced by approximate search mechanisms. Secondly, we

show several experiments with more realistic, higher dimensional domains. In

these experiments we used the IBMAP-HC algorithm explained in Section 2.2.2

for maximizing the BJP score, as an efficient approximate solution.

4. Experimental evaluation

This section presents several experiments in order to determine the merits

of BJP in practical terms. Two sets of experiments are presented, one from

low-dimensional problems, and another for high-dimensional problems. For the

low-dimensional setting, we used brute force (i.e., exhaustive search) to study

the convergence of the scoring functions to the exact solution, what we later

in Section 4.1 call the consistency experiments. We compare BJP against the

two recently proposed scoring functions that approximate the posterior of MN

structures: MPL and IB-score. The goal is to prove experimentally that the

sample complexity for successfully learning the exact structure of BJP can be

better than for the competitors, independently of the optimization mechanism

used. Exhaustive search is limited to low-dimensional settings as the search

space grows exponentially with the square of the number of variables, so for the

high-dimensional setting, we used the IBMAP-HC algorithm for comparing the

performance of BJP against several state-of-the-art competitors. These experi-
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ments were performed in order to prove that BJP can identify structures with

fewer structural errors than the competitor state-of-the-art algorithms for real-

istic scenarios. The software to carry out the experiments has been developed

in Java, and it is publicly available2.

For the experiments we selected a set of networks where the topologies ex-

hibit irregularities, which is a common property in many real-world networks

[41]. According to [42], the irregularity of an undirected graph can be computed

by summing the imbalance of its edges:

irr(G) =
∑

(i,j)∈E(G)

|dG(i)− dG(j)|, (15)

where dG(i) is the degree of the node i in that graph. Clearly irr(G) = 0 if and

only if G is regular. For non-regular graphs irr(G) is a measure of the lack of

regularity. Since in our experiments we test only domains with discrete binary

variables, we used the irregularity of the underlying structure as an external

control variable that determines the importance of the independence assumption

between blankets for decomposable scores. Thus, as larger the irregularities

the larger is the difference between the sizes of the infered blankets and their

matching ones, resulting in larger expected improvements against competitors.

4.1. Consistency experiments

A MN scoring function is consistent when the structure which maximizes the

score over all the possible structures is the correct one, in the limit of infinite

data. However, in practice the data is often too scarce to satisfy this condition,

and the sample size needed to reach the correct structure varies across different

scoring functions. This is referred to as the sample complexity of the score. The

experiments here presented were carried out in order to measure the sample

complexity of the three different scoring functions: MPL, IB-score and BJP.

This is achieved by measuring their ability to return, by brute force, the exact

independence structure of the MN which generated the data.

2http://dharma.frm.utn.edu.ar/papers/bjp
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Target structure 1 Target structure 2 Target structure 3

Target structure 4 Target structure 5 Target structure 6

Figure 2: Independence structures for the first set of experiments: model 1 is regular (irr = 0);

model 2 has irr = 10; model 3 has irr = 18; model 4 has irr = 20; models 5 and 6 have the

maximum irregularity for six variables (irr = 26).

To make this comparative study, we selected the six different target struc-

tures shown in Figure 2. These graphs represent different cases of irregularity,

according to (15). The first target structure is regular (irr = 0), the second

has a little irregularity, the third and fourth structures are irregular structures

with a hub topology, and the fifth and sixth target structures have maximum

irregularity for n = 6. As mentioned before, the irregularity is used here as

a parameter for determining the importance of the independence assumption

between blankets. Thus, in terms of sample complexity, we expect larger im-

provements of BJP over the competitors when the irregularity of the underlying

structure increases.

For constructing a probability distribution from these independence struc-

tures according to (2), random numeric values were assigned to the parameters

of their maximal clique factors, sampled independently from a uniform distri-

bution over (0, 1). Ten distributions were generated for each target structure,

considering only binary discrete variables. Then, for each one, ten different ran-

dom seeds were used to obtain 100 datasets for each graph, by using the Gibbs
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sampling tool of the open-source Libra toolkit [43]. The Gibbs sampler was run

with 100 burn-in and 100, 000 sampling iterations.

Since we have n = 6 variables, the search space consists of 2(6
2) = 32768

different undirected graphs. The experiment consisted in evaluating the number

of true structures returned by each score over the 100 datasets. This is called

here the success rate of the scoring function. The success rate is computed

for increasing dataset sizes ND = {250, 500, 1000, 2000, 4000, 8000}. Of course,

since greater sizes of the dataset lead to better estimations, ND affects the

quality of the structure learned. Therefore, a score is considered better than

another score when its success rate converges to 1 for lower values of ND.

Table 1 shows the results of the experiment. The first column shows the

target structures, the second shows their irregularity, the third shows each sam-

ple size ND used, and the fourth shows the success rate. For all the cases, it

can be seen how the success rate of the three scoring functions grows with the

sample size ND. At each row, the ranking of the methods is represented by the

shade of the cells, such that the lightest cell marks the highest success rate and

the darkest cell marks the lowest success rate. The results in the fourth column

show that BJP has a better success rate in almost all cases. For all the cases,

MPL has a slower convergence than IB-score and BJP. For structures 1 and 2,

IB-score shows better convergence than BJP, but they would eventually con-

verge similarly for greater ND sizes. This is an expected result, because these

structures are regular, and the approximation of BJP and IB-score are very

similar for computing Pr(G|D). In contrast, for structures 3, 4, 5 and 6, BJP

has in general the best success rate. This is also an expected result, according

to the irregularity of the underlying structures. Accordingly, the best improve-

ment of BJP over IB-score is for model 6 (which has maximal irregularity) and

ND = {1000, 2000}, with an improvement of success rate of up to 9%. When

compared with MPL, BJP obtains the best improvement in success rate of up

to 59%, also for model 6 and ND = {4000}.

In general, these results are consistent with the hypothesis of this work,

since BJP has been designed to improve the computation of Pr(G|D), and the
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Target Irr ND Success rate

structure MPL IB-score BJP

1 0

250 0.00 0.00 0.00

500 0.00 0.00 0.01

1000 0.01 0.05 0.03

2000 0.04 0.15 0.12

4000 0.15 0.25 0.21

8000 0.28 0.35 0.34

2 10

250 0.00 0.00 0.000

500 0.00 0.00 0.01

1000 0.00 0.04 0.02

2000 0.02 0.15 0.16

4000 0.10 0.27 0.25

8000 0.18 0.39 0.39

3 18

250 0.00 0.06 0.04

500 0.03 0.09 0.12

1000 0.10 0.17 0.19

2000 0.17 0.22 0.27

4000 0.22 0.45 0.49

8000 0.34 0.58 0.61

4 20

250 0.00 0.00 0.00

500 0.00 0.03 0.02

1000 0.00 0.06 0.10

2000 0.00 0.14 0.18

4000 0.00 0.29 0.36

8000 0.00 0.44 0.50

5 26

250 0.00 0.01 0.01

500 0.00 0.02 0.01

1000 0.00 0.10 0.11

2000 0.00 0.23 0.26

4000 0.03 0.56 0.54

8000 0.21 0.75 0.76

6 26

250 0.00 0.00 0.00

500 0.00 0.00 0.00

1000 0.00 0.04 0.13

2000 0.00 0.28 0.37

4000 0.02 0.66 0.61

8000 0.27 0.80 0.82

Table 1: Success rate of BJP, IB-score and MPL over 100 datasets for the target structures

on Figure 2. For each row, the ranking of the methods is represented by the shade of the

cells, such that the lightest cell marks the highest success rate and the darkest cell marks the

lowest success rate.

irregularity highlights the cases where an improvement of the sample complexity

is expected, due to the independence assumption between blankets made by the

state-of-the-art scores. The following section shows the performance of the three
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scoring functions for more complex domains.

4.2. Structural errors analysis

In this section, experiments in the high-dimensional setting are presented.

The goal here is to show that, for more practical scenarios, structure learning

using the BJP score can obtain structures of better quality than its state-of-the-

art competitors. In order to ensure tractability, the experiments in this section

require approximate search mechanisms for the optimization of each score. As

described in Section 3.2, the inherent decomposability properties of each func-

tion make them suitable for different optimization methods. For this reason,

a comparison using a single search algorithm for all scores would arbitrarily

bias the results and would not reflect realistic applications. Therefore, we have

decided to evaluate each score using the optimization method proposed by its

authors as the most favorable alternative, in hopes of achieving a reasonably fair

comparison. We compared BJP against the following state-of-the-art structure

learning methods, which are also applicable in high dimensions:

• GSMN : The Grow-Shrink Markov network structure learning algorithm

[21]. This is a standard state-of-the-art constraint-based algorithm. GSMN

proceeds by learning the blanket of each variable with the well-known GS

algorithm [40], and then constructs the solution structure by adding an

edge between each variable and the variables found in its Markov blanket.

This algorithm is very efficient, as it is not a search-based algorithm, but it

is very prone to errors when data is not sufficient for performing accurate

statistical independence tests.

• IB-score: The Independence-based score [28], optimized by using IBMAP-

HC (the heuristic hill-climbing optimization explained in Section 2.2.2).

• MPL: The Marginal pseudo-likelihood score [19], optimized by using the

efficient method in two phases proposed by its authors (described in Sec-

tion 2.2.1).
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Hub 1 Hub 2 Hub 3 Hub 4

Figure 3: Structures with a hub topology and 16, 32, 64 and 128 nodes

Note that, in the scope of this set of experiments, we use the name of each

score to refer to the combination of optimization method and scoring function

as described above.

The selected structures for the experiments capture the properties of several

real-world problems, where the target structure has few nodes with large de-

grees, and the remaining nodes have very small degree. Examples of problems

with this characteristic include gene networks, protein interaction networks and

social networks [41]. Thus, for this comparative study, we used three types

of structures: networks with hub topologies, scale-free networks generated by

the Barabasi-Albert model [44], and real-world networks, taken from the sparse

matrix collection [45] and the Matrix Market repository [46]. All these struc-

tures have an increasing complexity both in n and in irr. The hub networks

are shown in Figure 3, the scale-free networks are shown in Figure 4, and the

real-world networks are shown in Figure 5. Additionally, Table 2 describes the

characteristics for the real-world networks we used.

For each target structure we generated 10 random distributions and 10 ran-

dom samples for each distribution, with the Gibbs sampler tool of the Libra

toolkit. Thus, a total of 100 datasets were obtained for each graph, with the

same procedure explained in the previous section. As a quality measure, we

report the type-I errors (false positives), type-II errors (false negatives), and

Hamming distance (sum of false positives and false negatives) between the hun-

dred learned structures and the underlying one. We measure the statistical

significance of these quality measures by comparing the average and standard

deviation over the 100 repetitions, where by statistically significant we simply
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Target Number

structure n of edges Description

Karate 34 156 Zachary’s Karate Club∗. Social network of friendships between

34 members of a karate club at a US university in the 1970 [47].

∗https://www.cise.ufl.edu/research/sparse/matrices/Newman/karate.html.

Ibm-32 32 126 Unsymmetric pattern on leaflet advertising∗. Author: IBM. Ed-

itor: A. Curtis, I. Duff, J. Reid. Date: 1971 conference.

∗https://www.cise.ufl.edu/research/sparse/matrices/HB/ibm32.html.

Curtis-54 54 291 Stiff biochemical ordinary differential equations (ODEs)∗, from

the Original Harwell sparse matrix test collection [48].

∗http://math.nist.gov/MatrixMarket/data/Harwell-Boeing/smtape/curtis54.html.

Will-57 57 281 Jacobian of emitter-follower-current switch circuit∗.

∗http://math.nist.gov/MatrixMarket/data/Harwell-Boeing/smtape/will57.html.

Can-62 62 140 Structures problems in aircraft design∗.

∗http://math.nist.gov/MatrixMarket/data/Harwell-Boeing/cannes/can___62.html.

Dolphins 62 159 Dolphins social network∗. Social network of frequent associations

between 62 dolphins in a community living off Doubtful Sound,

New Zealand, as compiled by [49].

∗http://www.cise.ufl.edu/research/sparse/matrices/Newman/dolphins.html.

Polbooks 105 441 Books about US politics∗. The network represent frequent co-

purchasing of books by the same buyers [50].

∗https://www.cise.ufl.edu/research/sparse/matrices/Newman/polbooks.html.

Adj-Noun 112 425 Common adjective and nouns in “David Copperfield”∗. The

graph contains the network of common adjective and noun ad-

jacencies for the novel “David Copperfield” by Charles Dickens

[51].

∗http://www.cise.ufl.edu/research/sparse/matrices/Newman/adjnoun.html.

Fs-541-1 541 4285 An atmospheric pollution problem∗. One stage of FACSIMILE

stiff ordinary differential equation package, involving chemical

kinetics and two-dimensional transport.

∗http://math.nist.gov/MatrixMarket/data/Harwell-Boeing/smtape/fs_541_1.html

eris-1176 1176 8687 Power Network Problem∗. Symmetric pattern of Erisman, sum-

mer 1973 [52].

∗https://www.cise.ufl.edu/research/sparse/matrices/HB/eris1176.html.

Table 2: Characteristics for the real-world networks.
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Scale-free 1 Scale-free 2

Scale-free 3 Scale-free 4

Figure 4: Scale-free structures with 16, 32, 64 and 128 nodes

mean that there is no overlap between the intervals of the means plus/minus

their standard deviations. As in the previous section, the algorithms were ex-

ecuted for increasing dataset sizes ND = {250, 500, 1000, 2000, 4000, 8000}, to

assess how their accuracy evolves with data availability.

Table 3 shows the comparison of BJP against its competitors for the hub

structures of Figure 3. The table shows the name of the structures, their sizes

n, and their irregularities, in the first, second and third columns, respectively.

The dataset sizes ND are in the fourth column. The next columns show the

average and standard deviation of type-I errors, type-II errors, and the Ham-

ming distance over the 100 repetitions for all the structure learning algorithms:

GSMN, MPL, IB-score and BJP. At each row of the table, the ranking of the

Hamming distance is represented by the shade of the cells, such that the light-

est cell marks the lowest Hamming distance (best results) and the darkest cell

marks the highest Hamming distance. Additionally, the plots of Figure 6 shows

a summary of the Hamming distance differences between BJP and each compe-

titior, with a plot for each dataset and a bar for each dataset size ND. Figure 7

shows the runtime (in seconds) corresponding to the whole learning process. All
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a) Karate b) Ibm-32 c) Curtis-54

d) Will-57 e) Dolphins f) Can-62

g) Polbooks h) Adj-noun i) Fs-541-1

i) Eris-1176

Figure 5: Real-world networks
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Figure 6: Hamming distance differences between BJP and competitors for structures with

hub topology. ∆ HD denotes the improvement in Hamming distance over each competitor.

a) Differences with GSMN. b) Differences with MPL. c) Differences with IB-score.

the experiments were performed on an Intel(R) Core(TM) i7-4770 CPU, with

3.40GHz, and 32 GB of main memory.

When analyzing the results shown in Table 3, it can be seen that, for all the

algorithms, the more complex the underlying structure (determined by n and

irr), the larger is the number of structural errors (Hamming distance column)

for any score and any value of ND. The results show that BJP obtains the

best performance for all the cases, reducing the average Hamming distance of

the structures learned by its competitors. It can be seen that, for all the target

structures, GSMN has the slowest convergence in ND. Since GSMN follows a

traditional constraint-based approach, it is expected to obtain low qualities when

data are insufficient. When compared with both MPL and IB-score, the BJP
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Figure 7: Structures with hub topology: average and standard deviation of the learning

runtime (in seconds) over 100 repetitions.

score obtains better results, and these differences become increasingly larger

as the complexity (n and irr) grows. These results are statistically significant

for all the cases against GSMN and MPL. Against IB-score, BJP performs

better for all the cases, except three. In general, these results confirm that

BJP can outperform competitors in the quality of the learning process, with

the larger differences when the structures are highly irregular. Regarding the

type-I and type-II errors (false positives and false negatives), it can be seen

that GSMN tends to add many false positives, whereas the other score-and-

search methods tend to add many false negatives. This is because GSMN adds

false positives in the grow phase of the GS algorithm, and then the shrink

phase must perform tests that contain many variables, which tend to be more

unreliable, thus limiting the ability of the algorithm to delete incorrect edges.

In contrast, IB-score always obtains a lower number of type-I errors than BJP,

but its number of type-II errors increases significantly. In general, the three
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score-and-search approaches (MPL, IB-score and BJP) lead to produce more

type-II errors, because the hill-climbing approaches used start the search from

an empty structure.

In terms of the respective runtimes shown (in seconds) in Figure 7, it can

be seen that for all the algorithms, the more complex the underlying structure

(determined by n and irr), the larger is the runtime for any value of D used.

As expected, the most efficient approach is GSMN, since it follows a simple

traditional constraint-based approach, that performs a polynomial number of

statistical tests to learn the structure. Regarding the runtime of the search

mechanism used with BJP, it can be seen that it compares favorably to IB-

score for all the cases. When compared with MPL, BJP performs better for

the more complex problem (Hub 4), and shows similar runtimes for the other

cases. Although we simply used an existent optimization method for BJP, it

shows a good performance in both quality and runtime, when compared against

competitors.

Table 4 shows the comparison of BJP against its competitors for the scale-

free networks of Figure 4. The information of the table is organized in the

same way as in Table 3. The summary of the Hamming distance differences

between BJP and each competitior can be seen in the plots of Figure 8 with

a plot for each dataset and a bar for each dataset size ND. In contrast with

the hub structures, in the scale-free networks the size of the blankets in the

underlying network is more variable. This can explain the differences in the

trends of the Hamming distance, when compared with the results obtained for

the hub networks. It can be seen that, for all the cases, BJP obtains a lower

average Hamming distance than GSMN and MPL. The differences with MPL

are statistically significant for all the cases, except three. When compared with

IB-score, BJP shows better average number of errors for all the cases, except

three. As illustrated in Figure 8, the larger differences between BJP and the

three competitors can be seen for the Scale-free 4 model, with differences of more

than 600 edges corrected against GSMN. Against MPL and IB-score, again the

best differences of BJP can be seen for the Scale-free 4 model, with differences
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Figure 8: Hamming distance differences between BJP and competitors for scale-free network

models. ∆ HD denotes the improvement in Hamming distance over each competitor.

a) Differences with GSMN. b) Differences with MPL. c) Differences with IB-score.

of more than 15 edges corrected. In general, these results confirm that the

approximation of BJP is more accurate as n and irr grow. Regarding the two

types of errors (false positives and false negatives), and the runtimes shown (in

seconds) in Figure 9, it can be seen that they are similar to the case of the hub

networks.

Finally, Table 5 show the results for the real-world networks of Figure 5.

Again, the information of this table is organized in the same way as in the pre-

vious tables, and the differences of BJP are summarized in the plots of Figure 10.

In both, the table and the plots, the real network structures are ordered by their

complexity (in n and irr). Again, the trends in these results are consistent to
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Figure 9: Scale-free networks models: average and standard deviation of the learning runtime

(in seconds) over 100 repetitions.

those in the previous experiments. For all the problems, BJP lowers the aver-

age Hamming distance of the learned structures for all cases when ND < 4000.

The largest differences can be seen for the more irregular networks: Polbooks,

Adj-noun, fs-541-1 and eris-1176. As can be seen in the plots of Figure 10, there

are differences of more than 4, 0000 edges corrected over GSMN (eris-1176), dif-

ferences of more than 300 edges corrected over MPL (fs-541-1), and differences

of more than 120 edges corrected against IB-score (eris-1176). This is coherent,

since those are the most complex networks, and the largest differences are ob-

tained when data is scarcer. Regarding the two types of errors (false positives

and false negatives), it can be seen that they are similar to the case of the hub

and scale-free networks.

When analyzing the runtimes of real-world networks, shown in Figure 11,

it can be seen that they are consistent to the cases of the hub and scale-free

networks. An interesting difference can be seen for GSMN, which is the fastest
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Figure 10: Hamming distance differences between BJP and competitors for real-world net-

works. ∆ HD denotes the improvement in Hamming distance over each competitor.

a) Differences against GSMN. b) Differences against MPL. c) Differences against IB-score.
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algorithm for all the cases, except for eris-1176. This is because for higher

domain sizes and dense networks, GSMN tends to add many false positives in

the grow phase, which requires a shrink phase performing unreliable tests with

many variables. It produces numerous cascade errors, and it is the source of its

expensive computational cost. Regarding the runtime of the BJP optimization,

it can be seen that for almost all the cases the runtime over MPL and IB-score

is improved.

In general, the results discussed confirm that BJP always outperforms the

competitors when data are scarce. Also, the differences are greater both in

quality and runtime, for the more complex models. This confirms the hypothesis

that the BJP can outperform its competitors in the quality of the learning

process, with better results when the structures are highly irregular.

5. Conclusions

In this work we have introduced a novel scoring function for learning the

structure of Markov networks. The BJP score computes the posterior probabil-

ity of independence structures by considering the joint probability distribution

of the collection of Markov blankets of the structures. The score computes the

posterior of each Markov blanket progressively, using information from other

blankets as evidence. The blanket posteriors of variables with fewer neighbors

are computed first, and then this information is used as evidence for comput-

ing the posteriors for variables with bigger blankets. Thus, BJP can be useful

to improve the data efficiency for problems with complex networks, where the

topology exhibits irregularities, such as social and biological networks. In the

experiments, BJP scoring proved that it can improve the sample complexity

compared to the state-of-the-art competitors. The score is tested by using

exhaustive search for low-dimensional problems and by using a heuristic hill-

climbing mechanism for higher-dimensional problems. The results show that

BJP produces more accurate structures than the state-of-the-art competitors

when data are scarce.
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Figure 11: Real networks: average and standard deviation of the learning runtime (in seconds)

over 100 repetitions.
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We will guide our future work toward the design of more effective optimiza-

tion methods, since the hill-climbing optimization has two inherent disadvan-

tages: i) by only flipping one edge per step it scales slowly with the number of

variables of the domain n, ii) it is prone to getting stuck in local optima. More-

over, we consider that the properties of BJP score have considerable potential

for both further theoretical development, and applications.
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Appendices

A. Correctness of BJP

This appendix shows the proof of Theorem 1, concerning the correctness of

our method for computing the posterior of MN structures.

Theorem 1. Let G be an undirected independence structure of a positive graph-

isomorph distribution P (XV ). The BJP scoring function of G is “correct” in the

sense that the posterior probability that it computes is equivalent to the posterior

probability of a MN structure.

Proof of Theorem 1. In the formulation of the BJP score, the joint dis-

tribution of the blankets of G is calculated by computing the probabilities of

conditional independence and dependence assertions contained in the blanket

of each variable of the domain. This proof follows by demonstrating that the

39

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

F.
 S

ch
lu

te
r,

 Y
. S

tr
ap

pa
, D

. H
. M

ilo
ne

 &
 F

. B
ro

m
be

rg
; "

B
la

nk
et

s 
Jo

in
t P

os
te

ri
or

 s
co

re
 f

or
 le

ar
ni

ng
 M

ar
ko

v 
ne

tw
or

k 
st

ru
ct

ur
es

"
In

t. 
J.

 o
f 

A
pp

ro
x.

 R
ea

so
ni

ng
, V

ol
. 9

2,
 p

p.
 2

95
-3

20
, 2

01
8.



joint posterior over the dependences and independences used in (11) and (12)

is equivalent to the posterior of a MN structure.

From [28, Definition 2], the Markov blanket closure is a set of independence

and dependence assertions that are formally proven to correctly determine a

MN structure. This set is obtained by determining the blanket of each variable

Xi ∈ XV with the following set of conditional independence and dependence

assertions:{
〈Xi ⊥ Xj |BXi〉 : Xj /∈BXi

} ⋃ {
〈Xi 6⊥Xj |BXi \{Xj}〉 : Xj ∈BXi

}
.

Clearly, this is exactly the same set used by BJP in (12) to compute the pos-

terior of the blanket of each variable of the domain. Since this set determines

all members and non-members of each blanket without error, the posterior of

(11) results equivalent to the posterior of the independence structure. Thus,

the approximation introduced in (12) is correct in the sense that it computes

probabilities that are sufficient to calculate the posterior of a MN structure.

We demonstrate that these probabilities are properly estimated by (13) and

(14). We proceed by discussing their correctness separately for independence

and dependence assertions.

i) For independence assertions: Equation (13) computes the probability

of independence between a variable and a non-adjacent variable, condi-

tioned on its blanket, given the previously computed blankets and the

dataset D. In this equation, for the case when i < k, which indexes over

the variables for which the blanket posterior is not already computed, the

posterior of the independence assertion 〈ψi ⊥ ψk|Bψi〉 must be computed

from data. This is achieved by using the Bayesian statistical test of [35],

that has been proven to be statistically consistent, since its mean square

error tends to 0 as the dataset size tends to infinity. For the case when

i > k, which indexes over the variables for which the blanket posterior

is already computed, the independence assertion is inferred as 1, since its

independence is determined by the blanket of ψk, which is in the evidence
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{
Bψj

}i−1

j=0
. By definition in (12), this case applies to all the variables

ψk /∈ Bψi (i.e., all the variables that are not connected to ψi). We argue

the correctness for this inference by considering an intuitive equivalence

commonly used by constraint-based approaches to perform independence

tests that involve a smaller number of variables [3, p. 980]. If two variables

Xi andXk are not neighbors inG, then by applying the local Markov prop-

erty of (3) once for each, we have that 〈Xi ⊥ Xk|BXi〉 and 〈Xi ⊥ Xk|BXk〉

hold. Therefore, the inference made is correct.

i) For dependence assertions:

A similar argument can be given for the case of the dependence assertions.

Equation (14) computes the probability of dependence between a variable

and an adjacent variable conditioned on its remaining neighbors, given

the previously computed blankets and the dataset D. Again, for the case

when i < k, which indexes over the variables for which the blanket pos-

terior is not already computed, the posterior of the dependence assertion

must be computed from data. For the case when i > k, which indexes

over the variables for which the blanket posterior is already computed,

the dependence assertion is inferred as 1, since its dependence is deter-

mined by the blanket of ψk, which is again in the evidence
{
Bψj

}i−1

j=0
. By

definition in (12), this case applies to all the variables ψk ∈ Bψi (i.e., all

the variables that are connected to ψi). Clearly, if two variables Xi and

Xk are neighbors in G, there are no sets separating them in the graph.

Therefore, the dependence assertion inferred is true.

�

B. Impact of different orderings for blankets

This appendix shows two simulations that illustrate the convenience of the

proposed ordering, that sorts the variables by their blanket sizes in ascending
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Figure 12: Simulation with data sampled from the hub structure of Figure 1. Left: the

posterior of two equivalent independence assertions tested on data, with different conditioning

sizes. Right: the BJP score computed for different arbitrary orderings.

order. The first simulation illustrates how the sample complexity of statistical

tests grows with the size of the conditioning set. The second simulation shows

the sample complexity of the BJP score, computed for the underlying structure

of data (i.e., the graph of Figure 1). For the graph of Figure 1, a MN random

distribution has been generated, and then a synthetic dataset D has been sam-

pled from the distribution with a Gibbs sampler. For more details about how

we generated our synthetic data, see Section 4.

For the first simulation, the posterior probabilities of two independence as-

sertions t1 = 〈X1 ⊥ X2|X0〉 and t2 = 〈X1 ⊥ X2|X0, X3〉 were computed

from D with the Bayesian statistical test. Both assertions are correct in the

graph of Figure 1, and also must be present in the synthetic dataset gener-

ated. In the left plot of Figure 12 the trends of the log posterior probabili-

ties of t1 and t2 are shown, computed from data for increasing dataset sizes

D = {250, 500, 1000, 2000, 4000, 8000, 40000, 70000, 100000}. The log of the

threshold 0.5 is drawn in a dashed line, to show the convergence of the probabil-

ities. Although t1 and t2 are equivalent, t2 has two variables in the conditioning

set, and clearly requires higher amounts of data to converge to log(1) = 0.

For the second simulation, we computed the BJP score using the following

orderings of the variables:
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(i) X1, X2, X3, X0 (optimal ordering, when sorting the blankets by their size

in ascending order).

(ii) X1, X2, X0, X3 (sub-optimal).

(iii) X1, X0, X2, X3 (sub-optimal).

(iv) X0, X1, X2, X3 (worst ordering).

The right plot of Figure 12 shows the BJP score when using each of these order-

ings, for increasing datasets sizesD = {250, 500, 1000, 2000, 4000, 8000, 40000, 70000, 100000}.

Clearly, the optimal ordering (X1, X2, X3, X0) shows the best sample complex-

ity, and the ordering (X0, X1, X2, X3) shows the worst sample complexity. As

it can be seen, the ordering used greatly affects the score when data is scarce

(D < 2000). For dataset sizes greater than 1000 data points, the BJP score is

the same for any order. It illustrates how the independence assumption between

blankets affects the data efficiency. For small dataset sizes, an optimal ordering

for computing the blankets joint posterior is expected to improve the sample

complexity of those methods that assume independence between blankets.

C. Bayesian statistical test of conditional independence

This appendix describes briefly the Bayesian statistical test of conditional

independence [35], and explains how to adapt it for discrete variables. The

Bayesian test allows us to query a conditional independence between two random

variables Xi and Xj , given a conditioning set XZ , in a training dataset D. The

statistical test works by comparing the posterior probability of two statistical

models: the independent model MCI , and the dependent model M¬CI .

The posterior probability of the independent model is computed from D as

follows:

P (MCI | D) = 1/

(
1 +

1− P (MCI)

P (MCI)
· P (D |M¬CI)
P (D |MCI)

)
, (16)

where P (MCI) denotes the a priori probability of the independent model, P (D |

MCI) is the data likelihood of the independent model, and P (D | M¬CI) is
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the data likelihood of the dependent model. The posterior probability of the

dependent model is simply obtained by P (M¬CI | D) = 1− P (MCI | D).

For computing the above formula, it is required to compute P (D | MCI)

and P (D |M¬CI). For discrete domains, the data likelihood of the independent

model can be computed by the product of each of the “slices” of XZ (that is,

each possible complete assignment or configuration ofXZ), because it is assumed

that the data is disjoint and independent for each slice. By denoting as K the

number of slices, the data likelihood of the independent model is computed by

P (D |MCI) =
K∏
k=1

P (Dk |Mk
CI) =

K∏
k=1

gk, (17)

where Dk is the subset of D corresponding to the slice k, and gk is the likelihood

in slice k, computed as

gk = P (Dk |Mk
CI) =

(
Γ(α)

Γ(α+M)

I∏
i=1

Γ(αi + ci)

Γ(αi)

) Γ(β)

Γ(β +M)

J∏
j=1

Γ(βj + cj)

Γ(βj)

 .

(18)

This equation corresponds to the use of two independent Dirichlet priors.

The α and β values are hyper-parameters, and ci, cj are the counts of variables

Xi and Xj in DK . The hyper-parameters α and β are obtained by summing

over all the hyper-parameters αi, and βj , respectively. The cardinalities of

Xi and Xj are I and J respectively. The gamma function Γ is defined as

Γ(x) =
∫ +∞

0
e−tyx−1 dt. When x is a non-negative integer, Γ(x+ 1) = x!.

For the dependent model, the data likelihood is more complex. It consists

of a sum over all the possible values of independence and dependence for the

slices of the conditioning set. As described in [39], it can be computed as

P (D |M¬CI) =

K∏
k=1

pkgk + qkhk −
K∏
k=1

pkgk

P (M¬CI)
, (19)

where gk is computed with (18), pk = P (Mk
I ) = P (MCI)

1/K is the prior proba-

bility of the independent model in the slice k, qk = P (Mk
¬I) = 1−pk is the prior

probability of the dependent model in the slice k, and hk is the data likelihood
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of the model for the slice k, computed as

hk = P (Dk |Mk
¬CI) =

Γ(γ)

Γ(γ +M)

I∏
i=1

J∏
j=1

Γ(γij + cij)

Γ(γij)
. (20)

The values γ and γij are hyper-parameters, and cij are the frequencies of vari-

ables Xi and Xj in DK . The hyper-parameter γ is obtained by summing over

all the hyper-parameters γij .

The statistical test returns true when P (MCI | D) > P (M¬CI | D) and false

otherwise. We recommend to implement the above formulas in the logarithmic

space, for avoiding arithmetic underflow. In this work, our implementation uses

the same hyper-parameter values as used in previous works [39, 28], which are:

γij = 1, αi = 1, βj = 1 and P (MCI) = 0.5.
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