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Abstract

Motivation: Heterogeneous and voluminous data sources are common in modern datasets, par-
ticularly in systems biology studies. For instance, in multi-holistic approaches in the fruit biology
field, data sources can include a mix of measurements such as morpho-agronomic traits, different
kinds of molecules (nucleic acids and metabolites) and consumer preferences. These sources not only
have different types of data (quantitative and qualitative), but also large amounts of variables with
possibly non-linear relationships among them. An integrative analysis is usually hard to conduct,
since it requires several manual standardization steps, with a direct and critical impact on the re-
sults obtained. These are important issues in clustering applications, which highlight the need of
new methods for uncovering complex relationships in such diverse repositories.
Results: We designed a new method named Clustermatch to easily and efficiently perform data-
mining tasks on large and highly heterogeneous datasets. Our approach can derive a similarity
measure between any quantitative or qualitative variables by looking on how they influence on the
clustering of the biological materials under study. Comparisons with other methods in both simu-
lated and real datasets show that Clustermatch is better suited for finding meaningful relationships
in complex datasets.
Availability: Files can be downloaded from
https://sourceforge.net/projects/sourcesinc/files/clustermatch/ and
https://bitbucket.org/sinc-lab/clustermatch/. In addition, a web-demo is available at
http://sinc.unl.edu.ar/web-demo/clustermatch/
Contact: mpividori@sinc.unl.edu.ar
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In systems biology studies, any given experimental unit can be characterized according to multiple
and heterogeneous analyses implying different techniques. For example in crop plants, morpho-
agronomic traits are used for general characterization; biochemical composition of fruits obtained
from diverse techniques like gas chromatography-mass spectrometry (GC-MS), nuclear magnetic
resonance (NMR) and high performance liquid chromatography (HPLC) are employed to quantify
fruit soluble and volatile metabolites; tasting panels are used to evaluate consumer preferences like
aroma and texture, among many others kinds of measures of different nature. Moreover, these data
might be collected not only during one year, but also during several growing seasons.

In all cases, highly-diverse kinds of quantitative measures or variables and qualitative annotations
must be related among them in order to discover hidden relations to infer new knowledge. Indeed,
pattern analysis on modern genomics data, with multiple sources and high volumes of information,
strongly need new integratives techniques and models to better understand how different entities
are related to each other (Li et al., 2018). The traditional approach of applying a clustering algo-
rithm, such as k-means, PAM, spectral clustering (Xu and Wunsch, 2009) to integrate heterogeneous
variables requires a very complex, manual and time-consuming pre-processing to standardize each
particular source of data. The pre-processing has to be done one-by-one, according to each particular
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input data source and measurement technique. This has many important issues to be considered:
i) each data source and technology of measurement needs a proper and intrinsic, possibly complex
standardization or scaling; ii) this scaling must make all sources comparable to each other in order to
use a single clustering method on an integrated input table, otherwise one or several sources would
dominate the clustering solutions; iii) and finally but not less important, these tasks tend to be
manual (almost hand-crafted), very time-consuming and require, furthermore, very specific knowl-
edge in order to properly choose among the myriad of all possible transformation and normalization
methods. For example, does each input data source adjust to some well-known distribution? Is it
possible to assume a normal or gaussian distribution? Is it enough to apply mean extraction and
divide by standard deviation? Or is it better to transform the data to a logarithmic scale? In the
case of qualitative data, such as for example tasting panels, this issue is even worse. How to treat
it? How to make it quantitative? And, furthermore, how to relate it with the other quantitative
data? For example, relating variables such as the flavor of fruits (for instance, with categories like:
“frutal”, “sweet” and “acid”), its glucose contents (with numeric values: 0.69, 0.07 and 0.34), and
its size (“small”, “regular”, “large”) represents a real challenge today.

There are many proposals in the literature regarding how to relate two variables, typically denom-
inated tests of dependence. Correlation describes a broad class of statistical relationships, including
dependence, and may be useful to pinpoint a predictive relationship of interest. The very well-known
Pearson’s correlation coefficient (Devlin et al., 1975) is the most commonly used correlation method.
It detects only linear relationships and is prone to generate potentially misleading values in the
presence of outliers and non-linear transformations of the data (Huber, 2011). Yet another common
correlation coefficient is the Spearman rank, a nonparametric measure of statistical dependence be-
tween two variables defined as the Pearson’s correlation between the ranked variables (Spearman,
2010), which assesses whether two variables are monotonically related, even if their relationship is
not linear. Because of their simplicity and speed of calculation, both Pearson and Spearman have
been the most commonly applied correlation methods in literature. Among the most recently pro-
posed measures of dependence, Distance correlation (DC) (Szkely et al., 2007) was introduced to
address deficiencies of Pearson’s coefficient, which can easily be zero for dependent variables. DC
measures both linear and non-linear associations between two variables, and has been applied in
variable selection (Li et al., 2012) and life sciences (Kong et al., 2012). Another recent method is the
Maximal Information Coefficient (MIC) (Reshef et al., 2011), a measure of dependence able to cap-
ture a wide range of relationships between random variables. Although MIC has gained considerable
attention (Nature, 2012; Speed, 2011; Zhang et al., 2014), there were also several discussions about
some of its properties (N. Simon, 2011; Kinney and Atwal, 2014; Reshef et al., 2014). One of the main
issues resides in the computational cost of MIC’s original implementation: a dynamic programming
algorithm called ApproxMaxMI that several studies in the literature tried to optimize (Albanese
et al., 2013; Zhang et al., 2014; Tang et al., 2014; Chen et al., 2016). Apart from these issues, all
the mentioned methods need categorical data to be converted to numerical in order to be applied,
which cannot be done in many cases with non-ordinal variables. These are important drawbacks for
clustering, where the goal is to find hidden relationships between the variables. Thus, more efficient
methods are needed to process large datasets in a reasonable amount of time. Moreover, methods
should also have sufficient generality to capture non-trivial relationships in highly heterogeneous data
sources.

To the best of our knowledge, up to date there is not a single and simple method available for
the easy fusion of such diverse complex data to perform an integrative analysis, without requiring
previous manual standardization steps. Thus, we have developed a new type of clustering algorithm
for wider use in any application domain, that can analyze the variables but without any standard-
ization. Since similarities between highly diverse variables of interest cannot be directly calculated,
we propose to look at how the variables influence the clustering of the biological materials or ob-
jects, considering each variable separately. Thus, the first step is obtaining internal partitionings of
the objects according to each variable; after that, the following step is to obtain a similarity value
between each pair of variables by comparing these internal partitions of the objects. Finally, these
similarities are used for clustering the variables.

Clustermatch is a novel method for cluster analysis on variables, providing a unified similarity
metric that can compute a score for all combinations of numerical, categorical and ordinal variables.
By using the proposed metric we can compute a similarity matrix between all variables, with no
previous pre-processing required, and then run a clustering algorithm to derive the final partition of
the variables. Our implementation can also smoothly handle cases where a variable was not measured
for all objects or in all the experimental conditions evaluated. The main advantage of our proposal
is that, while still efficiently detecting complex relationships between variables, it does not require a
specific standardization nor transformation of any input data. It enables simple and straightforward
integration of categorical as well as different types of numerical variables.

2

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

M
. P

iv
id

or
i, 

A
. C

er
na

da
s,

 L
. A

. H
ar

o,
 F

. C
ar

ra
ri

, G
. S

te
gm

ay
er

 &
 D

. H
. M

ilo
ne

; "
C

lu
st

er
m

at
ch

: d
is

co
ve

ri
ng

 h
id

de
n 

re
la

tio
ns

 in
 h

ig
hl

y 
di

ve
rs

e 
ki

nd
s 

of
 q

ua
lit

at
iv

e 
an

d 
qu

an
tit

at
iv

e 
da

ta
 w

ith
ou

t s
ta

nd
ar

di
za

tio
n"

B
io

in
fo

rm
at

ic
s,

 2
01

8.



Table 1: Example of dataset with highly diverse kinds of qualitative and quantitative data. Biological
materials or objects are in columns (numbers are sample identifiers) and heterogeneous variables in rows.
For each variable the internal clustering of the objects is indicated with different colors.

549 550 551 715 2523 3806 4750

Agronomics

Color intense regular muted intense muted muted regular
Width 97.52 73.31 82.74 49.84 65.30 NA 67.88
Height 77.51 54.28 50.11 51.03 51.67 57.13 NA
· · · · · · · · · · · · · · · · · · · · · · · ·
Sensory panels

Flavour charact. sweet acid charact. acid sweet sweet
Juiciness 1 3 2 3 2 3 1
Aroma moldy floral herbal floral moldy herbal floral
· · · · · · · · · · · · · · · · · · · · · · · ·
Volatile metabolites

pinene 0.102 NA 0.114 0.226 0.165 0.042 0.092
cis-3-h. 35.06 53.99 19.03 33.11 16.03 63.04 52.67
hexanal 592.92 198.46 414.85 353.60 834.38 NA 740.00
· · · · · · · · · · · · · · · · · · · · · · · ·

2 The Clustermatch method

2.1 Motivation and approach

Let us suppose a large systems biology study involving many measures of a crop plant of biotech-
nological interest, studied along several years, harvests, seasons and different geographic zones. Our
main hypothesis is that if two variables, for example, a metabolite concentration and an agronomic
trait, consistently produce a similar clustering of the same biological materials along several repeti-
tions, then a similarity between those variables can be numerically inferred. In Table 1 we present
an example showing the structure of a biological data set, where materials (objects) are shown in
the columns, and variables from different data sources are in the rows. In this particular example,
the analyzed materials are tomato (Solanum lycopersicum) fruits harvested from different plants of
different germplasm bank accessions identified by their passports (549, 550, 551, etc), and values
correspond to measures of a set of morpho-agronomic and biochemical traits from different sources
(agronomic traits, sensory panels, etc), resulting in a highly diverse set of variables. The heterogene-
ity of these data resides not only on possibly different linear or non-linear transformations among
continuous measures, but also on the intrinsic nature of the data itself, which could be either quan-
titative or qualitative (e.g., flavour). It is important to note that the qualitative data could include
not only ordinal (e.g., juiciness), but also nominal variables (e.g., aroma and color), where there is
no natural order between the categories and thus, they cannot be sorted.

For the example in Table 1, the objects (columns) are partitioned considering each variable
(rows) separately. Thus, in the first step one or more partitionings of the objects are obtained for
each variable; then, a similarity value between each pair of variables is obtained by comparing the
partitions. In Table 1, the internal partition of the objects for each variable is indicated with a
different color for each cluster (blue, green and yellow). It can be seen that most of the variable pairs
do not match. However, as an example, some of them present a higher degree of similarity: color,
flavour (both categorical variables), and the metabolite cis-3-hexenal (numerical variable), where
their internal partitions of the objects have been obtained with 3 clusters.

For each categorical variable, objects are grouped together if they share the same category. For
example, for flavour in Table 1, objects that share the same flavour are grouped together in the
same cluster: objects 549 and 715 belong to the “characteristic flavour” cluster (in green), whereas
550, 3806 and 4750 are in the “sweet flavour” cluster (in yellow) and 551 and 2523 are in the “acid
flavour” cluster (in blue). Note that this partition with 3 clusters matches only partially to the one
calculated according to the color variable. That is, the internal partition of the biological materials,
according to the categorical variable color, does not coincide with the clusters of the objects obtained
with the flavour variable.

For numerical data, we propose to partition the objects by using a simple and fast one-dimensional
clustering algorithm based on quantiles. For cis-3-hexenal, it can be seen that the objects are grouped
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Algorithm 1: Clustermatch

Input:
D: data matrix of M ×N
R: maximum number of internal clusters
k: number of output clusters

Output:
Π: partition of M variables into k clusters

1 begin
2 for i← 1 to M do
3 if di ∈ RN then
4 for r ← 2 to min{R, |di| − 1} do
5 ρ← (ρ` | Pr (dij<ρ`)≤(`− 1)/r),∀` ∈ [1, r + 1]
6 Ωir` ← {j | ρ` < dij ≤ ρ`+1},∀` ∈ [1, r]

7 else
8 Ci ← ∪j{dij}
9 r ← |Ci|

10 Ωirc ← {j | dij = Cic},∀c ∈ [1, r]

11

12 Smn ← max
∀p,q
{A(Ωmp,Ωnq)},∀m,n ∈ [1,M ] ,m 6= n

13 ∆mm ←
∑

n Smn

14 L← ∆− S
15 L̃← ∆−1/2L∆−1/2

16 U ← k largest eigenvectors of L̃
17 Π← k-means on U

18 return Π

according to the 3-quantiles (tertiles): 551 and 2523 share the lowest level of this metabolite (thus,
they are in the same blue cluster); whereas 549 and 715 have medium values (green cluster), and
the rest of the material have the highest values (yellow cluster). Note that now this partition of the
biological material according to this metabolite matches perfectly the partitioning of the materials
obtained according to flavour. This can be interpreted as a strong evidence of a potentially interesting
relationship between these two variables (cis-3-hexenal and flavour). Subsequently, the similarity
between this numerical and this categorical variable can be obtained, for example, with a measure
widely used to compare partitions in clustering: the adjusted Rand index (ARI) (Hubert and Arabie,
1985; Vinh et al., 2010). This process can be repeated for each pair of variables in the input data and
the resulting similarity matrix can be used by any standard clustering algorithm, such as Spectral
Clustering (SC) (Shi and Malik, 2000; Ng et al., 2001).

2.2 The Clustermatch algorithm

The Clustermatch algorithm can be seen in detail in Algorithm 1. The input is a data matrix D of
size M×N (M variables and N objects), the maximum number of internal clusters (R) and the final
number of clusters to find (k). For each row di (line 2), the algorithm computes a set of internal
partitions Ωir with r clusters according to the row data type. If it is numerical (line 3), the algorithm
computes R − 1 partitions of the N objects, where each one is obtained by using a set of quantiles
ρ (line 5): all objects between two adjacent quantiles belong to the same cluster, where ρ1 is the
minimum value of di and ρr+1 the maximum. Thus, for instance, if r = 2 then ρ will contain the
minimum value, the median and the maximum value of di; this means that the higher half of the N
objects will be placed in one cluster and the lower half in another one, producing a data partition
with two clusters for di. Since the internal clustering method only uses the ordering of the data,
handling of ordinal variables is similar than numerical ones. Therefore, if a variable has ordinal
values like “bad”, “regular” and “good”, it should be provided as 0, 1 and 2, respectively. If the
data type is categorical (line 7), then only one partition is computed for di, which has the clusters
defined by the unique values of di, considered as the set of categories Ci (line 8 and 9). Note that, in
order to derive a similarity value between two variables, we only need a partition of the objects from
each one. This is a very important property of our approach, because it is not limited to compare
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Figure 1: How Clustermatch works when there are different relationships between variables: a) monotonic
(ARI=1.0), b) quadratic (ARI=0.57) and c) independent/random (ARI=0.00). The algorithm partitions
each numerical variable di using its quantiles ρ, and then computes the similarity between partitions
using ARI. Red boxes indicate sets of objects clustered together in two partitions of both variables.

only 1-dimensional variables, but also variables of different dimensions. This would be the case of
images, sounds, or the combination of several 1-dimensional variables. The only change needed in
Algorithm 1 would be to extend lines 5 and 6 with a call to the appropriate clustering method.

At this point, each variable will have a set of one or more internal partitions associated, Ωir, with
r clusters each. With these, a similarity matrix S for all M variables is derived by comparing their
associated partitions (line 12). To compare partitions Ωi and Ωj , the ARI is given by

A(Ωi,Ωj) =
2(n0n1 − n2n3)

(n0 + n2)(n2 + n1) + (n0 + n3)(n3 + n1)
, (1)

where n0 is the number of object pairs that are in the same cluster in both Ωi and Ωj , whereas n1 is
the number of pairs in different cluster in both partitions; n2 (and n3) are the number of object pairs
that were grouped in the same (different) cluster in the first partition, but in a different (same) cluster
in the second one. Intuitively, n0 + n1 is number of object pairs in which both partitions coincide,
and n2 + n3 those in which they disagree. In addition to be a symmetric index, the “adjusted-
for-chance” property makes ARI to derive a constant value when both partitions are independently
drawn (Hubert and Arabie, 1985), and this also holds in the case of comparing partitions with
different number of cluster (Vinh et al., 2010). This is a nice property, given that Clustermatch
defines the similarity of variables i and j as the maximum ARI among all possible comparisons of
partitions Ωi and Ωj (line 12). For two highly related variables i and j, this approach assumes that
if pairs of objects are grouped together in the internal partitions of row i, then they should also be
grouped together in the internal partitions of row j. If this is the case, then the ARI between them
has a value of 1. For independent random partitions it will be always close to 0. Clustermatch, like
all clustering algorithms based on a pairwise similarity matrix, builds S under the assumption of
variable independence, and then looks for relationships among several variables by analyzing the full
similarity matrix in the final clustering stage. Thus, S can be the input of a clustering method such
as, for example, spectral clustering (Shi and Malik, 2000) (lines 13-17 in Algorithm 1) which derives
the final solution partitioning the M variables into k clusters.

2.3 Clustermatch on different data types

The Clustermatch algorithm can detect hidden relationships by clustering each variable separately,
and then computing how much those clusters match. This procedure is exemplified in Figure 1,
where numerical data points are shown with blue dots and three different types of relationships are
depicted. Each subfigure shows a particular relationship between two variables, where each partition
has a number of clusters defined by their quantiles, as shown in Algorithm 1. The red boxes indicate
a set of data points clustered together both in Ωdi,p and Ωdj ,q partitions (with p and q clusters
each, respectively). Figure 1a shows a monotonic relationship between variables d1 and d2, where
their internal partitions have three clusters. Since these partitions match perfectly, Clustermatch
scores this relationship with the maximum value, 1.0. This is the case where both variables produce
exactly the same grouping for objects, which is the underlying assumption of Clustermatch to infer
a similarity measure. In Figure 1b the relationship is quadratic, and in this case Ωd3,2 has two
clusters (p = 2) whereas Ωd4,3 has three (q = 3). All objects in cluster Ωd4,3,2 (i.e., data points
between quantiles ρ2 and ρ3) are also clustered together in Ωd3,2,1, whereas objects in cluster Ωd3,2,2

are clustered in two different groups in partition Ωd4,3. In this case, the score is 0.57, which is
high enough for Clustermatch to detect this relationship. The third case, in Figure 1c, shows an
example where there is no relationship between variables d5 and d6. Indeed, these variables do not
produce a similar grouping of the objects, since their internal partitions disagree completely on how
to cluster objects: each cluster in Ωd5,4 contains data points that were grouped in all other clusters

5

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

M
. P

iv
id

or
i, 

A
. C

er
na

da
s,

 L
. A

. H
ar

o,
 F

. C
ar

ra
ri

, G
. S

te
gm

ay
er

 &
 D

. H
. M

ilo
ne

; "
C

lu
st

er
m

at
ch

: d
is

co
ve

ri
ng

 h
id

de
n 

re
la

tio
ns

 in
 h

ig
hl

y 
di

ve
rs

e 
ki

nd
s 

of
 q

ua
lit

at
iv

e 
an

d 
qu

an
tit

at
iv

e 
da

ta
 w

ith
ou

t s
ta

nd
ar

di
za

tio
n"

B
io

in
fo

rm
at

ic
s,

 2
01

8.



a)

Med. 1 Med. 2 None Med. 3
Medication for blood pressure

40

60

80

100

120

140

Bl
oo

d 
pr

es
su

re
 (m

m
H

g)

y-axis
clusters

0
1
2
3

b)

Mexico United States Canada
Country of residence

c)

Status 1 Status 2 Status 3 Status 4
Employment status

60

80

100

120

Bl
oo

d 
pr

es
su

re
 (m

m
H

g)

y-axis
clusters

0
1

d)

P1 P2 P3 P4
Vascular problem diagnosed

Figure 2: Swarm plots showing different degrees of relationship between a numerical measure (blood
pressure in y-axis) and four categorical variables (x-axis): a) represents a strong relationship, b) shows
no association, and c) and d) are moderate associations.

in Ωd6,4. Clustermatch scores this case with the minimum value (0.001), thus correctly detecting no
relationship.

Since Clustermatch uses ARI to compute similarity, it is indirectly using a contingency table with
the memberships of data points to different clusters in both partitions. As explained above, data
points in a numerical array can be converted to a clustering partition by employing quantiles. In the
case of categorical data, the categories themselves are considered as clusters, and thus the contingency
table can be still obtained and the ARI computed. This approach allows mixing numerical and
categorical arrays and it is still able to derive a similarity value.

To exemplify this feature we show here some simulated examples inspired on different heteroge-
neous variables commonly employed in large biobanks, like the UK Biobank (Bycroft et al., 2017) or
the China Kadoorie Biobank1. For instance, it could be interesting to automatically find whether a
medication for pain relief (categorical variable) is related to pain type (another categorical variable);
or whether the reported illness of the father (categorical variable) shows a relationship with blood
pressure (numerical), unveiling, for example, an interesting relationship between a progenitor’s illness
and a particular patient’s health measurement. These large cohorts contain hundreds of measures
taken for each individual, what makes them an invaluable resource for finding hidden relationships
among, for example, blood pressure, cholesterol level, hours of sleep, ethnic background, country
of birth, illness of father, type of coffee (decaffeinated, instant or ground coffee) and the current
employment status (paid, retired, unable to work because of illness, unemployed, doing voluntary
work, etc)2. Clustermatch would be particularly useful and well-suited here, since it can process and
relate all of these variables automatically, without any user intervention, and with low computational
complexity.

Another example can be seen at the left of Figure 2, which shows two possible types of rela-
tionships between blood pressure (a numerical variable, in mmHg), and two categorical measures:
medication for blood pressure (Figure 2a) and country of residence (Figure 2b). The different colors
indicate the internal clustering partition of the numerical variable (blood pressure in y-axis). Ac-
cording to Clustermatch, the first of these categorical variables shows a strong similarity with the
numerical measure of blood pressure (in mmHg), while the other categorical variable exhibits no
relationship at all. In Figure 2a, every categorical option (medication 1, medication 2, etc) can be
distinguished from the other, since each one of them has a characteristic range of blood pressure
(visually, each category has almost a unique color). The Clustermatch method assigns an ARI value
of 0.91 to this relationship, and this could be an indication that each type of medication seems to
have a significantly different impact on the blood pressure. On the other hand, in Figure 2b, there
is no relationship between country of residence and blood pressure, since the different categories
(countries) are not distinguishable among them (because of the full overlapping). This is reflected
by Clustermatch by assigning an ARI very close to zero (0.01).

Between the extreme relationship degrees shown in Figure 2a and 2b, where one categorical
variable shows a strong relationship with the numerical variable and the other one does not, at the
right of Figure 2 another pair of categorical variables is shown where their association with blood
pressure is somehow moderate. Figure 2c shows an interesting relationship with employment status
where, differently from Figure 2a, there are two groups of categories where patients exhibit different
blood pressure values: patients with Status 2 and 3 have in common high blood pressure, whereas
patients with Status 1 and 4 share low blood pressure. The relationship here is not as strong as in
Figure 2a: each employment status is not distinguishable from the rest, but they become different
if considered in pairs. Thus, Clustermatch assigns here an ARI value of 0.54. In Figure 2d, which

1http://www.ckbiobank.org/
2Examples of these types of data can be found in: http://biobank.ctsu.ox.ac.uk/showcase/label.cgi
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shows how diagnosed vascular problems relate with blood pressure, three of them (P1, P2 and P3)
do not seem to be differentiated by blood pressure, but patients with P4 are indeed very different,
where all of them have low blood pressure. Since the group of patients diagnosed with P4 is large
and the blue internal cluster matches it almost perfectly, the similarity of vascular problems with
blood pressure (ARI ∼ 0.63) is stronger than with employment status.

In these examples we show artificial cases where the number of categories is substantially smaller
than the number of objects. There could be situations where this might not be the case, that is, the
number of categories is large enough to possibly produce non-informative variables (like zip-codes,
for instance). In this case, of course, the user might need to merge original categories into higher
level categories that will be relevant for the study (like states in the example of zip-codes).

As it has been shown, Clustermatch is able to process different data types by placing data points
into a contingency table according to their cluster membership. Then, a similarity measure is derived
by using the ARI, thus easily and quickly comparing highly heterogeneous data sets. In clustering
applications, several variables are processed simultaneously to find groups of highly related variables.
In the following sections, we will show how Clustermatch can generate a similarity matrix where the
true structure of the data is more easily detected by the clustering algorithm, even in noisy scenarios.

3 Data and experimental setup

Two types of datasets were employed to test Clustermatch. First, an artificially generated dataset
is used to simulate a scenario where objects have highly diverse kinds of variables with different
noise levels. The data were generated in three steps. First, we created 100 numerical variables with
1000 objects each, with variables equally distributed in three compact and well-separated gaussian
clusters with random means in (−1, 1). This structure is supposed to be very easily found by any
conventional clustering algorithm. Secondly, these 100 variables were randomly taken in 10 simulated
“data sources” of 10 variables each. Each data source was transformed using one of these functions:
x4, ln(|x|), 2x, 100x, ln(|1 + x|), x5, 10000x, log10(|x|), 0.0001x and log2(|x|). Finally, a percentage
of objects was randomly chosen and replaced by random values in the range of the corresponding
transformed source. This noise model is intended to simulate a real scenario where, besides the
errors present in the instruments used to measure the variable (batch effects, errors in questionaries,
etc), some objects could simply not follow the general trend or could be outliers. The supplementary
material contains more details about this numerical data set (Supplementary Figures 1 and 2).
Furthermore, we also generated another dataset including both numerical and categorical sources
(Supplementary Figures 3 and 4).

Second, we analyzed a real dataset described in previous reports (Asprelli et al., 2017; Cortina
et al., 2017, 2018; D’Angelo et al., 2018). Briefly, this dataset was collected from field trials conducted
from October to March in open field conditions at the Agronomy School of the National University
of Mendoza, Argentina (S33◦0.3′; W68◦52.2′; 912 meters above sea level), in 3 growing seasons:
2008-09, 2009-10 and 2011-12. Agronomic performance, plant morphology and fruit quality traits
were reported elsewhere (Asprelli et al., 2017) and together they constitute the “Agronomic” source.
Metabolic traits were measured as described in Cortina et al. (2017, 2018); and sensory attributes
were recorded in D’Angelo et al. (2018).

4 Results

4.1 Noisy and non-linear relationships in numerical data

Five methods were compared by using the simulated data: SC-Pearson, SC-Spearman, SC-DC,
SC-MIC and our proposal, Clustermatch. All methods created a similarity matrix using a specific
measure, and then SC was applied to derive the final solution with 3 clusters. Each one was run 20
times and the partition obtained compared (using ARI) with the reference partition of the original
three gaussians. The results are shown in Figure 3 (for additional results with different clustering
algorithms see Supplementary Figures 5 and 6; and for different number of final clusters k, see
Supplementary Figures 7 and 8). The x-axis indicates the percentage of noisy objects, from 0 (no
noise) up to 55%, since no method found a meaningful solution beyond this point. The y-axis is the
average ARI between the reference partition and the solution found by each method. The black lines
at the top of each bar are the 95% confidence intervals.

It can be clearly seen that Clustermatch largely outperformed all other methods, including SC-
DC and SC-MIC, which are not limited to linear or monotonic relationships as SC-Pearson and
SC-Spearman. Clustermatch, SC-MIC and SC-DC found the true structure of the data in low-noise
scenarios (0-15%). However, from a noise level of 15%, SC-DC started failing to find a perfectly accu-
rate grouping of the variables, and from this point forward performance decreased constantly, always
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Figure 3: Clustering quality (y-axis) for all methods under different noise levels (x-axis) for one simulated
dataset including linear and non-linear sources. A critical difference (CD) diagram with a post-hoc
Nemenyi test is also shown.
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Figure 4: Clustering quality (y-axis) for all methods in five simulated data sets with different amounts
of non-linear sources (x-axis). Each dataset included noise levels from 0% to 70%, thus each point is an
average over 20 tests.

behind SC-MIC and Clustermatch. In the medium-noise range, 20-35%, SC-MIC and Clustermatch
were the only methods able to always find the true partition, proving that they were robust in these
noisy scenarios. Furthermore, Clustermatch was clearly the best method also with high noise level:
it was able to maintain a very high accuracy where SC-MIC fell abruptly (50% of noisy objects),
and it could find a meaningful partition (with ARI ∼ 0.70) in scenarios where all the others derived
a very poor quality solution (ARI < 0.15). Indeed, from a noise level of 40% to 45% SC-MIC was
largely affected, obtaining an ARI of 0.99 and then 0.70, whereas Clustermatch obtained 1.0 and
0.96, respectively. In the case of 50% of noisy objects, it can be seen that while all other methods
were significantly affected, Clustermatch was still able to derive a very good quality partition, with
an average ARI of 0.70. At the last highest noise configuration, with 55% of noisy objects, all meth-
ods dropped performance abruptly (ARI ∼ 0.0), while Clustermatch was still able to group correctly
almost 20% of variable pairs (ARI ∼ 0.18). In addition to ARI, we also measured the final clustering
quality using the adjusted mutual information (AMI) index (Vinh et al., 2010), with similar results
(Supplementary Figure 9).

These results showed that, with highly diverse data sources (including linear and non-linear
relationships) and a varying noise level, only a set of the methods was able to find all different
types of relationships: SC-DC, SC-MIC and Clustermatch. SC-Pearson and SC-Spearman were
significantly affected when linear and monotonic assumptions did not hold, and they performed very
badly under noisy data. When noisy levels increased, Clustermatch was able to find significantly
better solutions than SC-DC and SC-MIC. In order to statistically evaluate differences between all
tested methods, a critical difference (CD) diagram for post-hoc Nemenyi test (Demšar, 2006) was
done. For a CD diagram, a ranking among all methods under evaluation is first obtained (being 1
the best, and 5 is the worst one). Then, the diagram joins with bold lines methods that are not
statistically different between them (their average ranks differ by less than the critical difference
value). The CD is shown at the center of Figure 3, and it indicates that Clustermatch reached the
highest ARI values, being this difference statistically significant from the rest of the methods.

Figure 4 shows how methods were affected with an increasing number of non-linear transforma-
tions, running 20 times each case. The x-axis indicates the number of non-linear sources, and each
line corresponds to mean ARI. Here, we have used 5 different data sets with an increasing amount
of non-linear sources: the first data set contained five linear-only transformations of the original
data, whereas the last one contained four non-linear transformations plus only one remaining linear
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Figure 5: Scatter plots of different pairs of variables from the real tomato dataset showing distinct
relationships: a) linear; b) quadratic; c) linear with outlier; d) linear with high dispersion; e) and f) show
relationships between categorical and numerical data.

source. In addition, each data set for a combination of transformations was replicated with different
noise levels, from 0% to 70%. It can be seen that all methods found the true structure of the data
on all-linear sources. However, in front of just a single non-linear transformation (x2), all methods
were affected. Pearson and Spearman suffered the largest drop in performance, meanwhile SC-MIC
and SC-DC performed similarly, and Clustermatch was still the best method, with statistically sig-
nificant differences. Indeed, Clustermatch was the best method in the next data set, where a linear
source was replaced by log(|x|). In the last two cases (with x4 and sin(πx)), Spearman and Pearson
were the worst performing methods, and SC-DC was clearly outperformed by SC-MIC and Cluster-
match. Overall, Clustermatch was the best performing method in this scenario, which shows how
methods were affected when data gradually becomes more complex with the addition of non-linear
transformations. The CD diagram in the bottom-left corner of Figure 4 clearly shows that there are
statistically significant differences among SC-DC, SC-MIC and Clustermatch. It also shows that the
worst methods were SC-Pearson and SC-Spearman.

The supplementary material contains the results for the artificial dataset with mixed numerical
and categorical sources (Supplementary Figure 10), where only Clustermatch is able to directly pro-
cess such mixture of data types. These results are consistent with those presented for the numerical-
only dataset (Figure 3). We also performed scalability tests to assess how the methods behave under
different number of measured objects/materials (Supplementary Figure 11). For 500,000 objects (for
example, this is the number of individuals in the UK Biobank), MIC finished comparing two variables
in 32,265 s, DC could not finish after 24 h running, and Clustermatch took just 22 s. This result
shows clearly that Clustermatch is very well-suited for large datasets. In summary, we have shown
that, regardless of the clustering method employed, the number of final clusters specified by the user,
the noise levels and the non-linear transformations present in data, the heterogeneity in the data
types, the clustering quality index used, and even the amount of data to be processed, Clustermatch
has a very good performance. Furthermore, in most of the cases it is superior to the other methods
compared.

4.2 Real and highly diverse data set

In this section we summarized results obtained with Clustermatch using a bona fide dataset previously
published (Asprelli et al., 2017; Cortina et al., 2017, 2018; D’Angelo et al., 2018) and described above,
which is part of a systems biology study comprising a very diverse collection of tomato accessions
collected along the Andean Valleys of Argentina. The most adequate number of clusters k to explore
has been set according to the consensus index method (Vinh et al., 2010). Very different kinds of
variables have been measured and the challenge was to find hidden relationships for hypotheses-
building. For example, interesting variables from agronomic descriptors and sensory panels are

9

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

M
. P

iv
id

or
i, 

A
. C

er
na

da
s,

 L
. A

. H
ar

o,
 F

. C
ar

ra
ri

, G
. S

te
gm

ay
er

 &
 D

. H
. M

ilo
ne

; "
C

lu
st

er
m

at
ch

: d
is

co
ve

ri
ng

 h
id

de
n 

re
la

tio
ns

 in
 h

ig
hl

y 
di

ve
rs

e 
ki

nd
s 

of
 q

ua
lit

at
iv

e 
an

d 
qu

an
tit

at
iv

e 
da

ta
 w

ith
ou

t s
ta

nd
ar

di
za

tio
n"

B
io

in
fo

rm
at

ic
s,

 2
01

8.



categorical (i.e. flavor and aroma descriptors). Therefore, data mining for the identification of
new and cryptic relationships between these kind of variables presents a great challenge. To test
the reliability and robustness of Clustermatch we first verified well-established linear and non-linear
relationships between biochemical or molecular phenotypes (Figure 5). The strongest associations
described below were identified by computing a p-value using permutation tests.

Recently, it has been reported that the carotenoid-derived volatile compounds (VOC) gerany-
lacetone and 6-methyl-5-hepten-2-one (MHO) are significantly associated to tomato flavor (Tieman
et al., 2017). Our analyses with Clustermatch revealed that the association between these two VOCs
is indeed one of the strongest (P¡0.006). Although this relationship is mostly linear (Figure 5a),
and could have been detected by traditional methods, this finding is in complete agreement with
Tieman’s report based on a genome-wide association study (GWAS) using a panel of 398 tomato
accessions, which identified seven loci co-segregating for the amount of these two VOCs in tomato
fruits (Tieman et al., 2017). Thus, the associations that we present here using Clustermatch are also
supported by independent genetic analyses. Similarly but with a quadratic relation (Figure 5b), Clus-
termatch pinpointed a strong, yet logical, relationship between shape (e.g. lobular) and size ratios
determinations (e.g. height/width relationship). Note that in an integrated analysis, Clustermatch
disentangled these types of non-linear correlations.

These findings prompted us to survey new associations occurring between variables within the
highly diverse collection of data. Remarkably, when using all growing seasons, MHO also associated
with guaiacol (P¡0.02), a phenylpropanoid volatile normally found in tomato fruits whose aroma is
often described as “pharmaceutical” or “smoky” (Krumbein and Auerswald, 2018). Interestingly, the
guaiacol-MHO inverse relationship displays a clear outlier (Figure 5c), corresponding to a breeding
line cherry genotype with characteristic purple fruits. This proves one powerful characteristic of
Clustermatch, which is the identification of linear relationships even when outliers are present in
the dataset and suggests that it can be used in breeding selection programs to identify transgressive
genotypes/accessions.

We also noticed another biologically relevant case when we conducted the analysis with a dataset
including only one harvesting dataset. A cluster including 9 amino acids was detected, among
which 3 of them (glutamate, pyroglutamate and gamma-aminobutyric acid -GABA-) are biochem-
ically connected by two enzymatic reactions in the GABA biosynthetic pathway. Additionally,
these amino acids were found grouped together with the ethylene precursor 1-aminocyclopropane-
1-carboxylic acid (ACC) (P¡0.002) and oxoglutarate (P¡0.002), being the latter the main precursors
of GABA biosynthesis. Although the biological roles of GABA during tomato fruit development is
still under debate (Takayama and Ezura, 2015), it is well described as a positive regulator of the
1-aminocyclopropane-1-carboxylate oxidase expression (Kathiresan et al., 1997), a key enzyme for
ethylene biosynthesis. In spite of the above mentioned relations are somehow expected and there-
fore constitute a test case, the role of GABA as an indirect inductor of fruit ripening appears as
a running hypothesis that has to be tested. In particular, the relationship between glutamate and
ACC (Figure 5d) is a case of large dispersion, which represents a violation of homoscedasticity, an
important assumption in linear models. These results demonstrate that Clustermatch consistently
identified relevant relationships between variables, and also clustered together several other variables
that are part of ethylene signaling pathway, involved in fruit ripening. From an agronomic point
of view, this may open up a novel strategy to select varieties for breeding according to metabolic
compounds accumulation.

A third hypothesis was inferred using another set of data from the same germplasm collection but
harvested in a different growing season; analyses of significant connections revealed a clear relation-
ship between the categorical variables describing consumer’s sensory attributes, such as flavor and
aroma descriptors, with intermediates of the ascorbate metabolic pathway (e.g., Glucuronate 3,6-
lactone and Glucuronate/galacturonate; P¡0.002) (Figure 5e). Indeed, this cluster is represented by
compounds of the ascorbate pathway3, including glucuronate, gulonate, ascorbate and dehydroascor-
bate linked to the antioxidant capacity of the tomato extracts (measured by TEAC HS and FRAPS
determinations). At the same time, antioxidant capacity was linked with alpha-terpineol (P¡0.02),
a compound recently defined as an aroma and sourness component of the tomato fruits (D’Angelo
et al., 2018). Regarding the ascorbate pathway, it is intriguing to learn about the potential relation-
ship (whether direct or indirect) between this metabolic pathway and the flavor determination in
tomato fruits that we identified in this study. We highlight the fact that these relationships between
categorical and numerical variables were identified by applying Clustermatch directly, without any
need of a special pre-processing step for transforming these data, as other methods would require. In
the same line, we observed aroma descriptors strongly associated with an unknown metabolite in the
mass spec collection, UNK m/z 95 (Figure 5f, P¡0.02), which was previously reported to be associ-
ated with non-characteristic tomato taste and odour (Cortina et al., 2018). These examples establish
relationships supporting the generation of novel hypotheses. Firstly, accumulation of alpha-terpineol,

3http://www.genome.jp/kegg-bin/show pathway?map=map00053 &show description=show
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a volatile monoterpenoid alcohol with a wide range of biological applications (Khaleel et al., 2018), is
induced in reducing cellular environments. Secondly, the unknown m/z 95 compound is a component
of the tomato taste and odour.

A summary of the relevant relationships that led to infer hypotheses for this case of study can
be found in Supplementary Table 1. It is important to highlight that this table is not meant to
be comprehensive, since a very large number of strong relationships have not been discussed and
will be a matter of a future manuscript. Taken together, the hypotheses written above illustrate
how Clustermatch consistently succeed to identify well-established relationships between variables,
as well as it also revealed novel relationships in a large dataset derived from different sources and
measurement methods of a systems biology study, even when non-linear and noisy relationships were
present.

5 Conclusions

In this study, we have addressed important issues that characterize modern data sets. We offer a
solution to the actual challenge of finding hidden patterns in highly diverse data sets, which include
not only several different kinds of quantitative and qualitative variables, but also cases where a large
amount of biological materials and experimental conditions are present. Clustermatch is able to
efficiently compute a similarity measure between any combination of quantitative and qualitative
data, avoiding the need of any preprocessing step and thus easing the application of a clustering
algorithm on this complex data. This novel approach is able to seamlessly integrate variables of very
different nature, producing a similarity matrix that can be processed by any clustering algorithm.
We have shown that, when compared to other state-of-the-art methods, the true structure of the
simulated data is accurately detected by Clustermatch, even in the presence of significant amounts
of noise and non-linear sources. Our proposal was also tested in a real dataset of tomato accessions
with several different data sources available. First of all, Clustermatch was able to process this
data without previous preprocessing, even though it included numerical and categorical variables.
Secondly, as a validation our method was able to find well-known linear and non-linear relationships
between physiological and genetic variables previously reported in other independent studies, even
in the presence of outliers.

Funding

This work was supported by Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET),
Universidad Nacional del Litoral (CAI+D 2016 082), the Agencia Nacional de Promoción Cient́ıfica
y Tecnológica (PICT 2014 2627) and the European Union Horizon 2020 Research and Innovation
Programme, Grant Agreement Number 679796.

References

Albanese, D., Filosi, M., Visintainer, R., Riccadonna, S., Jurman, G., and Furlanello, C. (2013). minerva and

minepy: a c engine for the mine suite and its r, python and matlab wrappers. Bioinformatics, 29(3), 407–408.

Asprelli, P. D., Sance, M., Insani, E. M., Asis, R., Valle, E. M., Carrari, F., Galmarini, C. R., and Peralta, I. E. (2017).

Agronomic performance and fruit nutritional quality of an andean tomato collection. In Acta Horticulturae,

number 1159, pages 197–204. International Society for Horticultural Science (ISHS), Leuven, Belgium.

Bycroft, C., Freeman, C., Petkova, D., Band, G., Elliott, L. T., Sharp, K., Motyer, A., Vukcevic, D., Delaneau, O.,

O’Connell, J., Cortes, A., Welsh, S., McVean, G., Leslie, S., Donnelly, P., and Marchini, J. (2017). Genome-wide

genetic data on 500,000 uk biobank participants. bioRxiv .

Chen, Y., Zeng, Y., Luo, F., and Yuan, Z. (2016). A new algorithm to optimize maximal information coefficient.

PLOS ONE , 11(6), 1–13.

Cortina, P., Santiago, A., Sance, M., Peralta, I., Carrari, F., and Asis, R. (2018). Exploring the relationship between

volatiles organic compounds and tomato fruit flavor of andean landraces, commercial varieties and an edible wild

species. Metabolomics. In press.

Cortina, P. R., Asis, R., Peralta, I. E., Asprelli, P. D., and Santiago, A. N. (2017). Determination of volatile

organic compounds in andean tomato landraces by headspace solid phase microextraction-gas chromatography-

mass spectrometry. Journal of the Brazilian Chemical Society, 28(1), 30–41.

D’Angelo, M., Zanor, M. I., Sance, M., Cortina, P. R., Boggio, S. B., Asprelli, P., Carrari, F., Santiago, A. N., Ass,

R., Peralta, I. E., and Valle, E. M. (2018). Contrasting metabolic profiles of tasty tomato fruit of the andean

varieties in comparison with commercial ones. Journal of the Science of Food and Agriculture.
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Dataset with numerical sources
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Supplementary Figure 1: Relationships in the artificial dataset. The figure includes a set of 10 features from
the same cluster, each one from a different source (transformation).
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Noisy dataset with numerical sources
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Supplementary Figure 2: Relationships in the artificial dataset with 20% of noise. The figure includes a set
of 10 features from the same cluster, each one from a different source (transfor-
mation).
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Dataset with numerical and categorical sources
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Supplementary Figure 3: Relationships in the artificial dataset with 7 numerical and 3 categorical sources.
The figure includes a set of 10 features from the same cluster, each one from a
different source (transformation). A scatter plot is shown when both sources are
either numerical or categorical, and a violin plot when they differ (numerical vs
categorical). Only Clustermatch can process a dataset including numerical and
categorical data sources.
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Noisy dataset with numerical and categorical sources
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Supplementary Figure 4: Relationships in the artificial dataset with 7 numerical and 3 categorical sources
including 20% of noise. The figure includes a set of 10 features from the same
cluster, each one from a different source (transformation). A scatter plot is shown
when both sources are either numerical or categorical, and a violin plot when
they differ (numerical vs categorical). Only Clustermatch can process a dataset
including numerical and categorical data sources.
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Performance using Hierarchical Clustering (HC)
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Supplementary Figure 5: Clustering quality (y-axis) when using a hierarchical clustering (HC) algo-
rithm with average linkage under different noise levels (x-axis) in the artifi-
cial dataset with linear and non-linear sources. Results show that HC-MIC and
HC-Clustermatch are the best methods for low to medium noise levels.
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Performance using Partitioning Around Medoids (PAM)
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Supplementary Figure 6: Clustering quality (y-axis) when using Partitioning Around Medoids (PAM) algo-
rithm for all methods under different noise levels (x-axis) in the artificial dataset
with linear and non-linear sources. Results show that PAM-MIC, PAM-DC and
PAM-Clustermatch perform similarly for low to medium noise levels. However,
PAM-Clustermatch outperforms all the other methods for highly noisy data.
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Performance using an extremely low number of final clusters (k = 2)
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Supplementary Figure 7: Clustering quality (y-axis) when using k = 2 (number of final clusters) for all
methods under different noise levels (x-axis) in the artificial dataset with linear
and non-linear sources. Results show that when the number of clusters is very
low, SC-MIC and Clustermatch are the best methods for low to medium noise
levels, with Clustermatch performing better for the most noisy levels.
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Performance using an extremely high number of final clusters (k = 18)
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Supplementary Figure 8: Clustering quality (y-axis) when using k = 18 (number of final clusters) for all
methods under different noise levels (x-axis) in the artificial dataset with linear
and non-linear sources. Although in general clustering quality is low for all meth-
ods when using an extremely high k for the problem under study, SC-MIC and
Clustermatch perform better than the rest in most of the cases (as shown in the
CD diagram), with SC-Spearman outperforming SC-DC and SC-Pearson.
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Final clustering evaluation using adjusted mutual information (AMI)
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Supplementary Figure 9: Clustering quality (y-axis) measured with the adjusted mutual information (AMI)
index (Vinh et al. 2010) for all methods under different noise levels (x-axis) in the
artificial dataset with linear and non-linear sources. The top line graph and the
CD diagram below show, both, that results are completely consistent with those
shown in Figure 3, where the index to assess the clustering quality is the adjusted
Rand index (ARI).
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Performance of Clustermatch on mixed numerical and categorical sources
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Supplementary Figure 10: Clustering quality (y-axis) for Clustermatch under different noise levels (x-axis)
in the artificial dataset with linear, non-linear and categorical sources (which
is exemplified in Supplementary Figures 3 and 4). Results are consistent with
those shown in Figure 3, where the artificial dataset is the same but with only
numerical data sources. Despite having less information in the categorical vari-
ables (compared to the numerical ones), Clustermatch obtains very high qual-
ity partitions of the variables until a noise level of 40%. Note that none of the
other methods can be applied directly to these mix of numerical and categorical
sources.

Time complexity
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Supplementary Figure 11: Time complexity for methods with different number of measured objects for
each variable. Time reported is the average of 10 repetitions for a pair of
variables. For computing the Maximal Information Coefficient we employed
minepy v1.2.1; for Distance Correlation we used an implementation in Python,
distcorr (faster than the implementation of the R package energy).
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Relationships analized from the tomato dataset

Supplementary Table 1: Summary of relationships found in Section 4.2. The related variables are listed in
column two, as well as a short description taken from the main text and the studies
where these associations were first published.

Relationship
number

Related variables Description Published in

1 • geranylacetone
• 6-methyl-5-hepten-2-one (MHO)
• Flavor
• guaiacol

Carotenoid-derived volatile compounds (VOC)
geranylacetone and 6-methyl-5-hepten-2-one (MHO)
are significantly associated to tomato flavor.

Tieman et al. 2017

2 • Lobular shape
• Height/width ratio

. . . strong, yet logical, relationship between shape
(e.g. lobular) and size ratios determinations (e.g.
height/width relationship). Note that in an
integrated analysis, Clustermatch disentangled
these types of non-linear correlation.

Well-known

3 • Glutamate
• Pyroglutamate
• GABA
• oxoglutarate
• 1-aminocyclopropane-1-carboxylic acid (ACC)

GABA is well described as a positive regulator of
the 1-aminocyclopropane-1-carboxylate oxidase
expression, a key enzyme for ethylene
biosynthesis.

This study

4 • Flavor and aroma descriptors
• Components of the ascorbate metabolic

pathway
• Antioxidant capacity (TEAC determina-

tions)
• Alpha-terpineol

Analyses of significant connections revealed a
clear relationship between the categorical
variables describing consumer’s sensory
attributes, such as flavor and aroma descriptors,
with intermediates of the ascorbate metabolic
pathway (e.g., Glucuronate 3,6-lactone and
Glucuronate/galacturonate; P<0.002). Accumulation
of alpha-terpineol, a volatile monoterpenoid
alcohol with a wide range of biological
applications, is induced in reducing cellular
environments.

This study

5 • Aroma
• Unknown metabolite in the mass spec,

UNK m/z 95

We observed aroma descriptors strongly
associated with an unknown metabolite in the
mass spec collection, UNK m/z 95, that was
previously reported to be associated with
non-characteristic tomato taste and odour.

This study
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http://webdemos.sinc.unl.edu.ar:8090/scripts/mpividori/cm/results/tomato/v1/1112/
http://webdemos.sinc.unl.edu.ar:8090/scripts/mpividori/cm/results/tomato/v1/1112/
http://webdemos.sinc.unl.edu.ar:8090/scripts/mpividori/cm/results/tomato/v1/1112/
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