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Inferring unknown biological function by
integration of GO annotations and gene

expression data
G. Leale, A. Bayá, D.H. Milone, Member, IEEE, P. Granitto and G. Stegmayer, Member, IEEE.

Abstract—Characterizing genes with semantic informa-
tion is an important process regarding the description of
gene products. In spite that complete genomes of many
organisms have been already sequenced, the biological
functions of all of their genes are still unknown. Since
experimentally studying the functions of those genes, one
by one, would be unfeasible, new computational methods
for gene functions inference are needed. We present here
a novel computational approach for inferring biological
function for a set of genes with previously unknown
function, given a set of genes with well-known information.
This approach is based on the premise that genes with
similar behaviour should be grouped together. This is
known as the guilt-by-association principle. Thus, it is
possible to take advantage of clustering techniques to
obtain groups of unknown genes that are co-clustered
with genes that have well-known semantic information
(GO annotations). Meaningful knowledge to infer unknown
semantic information can therefore be provided by these
well-known genes. We provide a method to explore the
potential function of new genes according to those currently
annotated. The results obtained indicate that the proposed
approach could be a useful and effective tool when used
by biologists to guide the inference of biological functions
for recently discovered genes. Our work sets an important
landmark in the field of identifying unknown gene functions
through clustering, using an external source of biological
input. A simple web interface to this proposal can be found
at http://fich.unl.edu.ar/sinc/webdemo/gamma-am/.

I. INTRODUCTION

Describing genes in terms of biological functions
constitutes a major challenge in the study of recently
discovered gene products. Considering the large amount
of gene data available, it is difficult to perform wet
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experiments for every condition in each individual gene.
Therefore, computational methods are needed as an
efficient way to infer biological function for newly
discovered genes [1]. In particular, clustering can be
useful to this end, in order to unveil underlying related
information within groups of genes. Clustering is widely
used for knowledge discovery, since it is mainly meant to
find interesting and previously unknown properties on a
given problem. It is commonly divided into three phases:
a) measuring the proximity of objects under study. For
this phase, studies in bioinformatics make use of the Eu-
clidean distance and the Pearson correlation coefficient,
essentially because of their wide availability and ease of
use [2]. Nevertheless, new metrics are proposed to make
better measurements of proximity between objects, for
example through the use of path-based dissimilarities,
graphs and perceptual organization [3], [4]; b) grouping
objects according to this proximity. Literature is profuse
regarding this phase [5], including the development of
several clustering algorithms used in bioinformatics [2],
[6], [7]; and c) evaluating the quality of the formed
groups or clusters. There has been a growing interest
in this phase over the last years [8], [9], [10]. In
the biological field, clustering methods are performed
upon the well-known guilt-by-association principle [11].
This biological assumption implies that genes involved
in common biological processes behave similarly [12].
Therefore, if a gene with unknown biological function
behaves in a similar manner than a well-known one,
a strong inference that both genes are involved in the
same regulatory process could be made, and thus these
genes should be clustered together [13]. The authors in
[14] have studied the idea that highly correlated genes
have strong similarity also on information coming from
the GO ontology. The study has tested the feasibility of
applying GO-driven similarity methods for the inference
of gene function, concluding that this strategy can lead
to better results.

It can be stated that, in general, information about
biological processes is not used in an explicit way
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in the training patterns when applying clustering al-
gorithms. However, biologists use this knowledge later
for validation of clusters and relations found within
data [15]. Furthermore, data on well-known biological
functions are available and their associations to each
data pattern could be made in a straightforward fashion.
As a consequence, considering this semantic information
explicitly could be very useful while clusters are being
formed during training, with the aim of finding results
with better quality from a biological point of view.
Recently, several new measures have been proposed, in
particular on the basis of knowledge representations such
as the Gene Ontology (GO) [16]. GO is a controlled
vocabulary, which considers the semantics of each gene
as an alternative to traditional experiment-based mea-
sures [17]. It provides concepts or terms organized in
a structured set. These terms are systematically used to
describe or annotate genes. The proximity, or similarity
between two terms can be thought of as the extent to
which they share information in common. This similarity
information is contained in the level of specificity of
the term that subsumes them, and is named information
content (IC). As the specificity of the subsumer term
raises, the IC is higher, and vice versa [18]. Several
similarity measures for comparing biological terms based
on IC have been developed [19]. Recent studies conclude
that the use of a distance that combines both measures
based on gene expression data and semantic sources such
as ontologies can lead to more biologically meaningful
and stable clusters [20], [21], [22]. In this work, we
present a novel method that goes a step beyond these
cited works, because the proposed approach integrates
different sources of data and proposes an original way
to measure distance between genes in order to improve
clustering. It also presents an innovative way of inferring
GO labels from the better clusters obtained after data
fusion and clustering.

Semantic information such as GO annotations is not
always available for all genes within a genome. There-
fore, a way of inferring or assigning semantic informa-
tion to genes that are not systematically described in
literature, nor annotated to any GO terms, is needed.
Given the vast amount of genomic data, the experimental
determination of gene functions is inherently difficult
and expensive, therefore automated annotation of gene
functions has emerged as a challenging problem in com-
putational biology [23]. Although computational meth-
ods based on the aforementioned “guilt-by-association”
principle have been often used [24], most of these
methods do not consider all available information, such
as for example, biological annotations. We present here
a novel approach, the Gamma Assignment Method (γ-

AM), which aims to infer the biological function of
genes with previously unknown function. The approach
has three main steps that include measuring data similar-
ity, taking into account not only expression data but also
semantic GO annotations, assigning genes with unknown
biological function to clusters formed by genes with
well-known semantic information, and characterizing
those unknown genes with biological functions through
cluster enrichment analysis. An experimental comparison
with other methods, on real biological datasets, shows
the usefulness and superiority of the proposal. The
strength of our approach relies on its simplicity and, at
the same time, effective ability to improve the inference
results when compared against the classical approach and
other related clustering-based methods. Furthermore, an
innovative method for proximity measure is introduced
for the clustering step, thus providing more meaningful
clusters from a biological point of view, before the
function inference. Considering these facts, we can state
that our proposal moves a step forward in the field
of inferring novel GO annotations through the use of
available information only from gene expression, and
known GO annotations for other genes.

This work is organized as follows. Section II presents
a detailed description of the approach. Section III
presents the datasets and the performance measures used
in this work. Section IV shows the results obtained,
including detailed examples of the application of our
approach. The conclusions and future work can be found
in Section V.

II. A NEW APPROACH FOR INFERRING BIOLOGICAL
DATA FUNCTION

Our new approach, γ-AM, aims to assign biological
function to genes with unknown biological function,
given a background gene set with well-known function.
This process is performed as follows. A is a set of genes
with expression data, having also information about the
biological function. B is a gene set with expression
data and unknown biological function. Both sets are
provided as input to γ-AM. The purpose of our approach
is to identify the corresponding function of genes in B

by assigning those genes to clusters of genes from A

(with well-known function) and inferring the biological
function from their co-cluster members.

The proposed approach has three main steps. A work-
flow describing the whole process is shown in Figure 1.
In Step 1, a distance matrix among genes in set A must be
calculated. For this step, a new parameter-based distance,
named gamma distance, is used in order to combine both
available expression and biological knowledge. It should
be noted that both types of data in the gamma distance
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may have different statistical distributions. Consequently,
a way of balancing them is needed. Two methods will
be proposed to accomplish this issue at this step. In
step 2, clusters are formed from set A according to the
gamma distance. After that, genes in set B are assigned
to the clusters obtained from A, forming a partition
GB→A that contains only the clusters in which the B

genes have been assigned. In Step 3, each cluster in
GB→A is characterized with a set of biological functions.
This is achieved through GO enrichment analysis, which
finds GO terms that are over-represented within a gene
subset with respect to a gene background set (in this
case, A) [25]. Semantic information for each previously
assigned gene from B is then inferred with a set of
terms according to the enrichment analysis that has been
performed to its corresponding cluster. The following
sub-sections explain in detail each step of γ-AM.

A. Step 1: Measuring data similarity on A genes by com-
bining both expression data and biological knowledge

The first step before applying any clustering algo-
rithm on data involves the use of an adequate similarity
measure that allows finding highly cohesive and well-
separated clusters. Particularly with genes, a natural
choice is to group together genes with similar patterns of
expression. After that, for clustering, a distance matrix
must be built. Each element of the matrix will be
a pairwise distance (for example, genes gi and gj)
calculated according to 1 − similarity

(
gi,gj

)
. Several

distance measures are currently used for clustering bi-
ological data in particular [19], [26]. Common choices
for measuring the distance between the expression of
gi and gj are the classical Euclidean distance and the
Pearson distance. While Euclidean distance can take into
account differences in the absolute level of expression of
data [27], when the Pearson distance is used positively
correlated genes are considered similar (near) to each
other and lower and negative correlations indicate not
similar (distant) data points [28]. The standard corre-
lation coefficient might conform appropriately to the
intuitive biological notion of what it means for two genes
to be “co-expressed”, because this statistics captures
similarity in “shape” but places no emphasis on the
magnitude of the measurements [26]. Both distances are
usually normalized in the range [0, 1] [21]. It should
be noted that this choice of similarity measure allows
the use of any numeric-based gene expression analysis,
regardless of the technology used for collecting the data.
Also, multiple expression experiments could be used as
well with the proposed method, just by extending each
feature vector by adding more dimensions to the gene

expression data. In this case, data should be normalized
before integration into a single vector. For example, in
a simple and straightforward way, each experiment data
vector could be divided by its L2 norm, where the square
root of the sum of each element, squared, is equal to 1.

A different kind of measure can be used between pairs
of genes considering their relationship in terms of bio-
logical knowledge. A common choice of representation
for this type of relationship is given through semantic
similarity, which can be calculated upon objective bio-
logical knowledge representations or annotations. Such
annotations can be found in ontologies such as GO,
where a structured and controlled vocabulary is used to
associate biological knowledge to a pre-defined set of
descriptions or terms [29]. Terms farther from the root
describe more specific concepts, whereas terms closer
to the root describe high-level abstract concepts. The
adoption of ontologies for annotation provides means to
compare entities on aspects that otherwise would not be
comparable by classical (for example expression-based)
distances.

Semantic similarity measures can be defined as func-
tions that, given two ontology terms or two sets of terms
annotating two entities, return a numerical value reflect-
ing the closeness in meaning between them [19]. Several
measures have been developed following this approach.
In particular, many of them have some issues related
to lack of sensitivity with respect to the level of detail
within the ontology [21]. This can lead to some counter-
intuitive assumptions, such as similar closeness for two
specific and two abstract terms, and equal closeness
for every pair of genes which are descendants of the
same common ancestor. One measure that solves both
aforementioned issues is the Relevance measure [19],
proposed by Schlicker [30] to measure the similarity
between terms ti and tj

Sim (ti, tj) = max
t∈S(ti,tj)

{
2 log p(t)

log p(ti) + log p(tj)
(1− p(t))

}
=

2I(ms(ti, tj))

I(ti) + I(tj)

(
1− e−I(ms(ti,tj))

)
,

(1)
where p(ti) is the probability of finding an instance of a
term ti in GO, computed as the number of genes anno-
tated to ti or one of its descendants divided by the total
number of genes in the ontology; I (ti) is the information
content of a term ti that can be quantified as the negative
log likelihood of p(ti); S

(
ti, tj

)
is the set of common

ancestors between ti and tj ; ms
(
ti, tj

)
is the minimum

subsumer or the term t that maximizes I in S
(
ti, tj

)
.

It is the common ancestor between ti and tj with the
higher information content, and therefore the closest one
to both ti and tj , thus I

(
ms
(
ti, tj

))
= max
t∈S

(
ti,tj

) I (t). This
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Fig. 1. A workflow for the γ-AM approach.

measure considers the relative location of the terms with
respect to their minimum subsumer, and also the location
of the minimum subsumer within the ontology. Mini-
mum subsumers which are very specific will provide
higher similarity between the terms subsumed than those
located near the root of the ontology. The Relevance
measure varies in the range [0, 1].

It is important to consider that this similarity measure
is calculated between ontological terms, not genes. It
should also be noted that a gene is tipically annotated to
more than one term. For example, the gene RFC1 from
the budding yeast Saccharomyces cerevisiae is annotated
to all the GO terms shown in Table I. Those terms
represent the biological processes in which this gene
is involved. Since we want to cluster genes based on
a distance measure, a semantic distance between genes
must be defined first. Let GOgi and GOgj be the sets of
terms annotating the genes gi and gj . |GOgi | and |GOgj |
are the number of terms in GOgi and GOgj , then

dGO(gi,gj) = 1−
1

2

 1

|GOgi |
∑

∀ti∈GOgi

max
tj∈GOgj

{Sim (ti, tj)}

+
1

|GOgj |
∑

tj∈GOgj

max
∀ti∈GOgi

{Sim(ti, tj)}

 .

This distance is an average of the best pairwise
distances from each term in one of the sets to all the
terms in the other set.

A new measure for gene clustering: the gamma distance

Based on the expression and semantic distances de-
scribed above, a new distance that takes into account
both will be used here [31]. Given the genes gi and gj ,

let de
(
gi,gj

)
be one expression distance between them,

such as Euclidean or Pearson, and dGO
(
gi,gj

)
be the

semantic distance as defined before. Then, given a set of
genes, we propose to use the gamma distance between
gi and gj , defined as

dγ (gi,gj) = γdGO (gi,gj) + (1− γ)de (gi,gj) , (2)

where the value of the γ parameter indicates the impor-
tance given to the semantic information in the distance
calculation between any pair of genes. A value of γ = 0

corresponds to a pure expression-based distance, and
a value of γ = 1 corresponds to a pure semantic-
based distance. One important issue regarding the use
of this distance is the fact that de and dGO come from
very different types of data sources. Therefore, it is
highly likely for them to present very different statistical
distributions. This can be a problem in cases where
both distance matrices need to be combined as an input
to discover gene groups. For example, Figure 2 shows
the histograms distributions of expression-based (left)
and semantic-based (right) pairwise distance matrices
of genes belonging to an example data set (yeast). The
dissimilarity in the distributions in the histograms is very
clear. In order to overcome this issue and achieve a
more fair influence of both types of distances in the
combined gamma distance, the following two methods
are proposed.

The percentile method: This method takes into ac-
count the original distribution of the pairwise distances
corresponding to the gene dataset. The goal is to find
a way of homogenizing both semantic and expression
distance matrices in order to give them similar impor-
tance. The procedure is as follows. Let D be a pairwise
distance matrix for the entire gene dataset. The range
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GO term Description
GO:0007049 Cell cycle
GO:0000278 Mitotic cell cycle
GO:0051301 Cell division
GO:0006281 DNA repair
GO:0006298 Mismatch repair
GO:0006260 DNA replication
GO:0006272 Leading strand elongation

TABLE I
ILLUSTRATIVE EXAMPLE OF GO TERMS ANNOTATING THE YEAST

GENE RFC1.
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Fig. 2. Distance histograms distributions for an example gene dataset
(yeast). Expression-based pairwise distances (left) and semantic-based
pairwise distances (right).

Discretized pairwise expression distances

F
re

qu
en

cy
 o

f e
xp

re
ss

io
n 

di
st

an
ce

s

0 5 10 15 20

0
20

00
40

00
60

00
80

00

Discretized pairwise semantic distances

F
re

qu
en

cy
 o

f G
O

 d
is

ta
nc

es

0 5 10 15 20

0
20

00
40

00
60

00
80

00
10

00
0

12
00

0

Fig. 3. Histograms for the pairwise distances from Figure 2 after
applying the percentile method.

of possible values for D is obtained and divided into m

equal intervals. Then the i-th percentile corresponding
to each value of D is calculated, and the values are re-
distributed into their corresponding j-th interval. After
this discretization, an approximate uniform distribution
is obtained for the values of D. The process is applied to
both types of distance matrix (expression and semantic).
After this process, both distance matrices can be used
into the gamma distance with equal weight (γ = 0.5).
An example on the application of this method to the
distributions of Figure 2 is shown in Figure 3, where the
effect of the method for equalizing the histograms can
be clearly seen.

The γ-tuning method: This method aims to balance the
weight given to the original pairwise distance matrices
used within the gamma distance by automatically finding
an appropriate value for the parameter γ. The detailed
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Fig. 4. Example of application of the γ-tuning method on the yeast
data set.

procedure is as follows. First of all, a random subsam-
pling is made out of the original set A of gene measures
(both expression and semantic data), generating two
subsets: A1 and A2. Semantic-based data from A2 is
removed. After that, a clustering algorithm is applied
only on A1 with a fixed value of γ and k, obtaining a
clustering partition, GA1 . Then, each gene from A2 is
assigned to one cluster Ω

A1
j /Ω

A1
j ∈ GA1 , j = 1, . . . , k

according to the minimum expression-based distance
between the gene expression data and the centroid of
each cluster. After all genes in A2 have been assigned to
a cluster Ω

A1
j , a new partition GA2→A1 is defined as the

one having only those clusters Ω
A1
j which have genes

from A2. Semantic-based information is then restored
to genes in A2 and a global measure of compactness is
calculated for GA2→A1 . This is performed as follows:
the minimum semantic distance between each assigned
gene from A2 and genes from A1 clustered together is
calculated and averaged through a number n of runs.
With this measure, it is possible to obtain an automatic
estimation of the biological quality of the final clusters
obtained for a specific value of γ. These n runs are
performed for each value of γ in an interval of possible
γ values ranging from 0 to 1, with steps of 0.05. The best
value for γ will be selected as the one where the global
compactness of the solution GA2→A1 is minimum.

An example of a plot with values obtained by using
the proposed γ-tuning algorithm on the yeast dataset
is shown in Figure 4. Each point represents the com-
pactness through all the n runs performed for each γ,
thus indicating the closeness between genes regarding
GO annotations. The lowest value (indicating the best
semantic compactness of the clusters) will be used as
the most appropriate γ for the gamma distance in the
next step. From the figure, it can be clearly seen that the
most appropriate value of γ to be used for this data set
is 0.55, corresponding to a minimum average semantic
distance of 0.775.
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B. Step 2: Clustering and assigning genes in B.

The gamma distance can be used as input to a clus-
tering algorithm in order to obtain more biologically
relevant groups of genes. It is important to note that
an adequate choice of data representation is crucial for
obtaining well-formed and meaningful clusters. Thus,
the use of this integrated distance measure, which takes
into account domain-specific information as well as
experimental data, is key for the achievement of this
important goal. It must be remembered that dγ is a
combined distance between expression and biological
data, having a GO-based part which summarizes seman-
tic information from several GO annotations based on
similarities rather than on interval-scaled measurement
values [32]. Pairwise expression distances between genes
and centroids can be calculated, but a distance between a
GO-based data point and an artificial centroid cannot be
obtained. Thus, a gene must be used as the representative
object for each cluster.

Taking these facts into account, we propose the Algo-
rithm 1. Let A be a set of genes having both expression
and semantic data. Let B be a set of genes having only
expression data, k is the number of gene clusters, and γ∗

is an appropriate weight for the GO-based information
used in the gamma distance. This value is determined
by one of the methods mentioned in Section II-A.

At first, an initial gene-centroid gc1 is defined as the
gene that minimizes the gamma distance to all other
genes in A (line 3). After that, an iterative process is
followed until k gene centroids are found. Let gi ∈ A,
gi 6= gc1 be a gene from the dataset, which is a candidate
to become a new gene-centroid. For each gi, a candidate
score is calculated as Sgi , which takes into account,
for each remaining gene gj in the dataset, its gamma
distance to gi and also to its closest gene-centroid (line
7), in order to determine if gi must be a new gene
centroid. The gene gi = arg max

∀gi
Sgi will be chosen as

a new gene-centroid (line 9) and included into Γ (line
10), since the highest candidate score indicates that gi

is closer to more genes than any other existing gene-
centroid. After k gene-centroids have been determined,
all the rest of the genes from the A set are assigned
to one of the k clusters ΩAn (with gene-centroids gcn)
according to its minimum distance to the centroid (line
13). Finally, the gene-centroid set Γ can be further
refined, as suggested in [32]. Each gene-centroid gc

is replaced by another object gj which is not a gene-
centroid, conforming a new set Γ′ (line 19), and the sum
of the pairwise gamma distances from all the other genes
to their closest gene-centroids, R′, is calculated (line 20).
If this value is lower than the one obtained with the

Algorithm 1: Clustering and assignment of genes with
unknown function to gene clusters with well-known
function

Input:
A: Set of genes having both expression-based data and

GO-based data
B: Set of genes having expression-based data only
k: Number of clusters.
γ∗: Weight of GO-based information.

Output:
GB→A: Partition of B assigned to clusters from A

1 begin
2 Set the initial gene-centroid gc1 as the gene gi that

minimizes the gamma distance to all other genes in A:
gc1 ← arg min

∀gi

∑
j 6=i

dγ∗ (gi,gj), gi,gj ∈ A

3 Γ← {gc1}
4 n← 2
5 while n ≤ k do
6 for each gene gi ∈ A− Γ do
7 Calculate candidate score: Sgi =∑

gj 6∈Γ
gj 6=gi

(
dγ∗ (gj ,gi)− min

∀gc∈Γ

{
dγ∗ (gj ,gc)

})

8 end
9 gcn ← arg max

∀gi

Sgi

10 Γ← {gcn}
11 n← n+ 1
12 end
13 Assign each gj ∈ A− Γ to a cluster ΩAn according to:

gj ∈ ΩAn ⇔ dγ∗ (gj ,gcn) < dγ∗ (gj ,gcm) ∀n 6= m

14 Conform a partition GA ←
{

ΩAn

}
15 repeat
16 for each gene-centroid gc ∈ Γ do
17 Calculate: R←

∑
gj 6∈Γ

min
∀gi∈Γ

{
dγ∗ (gj ,gi)

}
18 for each gene gj 6∈ Γ do
19 Replace gc by gj : Γ′ ← Γ− {gc} ∪ {gj}
20 Calculate:

R′ ←
∑

gj 6∈Γ′
min
∀gi∈Γ′

{
dγ∗ (gj ,gi)

}
21 if R′ < R then Γ← Γ′

22 end
23 end
24 until no new replacements can be made
25 Assign each gh ∈ B to a cluster ΩB→An according to:

gh ∈ ΩB→An ⇔ de(gh,gcn) < de(gh,gcm) ∀n 6=
m

26 Conform a partition GB→A ←
{

ΩB→An

}
27 end

original gene-centroid set Γ, the partition is improved,
and thus the new gene-centroid configuration remains
for the clusters (line 21). This process is repeated until
there are no new replacements to be made for the gene-
centroids (line 24). Once clusters ΩAn with all genes from
A have been set, forming the partition GA, each gene
gh ∈ B is assigned to one cluster ΩAn according to the
minimum expression-based distance to its corresponding
gene-centroid gcn. These clusters with assigned B genes
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are named ΩB→An (line 25). A new partition named
GB→A is then formed, which contains only the clusters
from GA which have assigned genes from B (line 26).
The biological knowledge corresponding to the genes in
B will be inferred according to the enrichment of the
clusters where B genes have been included.

C. Step 3: Characterizing unknown B genes with bio-
logical functions through cluster enrichment analysis

For each cluster in GB→A, a representative set of bi-
ological functions is obtained through the use of enrich-
ment analysis [25]. This method identifies the functional
terms (in this case, GO annotations) which are over-
represented in a gene subset with respect to a background
gene set. Those terms comprise the biological knowledge
associated to the clusters [33]. The aim of enrichment
analysis is to obtain a subset of GO terms for each cluster
from GB→A, using the genes with well-known informa-
tion as input and the complete gene set A as background.
A list of GO terms ordered by p-value is provided as
result. These terms will characterize the genes from B
that were assigned to each cluster. Although annotating a
gene to a specific GO term implies its annotation to all its
parent terms, in this work we only consider the specific
GO terms without its parents for the characterization, in
order to make more accurate inferences.

An example with genes from yeast is shown in Table
II. Genes in the first column belong to one cluster
from A that has been assigned a gene from B (let us
suppose an unknown gene, shown in bold) as described
above. The procedure calculates the enrichment p-value,
obtained as the number of genes in a set that match a
given biological function as compared to pure random
chance. This calculation can be performed with the aid
of well-known statistical methods [34]. A variety of
tools have been developed to apply enrichment analysis
[11], [25]. Biological functions passing a pre-defined
enrichment p-value threshold are considered interesting
for the input set and returned in an ordered fashion with
respect to that value [25]. In the example, the resulting
three biological functions (Gene expression, Cellular
protein metabolic process, and Translation) are shown
with their GO labels in the second and third column,
respectively. The last column shows the location of the
GO terms within the GO-Biological Process ontology,
enclosed in a dashed line. These three terms resulting
from the enrichment analysis of the cluster are used
to characterize the unknown gene from B. Finally, this
procedure is performed for all clusters from the partition
GB→A in order to effectively assign biological function
to all genes with unknown information from set B.

III. MATERIALS AND PERFORMANCE MEASURES

This section presents the datasets and validation mea-
sures used in the experiments.

A. Datasets

YEAST dataset: This dataset consists of gene ex-
pression data from the budding yeast Saccharomyces
cerevisiae. Several characteristics such as diauxic shift,
mitotic cell division cycle and sporulation, were col-
lected in order to study cluster analysis of expression
patterns. The activities of collecting and preprocessing
the dataset are thoroughly explained in [26]. From an
original dataset of 2467 genes, only those with no miss-
ing values were considered. A filtering process to include
only those genes annotated to the GO Biological Process
category and to exclude those with evidence code “ND”
(no biological data available) was also applied. The
final dataset has 587 genes. For these genes, there are
79 microarray-expression values. Regarding annotation
data, there are 1054 unique GO terms for a total of 2845
annotations in this dataset.

ARA dataset: This dataset comprises genes measured
in Arabidopsis thaliana leaves. The original work was
aimed to study the effects of cold temperatures on
circadian-regulated genes in this plant [35]. Genes under
light-dark cycles at two control temperatures (20◦C and
4◦C) and also involved in diurnal cycle and cold-stress
responses were selected for the study. From a total
of 1549 genes only those annotated to the Biological
Process category of the Gene Ontology were considered.
Genes annotated into GO but marked with evidence code
“ND” were removed. The final dataset used here has
1042 genes. For these genes, there are 32 microarray-
expression values. In terms of annotation data, 918
unique GO terms were considered for a total of 4470
annotations in this dataset.

B. Performance measures

In this subsection, the following notation is used: the
gene dataset is formed by gi data samples; Ωc is the set
of samples that have been grouped in the cluster c; |Ωc|
is cluster size; k is number of clusters.

Semantic Compactness: A measure to assess the
quality of the biological assignment procedure has been
defined as follows. Here we will denominate gi ∈ Ω

A2
c

and gj ∈ Ω
A1
c the genes clustered in Ωc = Ω

A2
c ∪ Ω

A1
c

that, prior to the assignment, belonged to subsets A2 and
A1, respectively. Once the partition GA2→A1 has been
obtained, for each gene gi ∈ Ω

A2
c , semantic distances

to all genes gj ∈ Ω
A1
c clustered together with it in the

same cluster Ωc are calculated. The minimum semantic
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Cluster genes GO terms GO labels GO location
MSR1 Gene expression GO:0010467
MRPL8
RPL17A
SUI1
ALA1
HCA4
SQT1
NOP56
GAR1
NSR1
HMT1
RPS18A
RPS14B Cellular protein GO:0044267
RPL37B metabolic process
RPL40A
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
(unknown gene) Translation GO:0006412

TABLE II
EXAMPLE OF ENRICHMENT ANALYSIS FOR A CLUSTER OF YEAST GENES FROM A WITH WELL-KNOWN BIOLOGICAL FUNCTION. A GENE

FROM B WITH UNKNOWN FUNCTION IS SHOWN IN BOLD.

distance among them is then selected. Therefore, SCi for
a gene gi ∈ Ω

A2
c is defined as

SCi = min
gi∈Ω

A2
c ;gj∈Ω

A1
c

dGO(gi,gj). (3)

Finally, the overall SC for the whole resulting partition
GA2→A1 is calculated as the average of SCi for all genes
gi ∈ Ω

A2
c . Since SC is based on semantic distances, a

lower value represents better compactness, thus better
quality.

Biological homogeneity index: The Biological Ho-
mogeneity Index (BHI) measures the quality of the
clusters on a biological basis. It can be thought of as
an average proportion of gene pairs with matched GO
terms clustered together [36]. Let F

(
GOgi , GOgj

)
be an

indicator function that has the value 1 if gi and gj are
annotated with at least one term in common, and 0 in
any other case. Then

BHI =
1

k

∑
j

1

|Ωc| (|Ωc| − 1)

∑
gi 6=gj∈Ωc

F
(
GOgi , GOgj

)
.

(4)
BHI can be interpreted as the proportion of common GO
annotations within the obtained clusters and it varies in
the range [0, 1]. A value of BHI close to 1 indicates that
the clusters are more homogeneous in terms of biological
meaning. It must be noted that, as mentioned in the
Subsection II-C, only specific GO terms were taken into
account. Thus, the indicator function F

(
GOgi , GOgj

)
will have the value 1 only when both terms are annotated
to at least one GO specific term. As a consequence,
there may be many cases when the indicator function

has a value of 0, as there are no specific GO matching
terms for gi and gj . This may lead to low values for the
overall BHI, although not strictly zero. In spite of this
issue, these low BHI values can still be used to obtain a
good estimate of the biological quality of the clustering
results.

Biological compactness: A new measure to evalu-
ate the biological quality of the final gene clustering
partition is defined here. Biological Compactness (BC)
measures the average of the pairwise semantic distances
among all elements in each cluster. Thus biological
compactness is defined for the cluster Ωc as

BCc =
1

|Ωc|
∑

gi∈Ωc

∑
gj∈Ωc

dGO(gi,gj). (5)

A low value of BC means a cluster with close elements
in terms of semantic distances, which can be interpreted
as a higher amount of GO-based information in common
within each cluster. The overall biological compactness
for a solution can be calculated as BC =

1

k

∑
c

BCc.

Values of BC closer to 0 indicate that the clusters are
better from a semantic point of view.

Fowlkes-Mallows index: The Fowlkes-Mallows index
is a measure used for external validation of clustering
results [37]. This index is applied here to evaluate the
quality of the assignment procedure performed on B
genes. Consider a dataset with N elements. Given two
clustering solutions for the dataset with k clusters, C and
C′, FM is defined as

Bk =
Tk√
PkQk

(6)
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where Tk =
∑
i

∑
j

m2
ij − N , Pk =

∑
i

∑
j

mij

2

− N

and Qk =
∑
j

∑
i

mij

2

− N , and mij is an element

from a contingency matrix M obtained between C and
C′. Pk and Qk can be interpreted as the probabilities
of obtaining a random pair of patterns belonging to the
same cluster in C and C′, respectively. Analogously, Tk
represents the probability of obtaining a random pair
of patterns belonging to the same cluster in C and C′

simultaneously. A higher value of Bk indicates higher
consistency between both clustering solutions. A value
of Bk = 1 indicates that C and C′ are identical clustering
solutions, whereas a value of Bk = 0 indicates that no
pair of elements can be found belonging to the same
cluster in C and C′ simultaneously.

IV. RESULTS AND DISCUSSION

The proposal has been applied to both real biological
datasets, YEAST and ARA. For the experiments, in each
dataset, a random subsampling of 90% of the total genes
was performed at the beginning in order to obtain set
A (genes with well-known biological function); for the
remaining 10% of the genes, semantic-based information
was artificially removed in order to use this set as B

(genes with unknown biological function). The informa-
tion removed from B is used at the end of the approach
for validation of results.

The source code is freely available for academic use
at http://sourceforge.net/projects/sourcesinc/files/gamma
AM/1.0/. A user-friendly access is provided as web
interface at http://fich.unl.edu.ar/sinc/web-demo/gamma-
am/.

A. YEAST results

For YEAST data, both expression distance and se-
mantic distance matrices were built. Their corresponding
histograms were calculated (see Figure 2) and since
there is a high imbalance between them, both available
methods (percentile and γ-tuning method) to obtain
more uniform matrix distributions were applied. For the
percentile method, a value of m = 20 intervals was used.
The resulting histograms are shown in Figure 3 after
application of the percentile method for the Euclidean
and Relevance distances1. Usually, genes with unknown
biological function are present in different proportions
within a given genome. Therefore, several proportions
for A1/A2 were used to test the robustness of the
method in cases when there are different proportions

1Pearson correlation, Lin and Resnik measures show similar results.

Method GA2→A1

BHI BC
γ-tuning 0.21 0.50

Percentile Yes 0.14 0.60
No 0.21 0.52

TABLE III
YEAST DATASET. BHI AND BC AFTER APPLYING THE γ-TUNING

METHOD AND THE PERCENTILE METHOD.

of genome annotations. All tested proportions yielded
similar results, thus the proportion A1/A2 = 50/50 was
selected. In order to select an appropriate γ value, SC
was calculated and averaged through 10 runs for each
value of γ and the results have been shown in Figure 4.
It can be seen that the best compactness value is 0.766
(γ = 0.95). Therefore, that value of γ will be used as a
parameter to measure the contributions of the expression
and the semantic GO-based information in the gamma
distance

In Step 1, the resulting pairwise distances provided
by the two methods presented above (percentile and γ-
tuning) were used to obtain the partition GA2→A1 . For
clustering, since a very high value of k would assign
each object to a single cluster, whereas a very low value
would cause the clusters to be excessively large, a value
of k = 10 was used according to the Gap statistic2 [38]
and a value of 10 was selected for the number of runs
of the clustering algorithm.

Finally, the partition GA2→A1 was measured in terms
of biological quality upon BHI and BC. Results for
the γ-tuning (using the best γ value found according to
the proportion 50/50 and the SC measure, see Figure 6)
and percentile method are shown in Table III. The first
column indicates the method used. For the percentile
method, results of its application are shown in the second
row (Yes) and results obtained without its application in
the third row (No). In these cases, for this method, a
value of γ = 0.50 has been used. From the analysis of
Table III, it can be seen that both BHI and BC measures
indicate γ-tuning (with its corresponding appropriate γ

value) as a better method than the percentile one for
obtaining a better final partition, in terms of better
biological quality of the results. It should be noted that
although γ-tuning and no application of the percentile
method have the same BHI value, the biological com-
pactness is better for the final partition when the γ-tuning
method has been used to determine the appropriate γ

to be used to balance the expression and semantic GO-
based data.

Thus, for the Step 2 of our approach, in order to obtain
the final partition GB→A, the value of γ = 0.95 was
used. The biological quality of the resulting partition
has been measured with BHI and BC and results are

2Gap estimates the adequate number of clusters for a dataset.
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reported in Table IV. In this table, the first row shows
the results of a state-of-the-art approach for this problem,
proposed by Rhee et al. (as described in [24]) where
the complete dataset A∪B is considered for expression-
based only clustering (γ = 0). The second row shows the
performance of clustering the input dataset A with γ = 1,
and assigning B genes with γ = 1, thus considering full
semantic information (as the best possible case). The
third row shows the output for the γ-AM method as
described in Section II. An ANOVA test was performed
on these results over 100 runs for each dataset (α = 0.05)
showing significant difference among methods. It can
be seen that the results obtained by the γ-AM approach
using a suitable γ value automatically obtained by γ-
tuning for balancing the original expression and semantic
GO-based data, has high biological quality according to
both BHI and BC indexes. In the case of BHI, GB→A is
equal to the 0.19 value for this index in this dataset if full
biological (GO-based) semantic data were considered for
clustering genes. In the case of BC, a similar conclusion
can be drawn: while the application of clustering with
complete information yields the best possible biological
compactness of 0.58, the GB→A partition presents an
equivalent value, providing significantly better results
when compared to the classical approach [24] where no
semantic information is used at all for clustering original
expression data. This result is a major improvement
in obtaining biologically meaningful clusters, since the
application of the gamma distance without having com-
plete semantic-based information yields similar results
to the measures obtained using semantic-based data
only. Therefore, through the application of our proposal,
clusters formed with incomplete information can still
show the same biological quality than those obtained
with full information.

In order to evaluate the quality of our approach
but only regarding the clustering results (Step 2), the
γ-AM approach has been compared with the related
work [39]3, where a SOM is used to co-cluster gene
expression and semantic data. In this experiment, genes
from the complete dataset A ∪ B were clustered consid-
ering expression-based and semantic-based data using
the optimum gamma value determined previously for
this dataset. Results for this comparison are shown in
Table V. The second and third row show results for
the SOM-based approach in two configurations. The
first row shows results for the γ-AM approach. BHI

and BC measures have been calculated for each case.
It can be seen that our clustering procedure outper-

3This approach does not infer GO terms, thus it can be partially
compared just to the clustering part of Step 2

forms the SOM-based method in all cases with the
best biological homogeneity (0.19) against the SOM-
based method (0.06 and 0.04). Analogously with BC,
the compactness in terms of biological data is the best
for our method (0.58) when compared to the SOM-
based method (0.78 and 0.80) These results show that
the clustering procedure performed in Step 2 is capable
of obtaining high quality partitions when compared to
other state-of-the-art approach, with the same input data.
Moreover, the above 100% increase in biological quality
is a strong evidence of the strength and importance of
this step in the γ-AM approach.

In order to evaluate the quality of the Step 2 or our
approach with respect to the assignment of B genes
to clusters, the FM index has been used. This index
evaluates the similarity between two clustering solutions,
where higher values indicate high similarity between
clustering solutions. The comparison was performed
between what would be a random assignment of genes
to clusters, and our method, versus the best possible case
(γ = 1), calculating the corresponding FM index for each
scenario. A value of 0.12 was obtained when comparing
the random assignment against the best possible case,
whereas a higher value of 0.19 was obtained when
comparing our method to the best possible case. This
result represents a percentual improvement of above 60%
regarding closeness between the partition obtained by
our assignment procedure and the partition that would
be obtained with full semantic information.

For Step 3 of our approach, once the partition was
obtained with the selected γ, an enrichment analysis pro-
cedure was applied using the g:Profiler tool [40]. Each
cluster was characterized with biological functions4.
Only those genes from each cluster which originally
belonged to A were selected as input to the enrichment.
The full YEAST dataset was used as background gene
set. An example is described in Table VI, where the
results of the enrichment of cluster 8 are shown. The
p-value for each GO term corresponding to the input
genes was calculated, and only those terms with a p-
value lower than a threshold (0.05 commonly used in
literature) were considered meaningful [40], [41]. These
terms were ordered according to their p-value and their
corresponding functions were assigned as the biological
functions of the unknown B genes present in cluster 8.

To evaluate the quality and effectiveness in inferring
genomic annotation of Step 3 of the proposed method,
the recall of the labels inferred for the B genes is
reported in Table VIII. This recall was calculated as the
matching proportion of inferred GO terms with respect

4Full results are provided in Supplementary Material 2.
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Method BHI BC
Classical [24] 0.07 0.76
Complete information 0.19 0.58
γ-AM method 0.19 0.58

TABLE IV
QUALITY RESULTS FOR γ-AM ON THE YEAST DATASET.

Method BHI BC
SOM [39], m = 0 0.06 0.78
SOM [39], m = 1 0.04 0.80
γ-AM method 0.19 0.58

TABLE V
COMPARISON ON CLUSTERING QUALITY ONLY FOR STEP 2,

YEAST DATASET.
p-value GO term Description

3.46e-57 GO:0032774 RNA biosynthetic process
3.46e-57 GO:0097659 nucleic acid-templated transcription
3.46e-57 GO:0006351 transcription, DNA-templated
1.67e-47 GO:0034654 nucleobase-containing compound biosynthetic process
5.16e-45 GO:0019438 aromatic compound biosynthetic process

2e-44 GO:0018130 heterocycle biosynthetic process
2.77e-43 GO:0044271 cellular nitrogen compound biosynthetic process
3.03e-43 GO:2001141 regulation of RNA biosynthetic process
3.03e-43 GO:1903506 regulation of nucleic acid-templated transcription
3.03e-43 GO:0006355 regulation of transcription, DNA-templated

TABLE VI
OUTPUT OF ENRICHMENT ANALYSIS FOR CLUSTER 8 FOR YEAST

DATASET.

GO name GO ID Annotation count
translation GO:0006412 216

cytoplasmic translation GO:0002181 201
rRNA processing GO:0006364 36

ribosome biogenesis GO:0042254 36
(other GO labels) (. . . ) < 30

TABLE VII
GO LABEL COUNT ON THE YEAST DATASET.

to original terms, averaged for all B genes. It has to
be noticed here that, for calculating this measure, the
most popular GO terms used to annotate most genes in
each dataset can introduce a bias and unusually high
values can be obtained as results of the characterization,
even when inferring gene function just by chance. Such
insight for the YEAST dataset is provided in Table VII.
The first and second columns describe the GO label.
The third column shows the number of genes in the
dataset annotated with the corresponding GO label. It
becomes clear from the table that only two of the GO
labels (translation and cytoplasmic translation) annotate
most of the genes in the entire dataset (we named
those labels as popular GO labels). It can be clearly
noticed here the high imbalance in the distribution of
GO label annotations among the top annotating labels
in the dataset and the rest of the GO labels. Thus, there
is a high probability of finding those as matching labels
between the inferred and the original biological functions
for the B genes.

Therefore, the recall has been calculated with and
without the popular GO labels. The results are shown
in Table VIII. The first row shows performance for the
Rhee et al. [24] classical approach, the second row shows

Method Recall Relative Recall without Relative
Error popular GO labels Error

Classical [24] 0.019 -92.34% 0.003 -93.88%
Complete information 0.248 - 0.049 -
γ-AM method 0.218 -12.10% 0.038 -22.45%

TABLE VIII
RECALL FOR THE YEAST DATASET. ERROR IS THE PERCENTUAL

DIFFERENCE WITH RESPECT TO COMPLETE INFORMATION FOR
EACH METHOD.

performance considering full semantic information, the
third row shows the performance obtained when apply-
ing our method. It can be seen in the second column
that the recall of 0.218, obtained with our method
on the original (biased) distribution of GO labels, is
considerably higher than the low value (0.019) obtained
by the classical approach, and relatively close to the
best possible value (0.248). The relationship among
these values was calculated as percentual difference with
respect to the complete information method, and shown
in the third and fifth column. Results obtained with
our method differ in only 12.10% to the best possible
case. Instead, the classical approach has a percentual
error of 92.34% with respect to the best case. When
cutting off popular GO labels, these relations between
those methods remain in a fairly similar way, as shown
in the fourth column. It can be seen that the recall
difference of the inferred labels with respect to the
best case is very similar in comparison to the classical
approach, also when the measure is calculated without
popular terms. These results indicate the robustness of
our method to the problem of an imbalanced distribution
of GO annotations. In addition to this, the remarkable
improvement of 80% when compared to the classical
approach for label inference proves the effectiveness of
our proposal.

In order to further validate the inferred biological
functions for the B genes, comparison was performed
with the already well-known semantic information of
the B genes, which was removed at the beginning of
the experiments. An example of this is shown in Table
IX. Some of the genes from B which were assigned to
cluster 8 are shown in the first column. Actual GO terms
corresponding to those genes are shown in the second
column. Terms that match exactly the ones assigned by
the proposed method in this work are shown in bold. It
can be clearly seen from this example that one or more
than one GO terms have been perfectly inferred by the
proposed procedure. In fact, this can be seen graphically
in Figure 5. Relative location of inferred terms in GO is
shown in the figure. Terms assigned to B that match the
actual terms are highlighted by an ellipse. The remaining
terms resulting from the enrichment analysis procedure
are shown with a dashed line. Original terms from B
are surrounded by a dark thick line. It can be seen that
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Gene GO actual terms
POP2 GO:0006351 GO:0032968

GO:0006355 GO:0090305
GO:0006357 GO:0000289
GO:0006368

NTG1 GO:0008152 GO:0000737
GO:0006281 GO:0006284
GO:0034599 GO:0090297
GO:0006974 GO:0006285

TABLE IX
VALIDATION RESULTS FOR SOME GENES FROM B ASSIGNED TO

CLUSTER 8 FOR YEAST DATASET. ORIGINAL MATCHING LABELS
SHOWN IN BOLD

there is a closeness in terms of semantic relationship
among these terms. Furthermore, matching terms from
B are always directly related to assigned terms, both as
parents and siblings. In particular, many of the children
from matching terms are actually inferred terms. Besides,
original terms from B are very close to assigned terms. In
summary, inferred terms match perfectly, or are related
as parents or siblings of actual B terms.
B. ARA results

Regarding ARA dataset, an analogous procedure to
the YEAST dataset was performed. As shown in Tables
X, XI and XII, similar results to the YEAST dataset
are achieved, thus equivalent conclusions can be drawn.
Due to space restrictions, full results and analysis can
be found in Supplementary Material 1.

Clustering performance was also evaluated for this
dataset, comparing the clustering in Step 2 to the SOM-
based co-clustering in terms of BHI and BC. Results
are shown in Table XI. It can be seen that the clustering
quality of γ-AM outperforms the SOM co-clustering for
this dataset as well. Our method yields the best BHI
(0.12) compared to the lower values (0.06 and 0.10) for
the SOM-based method. Similar results are reached in
terms of BC, with the best value (0.59) against the less
compact results for the SOM approach.

Regarding biological quality, Table X shows the re-
sults of our method in the third row. The second row
shows the results for the best possible case, using com-
plete semantic information, whereas the first row shows
the values for the Rhee et al. [24] classical approach. It
can be seen that, for both measures, the application of
the γ-tuning method with an appropriate γ value used to
balance the amount of the expression and semantic GO-
based data is significantly close in terms of biological
quality to the best possible values of both performance
measures. For BHI, the value of 0.14 obtained with our
method is remarkably near to the best value of 0.15,
representing a major improvement to the value of 0.05
obtained when applying the classical method. Similar
results are obtained for BC, where a value of 0.60 for our
method is very close to the best value of 0.59 obtained
with full semantic information and indicates a consider-
able higher compactness than the value of 0.82, which

Method BHI BC
Classical [24] 0.05 0.82
Complete information 0.15 0.59
γ-AM method 0.14 0.60

TABLE X
QUALITY RESULTS FOR γ-AM ON THE ARA DATASET.

Method BHI BC
SOM [39], m = 0 0.06 0.74
SOM [39], m = 1 0.10 0.82
γ-AM method 0.12 0.59

TABLE XI
COMPARISON ON CLUSTERING QUALITY ONLY FOR STEP 2, ARA

DATASET.

Method Recall Relative Recall without Relative
Error popular GO labels Error

Classical [24] 0.033 -53.52% 0.034 -27.66%
Complete information 0.071 - 0.047 -
γ-AM method 0.052 -26.76% 0.038 -19.15%

TABLE XII
RECALL FOR THE ARA DATASET.

was obtained with A ∪ B with γ = 0. Recall was also
calcultated for this dataset, as shown in Table XII. It can
be seen that the value of 0.052 obtained with γ-AM is
very close to the best possible value of 0.071, and fairly
better than the value of 0.033 obtained by the classic
approach. These analysis stands also when popular terms
are not taken into account. The quality of Step 2 was also
evaluated with the FM index. A random assignment and
our approach were compared against the best possible
case, obtaining the values 0.12 and 0.15, respectively.
These results show a similarity improvement of nearly
25% between the partition obtained with γ-AM and the
partition that would be obtained with complete semantic
information.

In summary, as it can be seen from the results in
both real datasets from different species, it can be
stated that our proposal has effectively succeeded in
assigning biological function to non-annotated genes.
This is supported by the results obtained from both
the performance and validation measures considered, as
well as the graphical analysis of the annotations inferred
for the B genes. Therefore, our proposal establishes an
important milestone regarding computational methods to
take full advantage of an external source of biological
information, with the aim of discovering gene functions.

V. CONCLUSIONS

A novel approach for inferring biological function
for a set of unknown genes has been presented in this
work. It is based on the assignment of unknown genes
to groups of genes with well-known information, and
the application of enrichment analysis to the groups
in order to characterize those unknown genes. It has
been tested on two real datasets from different species,
and compared to the state-of-the-art clustering approach,
obtaining very good results that prove the effectiveness
of the proposal. These results show the convenience of
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using γ-AM to infer biological knowledge from a set of
genes with unknown biological function. The proposed
approach can constitute an important starting point for
guiding biologists into the inference of possible function
to recently discovered genes, as well as to the design of
the most adequate wet experiments to further confirm
their functional behaviour. The approach can lead the
biologist into a convenient path through the large GO-BP
structure, which would help finding the correct biological
function to genes with previously unknown semantic
information.
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