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Abstract

When a signal is recorded in an enclosed room, it typically gets affected by reverbera-
tion. This degradation represents a problem when dealing with audio signals, particularly
in the field of speech signal processing, such as automatic speech recognition. Although
there are some approaches to deal with this issue that are quite satisfactory under cer-
tain conditions, constructing a method that works well in a general context still poses
a significant challenge. In this article, we propose a Bayesian approach based on convo-
lutive nonnegative matrix factorization that uses prior distributions in order to impose
certain characteristics over the time-frequency components of the restored signal and the
reverberant components. An algorithm for implementing the method is described and
tested. Comparisons of the results against those obtained with state-of-the-art methods
are presented, showing significant improvement.

Keywords: signal processing, dereverberation, regularization.

1 Introduction

In recent years, many technological developments have attracted attention towards human-
machine interaction. Since the most natural and easiest way of human communication is
through speech, much research effort has been put into achieving the same natural interaction
with machines. This effort has already generated many advances in a wide variety of fields such
as automatic speech recognition ([1]), automatic translation systems ([2]) and control of remote
devices through voice ([3]), to name only a few. A significant amount of work has been recently
devoted to produce robustness in speech recognition ([4]), resulting in several advances in the
areas of speech enhancement ([1], [5]), multiple sources separation ([6], [7]), and particularly in
dereverberation techniques ([8]), which constitute the topic of this work.

When recorded in enclosed rooms, audio signals will most certainly be affected by reverber-
ant components due to reflections of the sound waves in the walls, ceiling, floor or furniture.
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This can severely degrade the characteristics of the recorded signal ([9]), generating difficult
problems for its processing, particularly when required for certain speech applications ([10]).
The goal of any dereverberation technique is to remove or to attenuate the reverberant compo-
nents in order to obtain a cleaner signal. The dereverberation problem is called “blind” when
the available data consists only of the reverberant signal itself, and this is the problem we shall
deal with in this work.

Depending on the problem, our observation might consist of a single or multi-channel signal,
that is, we might have a signal recorded by one or more microphones. For the latter case, quite
a few methods exist that work relatively well ([11], [12]).

For the single-channel case, we may distinguish between supervised and unsupervised ap-
proaches. The first kind refers to those that begin with a training stage that serves to learn some
characteristics of the reververation conditions, while the second kind alludes to those methods
that can be implemented directly over the reverberant signal. Some supervised methods ([13],
[14], [15]) appear to perform somewhat better than unsupervised ones, but they pose the dis-
advantage of needing learning data corresponding to the specific room conditions, microphone
and source locations, and a previous process that might take a significant amount of time.

In the context of unsupervised blind dereverberation, although some recently proposed
methods ([12], [16]) work reasonably well, there is still much room for improvement. Our work
is based on a convolutive non-negative matrix factorization (NMF) reverberation model, as
proposed by Kameoka et al ([16]), along with a Bayesian approach for building a functional
that takes into account a priori expected characteristics over the elements of the representation
model. This functional can be thought of as the cost function of a mixed penalization model,
such as in [17]. This kind of approach has been also recently used and successfully applied by
several authors in many areas, mainly in signal and image processing applications ([18], [19],
[20], [21], [22]). These techniques have shown to produce good results in terms of enhancing
certain desirable characteristics on the solutions while precluding unwanted ones.

2 A Reverberation Model

Let s, x : R→ R, with support in [0,∞), be the functions associated to the clean and reverber-
ant signals, respectively. As it is customary, we shall assume that the reverberation process is
well represented by a Linear Time-Invariant (LTI) system. Thus, the reverberation model can
be written as

x(t) = (h ∗ s)(t), (1)

where h : R → R is the room impulse response (RIR) signal, and “∗” denotes convolution.
This LTI hypothesis implies we are assuming the source and microphone positions to be static,
and the energy of the signal to be low enough for the effect of the non-linear components to be
relatively insignificant.

When dealing with sound signals (particularly speech signals), it is often convenient to work
with the associated spectrograms rather than the signals themselves. Thus, we make use of the
short time Fourier transform (STFT), defined as

xk(t)
.
=

∫ ∞

−∞

x(u)w(u− t)e−2πiukdu, t, k ∈ R,

where w : R→ R
+
0 is a compactly supported, even function such that ‖w‖1 = 1. This function

is called window.
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In practice, we work with discretized versions of the signals involved (x[·], h[·], s[·], and w[·]).
With this in mind, we shall define the discrete STFT as

xk[n]
.
=

∞
∑

m=−∞

x[m]w[m− n]e−2πimk, n, k ∈ N.

Denoting the STFTs of s and h by sk[n] and hk[n], respectively, a discretized approximation
of the STFT model associated to (1) is given by

xk[n] ≈ x̃k[n]
.
=

Nh−1
∑

τ=0

sk[n− τ ]hk[τ ], (2)

where n = 1, . . . , N, is a discretized time variable that corresponds to window location, k =
1, . . . , K, denotes the frequency subband and Nh is a parameter of the model associated to the
expected maximum duration of the reverberation phenomenon. The model is built as in [23],
being the approximation due to the use of band-to-band filters only. Later on, the values of
n will be chosen in such a way that the union of the windows’ supports contain the support
of the observed signal, and the values of k in such a way that they cover the whole frequency
spectrum, up to half the sampling frequency.

Now, let us write hk[τ ] = |hk[τ ]|ejφk[τ ]. It is well known ([24]) that the phase angles φk[τ ] are
highly sensitive with respect to mild variations on the reverberation conditions. To overcome
the problems derived from this, we shall proceed (see [16]) treating theK×Nh variables φk[τ ] as
i.i.d. random variables with uniform distribution in [−π, π). Denoting the complex conjugate
by “∗” and the Kronecker delta by δij , the expected value of |x̃k[t]|2 is given by

E|x̃k[n]|2 = E
∑

τ,τ ′

sk[n− τ ]s∗k[n− τ ′]hk[τ ]h
∗
k[τ

′]

= E
∑

τ,τ ′

sk[n− τ ]s∗k[n− τ ′] |hk[τ ]| ejφk[τ ] |hk[τ
′]| e−jφk[τ

′]

=
∑

τ,τ ′

sk[n− τ ]s∗k[n− τ ′] |hk[τ ]| |hk[τ
′]|Eej(φk[τ ]−φk[τ

′])

=
∑

τ,τ ′

sk[n− τ ]s∗k[n− τ ′] |hk[τ ]| |hk[τ
′]| δττ ′

=
∑

τ

|sk[n− τ ]|2 |hk[τ ]|2.

Note that the [−π, π) interval choice for φk[τ ] is arbitrary, since this result holds for any
2π−length interval. Finally, let us define Sk[n]

.
= |sk[n]|2, Hk[n]

.
= |hk[n]|2 and Xk[n]

.
=

E|x̃k[n]|2. Then, our model reads

Xk[n] =
∑

τ

Sk[n− τ ]Hk[τ ], (3)

and the square magnitude of the observed spectrogram components can be written as

Yk[n] = Xk[n] + ǫk[n], (4)

where ǫk[n] denotes the representation error. As shown in [16], this model is equivalent to a
convolutive NMF ([25]) with diagonal basis. In the next section, we derive a cost function in
order to find an appropriate convolutive representation that allows us to isolate the components
Sk[n].
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3 A Bayesian approach

In the following, we will use a Bayesian approach to derive a cost function which we will then
minimize in order to obtain our regularized solution. Let us begin by assuming, for every k,
ǫk[n], Sk[n], Hk[n] are independent random variables, also independent with respect to k. Also,
let us denote by S, Y,X ∈ R

K×N and H ∈ R
K×Nh the non-negative matrices whose (k, n)-th

elements are Sk[n], Yk[n], Xk[n] and Hk[n], respectively.
More often than not, some type of “patterns” can be observed in a speech spectrogram,

mainly due to the harmonics of speech (see Figure 1). However, they seem to be strongly
speaker and phoneme dependent, and although it would be interesting to try to model this
correlation, this is not viable in a blind setting (since no a-priori information is available for
estimating it). Besides, it is worth mentioning that the frequency independency assumption
has shown to lead to quite good results.

As it is customary ([16]), for the representation error, we assume ǫk[n] ∼ N (0, σ2
k), where

σk > 0 is an unknown parameter, and the variables are non-correlated with respect to n. Hence,
it follows from (4) that the conditional distribution of Y given S and H (i.e. the likelihood) is
given by

πlike(Y |S,H) =

K
∏

k=1

N
∏

n=1

1√
2πσk

exp

(

−(Yk[n]−Xk[n])
2

σ2
k

)

.

Note that, strictly speaking, in the above model for the representation error, the non-
negativity constraint on the components of Y is not enforced. This is done mainly for simplicity
reasons. It is rooted in the fact that this distribution provides a good model for the data Y ; thus,
the probability of one of its components be negative is very small, and enforcing non-negativity
would unnecessarily complicate the model.

Clean Spectrogram
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Figure 1: Spectrograms for a clean speech signal (left) and the corresponding reverberant
speech signal (right). The clean signal, from the TIMIT database, was sampled at 16 [kHz],
and corresponds to a female voice uttering the sentence ’She had your dark suite in greasy wash
water all year.’ The signal was artificially made reverberant by convolution with a room impulse
response, with a reverberation time of 600 [ms], to produce the reverberant spectrogram. Both
spectrograms were made using Hamming windows with 512 samples and an overlapping of 256.

Let us now turn our attention to S. Figure 1 depicts the log-spectrograms for a clean signal
and its reverberant version. As it can be observed, while the spectrogram of the clean signal is
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somewhat sparse, the one corresponding to the reverberant signal presents a smoother or more
diffuse structure. The presence of discontinuities in the spectrogram of the clean signal can be
favored by assuming S follows a generalized non-negative Gaussian distribution ([26]). Thus,

πprior(S) =

{

∏K
k=1

∏N
n=1

1
Γ(1+1/p)bk

exp
(

−Sk[n]
p

bp
k

)

Sk[n] ≥ 0,

0 Sk[n] < 0,

where p ∈ (0, 2) is a prescribed parameter and bk > 0 is unknown.
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RIR spec. Overlapping = 128
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RIR spec. Overlapping = 256
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Figure 2: Log-spectrograms for an artificial 16 [kHz] RIR signal with reverberation time of
600 [ms]. The spectrograms were made using a hamming window length of 512 and different
overlappings.

In regards to H , although no general conditions are expected on its individual components,
we do expect its first order time differences to exhibit a certain degree of regularity (see Figures
2 and 3). It can be observed that the log-spectrograms consist of a high-energy vertical band
to the left, that corresponds to the linear impulse response, and some straight lines of less
energy that correspond to the non-linear distortions produced by the increase on the rate at
which the echoes reach the receiver ([27]). In fact, if windows are set close enough relative to the
duration of the reverberation phenomenon, then consecutive time components of H will capture
overlapped information, which along with the exponential decay characteristic of the RIR ([28])
accounts for a somewhat smooth structure. Therefore, we define the time differences matrix
V ∈ R

K×(Nh−1), with components Vk[n]
.
= Hk[n]−Hk [n− 1] ∀n = 1, . . . , Nh−1, k = 1, . . . , K.

The regularity of these variations is contemplated by assuming V follows a normal distribution
with zero mean and variance η2k:

πprior(V ) =

K
∏

k=1

Nh
∏

n=2

1√
2πηk

exp

(

−Vk[n]
2

η2k

)

.

Let Hk ∈ R
Nh be the transpose kth-row of H , L ∈ R

Nh−1×Nh be the matrix such that LHk = Vk

and πprior(H) the prior induced from πprior(V ) through this relation. Using Bayes’ theorem,
the a posteriori joint distribution of S and H conditioned to Y satisfies

πpost(S,H|Y ) ∝ πlike(Y |S,H)πprior(S)πprior(H). (5)
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Figure 3: Signals corresponding to the 4[kHz] frequency subband of RIR spectrograms
H129[n], n = 1, . . . , N , with window length 512 and different overlappings. The sampling
frequency is of 16[kHz] and the reverberation time is 600 [ms]. The signals show certain regu-
larity, which increases with the window overlapping.

Our goal is to find Ŝ and Ĥ that are representative of the a posteriori distribution (5). Although
the immediate instinct might be to compute the expected value, there are quite a few other
ways to proceed, with different degrees of reliability and complexity. In the light of the assumed
distributions and the high dimensionality of the problem, the maximum a posteriori (MAP)
estimator is a reasonable choice in this case. Note that maximizing (5) is tantamount to
minimizing − log πpost(S,H|Y ). If we denote by Sk, Yk, Xk ∈ R

N , Hk ∈ R
Nh and Vk ∈ R

Nh−1

the (transposed) rows of S, Y,X,H and V , then

J(S,H)
.
= − log πpost(S,H|Y ) (6)

=

K
∑

k=1

[

1

σ2
k

||Yk −Xk||22 +
1

b
p
k

∑

n

Sk[n]
p +

1

η2k
||LHk||22

]

+ C,

where C is a constant independent of S and H . Our goal is to minimize J , subject to the non-
negativity restrictions Sk[n] ≥ 0 ∀k = 1, . . . , K, n = 1, . . . , N , Hk[n] ≥ 0 ∀k = 1, . . . , K, n =
1, . . . , Nh.

Although it is likely that different frequency sub-bands be affected differently by the RIR,
with the reverberant spectrogram being the only available data for a blind approach, there will
always be an arbitrary frequency dependent scaling ambiguity. In this way, it is impossible to
exactly recover the original scaling of the source. Since given this fundamental indeterminacy,
any frequency bin amplitude would be arbitrary in some sense, we have imposed the constraint
||Sk||∞ = ||Yk||∞ ∀k, which means that the maximum values shall remain equal for every
frequency bin (this is similar to the minimum distortion principle ([29]) applied in frequency
domain blind source separation). Additionally, we have experimentally found this constraint
to be adequate.
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3.1 Model parameters

Before proceeding to minimize equation (6), some comments on the model parameters {σk, bk, ηk, p}k=1,...,K

are in order.
The value of the exponent p ∈ (0, 2) is related to the degree of sparsity of S. While small

values of p will promote high sparsity, choosing p ≈ 2 will yield low sparsity.
Notice that for any given k ∈ {1, . . . , K}, the variance of the representation error is pro-

portional to the energy (the square of the L2-norm) of the corresponding frequency sub-band.
That is, we choose σ2

k
.
= σ2

0‖Yk‖2, where σ0 is a constant independent of k. In a similar fashion,
we choose bk

.
= b0‖Yk‖. Finally, since we have no evidence of any relationship between the

frequency sub-band and the variations of H , we choose ηk
.
= η0, independent of the frequency

bin. Furthermore, since the functional (6) can be minimized separately in each frequency bin,
the selection of the parameters is simplified by first choosing p and then the ratios σ2

0/b
p
0 and

σ2
0/η

2
0.

4 Hypermodel approach

To better deal with uncertainty on some of the parameter values, the previous model can be
extended to a hypermodel by considering those parameters as random variables. For instance,
due to the aforementioned uncertainty on the variance of H , we shall assume that the standard
deviations of Hk, ηk > 0, k = 1, . . . , K, are realizations of i.i.d. random variables with gamma
distribution. That is,

πhyper(ηk)
.
=

ηα−1
k

βαΓ(α)
exp

(

−ηk
β

)

,

where α > 1 and β > 0 are shape and scale parameters, respectively. Using this hyperprior,
the new functional (the negative logarithm of the a-posteriori distribution) turns out to be:

Jhyp(S,H, η)
.
= − log πpost(S,H, η|Y ) (7)

=
K
∑

k=1

[

1

σ2
k

||Yk −Xk||22 +
1

b
p
k

∑

n

Sk[n]
p +

1

η2k
||LHk||22

]

+

K
∑

k=1

[

(Nh + 1− α) log ηk +
ηk

β

]

+ C,

where η denotes the vector whose components are ηk, k = 1, . . . , K and C is a constant inde-
pendent of S,H, and η.

In what follows, we focus on minimizing the functionals J and Jhyp defined by (6) and (7),
respectively.

5 Iterative minimization algorithms

5.1 Minimizing J

We begin by introducing a method for minimizing J , defined in (6). Later on, we will show
that by adding an extra step, the same method can be used for minimizing Jhyp.
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5.1.1 Auxiliary functions

The algorithm is constructed based on an auxiliary function technique, following similar ideas
as those in [16]. Minimization procedures based in this kind of techniques are also known as
Majorization-Minimization algorithms ([30]).

Let Ω ⊂ R and f : Ω→ R
+
0 . Then, g : Ω× Ω→ R

+
0 is called an auxiliary function for f if

(i) g(w,w) = f(w) and (ii) g(w,w′) ≥ f(w), ∀w,w′ ∈ Ω. (8)

Let w0 ∈ Ω be arbitrary and let

wj .
= argmin

w
g(w,wj−1). (9)

With this definition, it can be shown ([31]) that the sequence {f(wj)}j is non-increasing. We
intend to use this property as a tool for alternatively updating the matrices H and S. Let us
begin by fixing H = H ′, where H ′ is an arbitrary K ×Nh matrix. Then, an auxiliary function
for J(S,H ′) (as defined in (6)) with respect to S is given by

gs(S, S
′)

.
=
∑

k,n,τ

1

σ2
k

S ′
k[τ ]H

′
k[n− τ ]

X ′
k[n]

(

Yk[n]−
Sk[τ ]

S ′
k[τ ]

X ′
k[n]

)2

+
∑

k

1

η2k
||LH ′

k||22

+
∑

k,n

1

bpk

(p

2
S ′
k[n]

p−2Sk[n]
2 + S ′

k[n]
p − p

2
S ′
k[n]

p
)

, (10)

where X ′
k[n] =

∑

τ S
′
k[n− τ ]H ′

k[τ ]. The proof can be found in A.
In an analogous way, it can be shown that if we let S = S ′ be fixed, where S ′ is an arbitrary

K ×N matrix, then

gh(H,H ′)
.
=
∑

k,n,τ

1

σ2
k

S ′
k[n− τ ]H ′

k[τ ]

X ′
k[n]

(

Yk[n]−
Hk[τ ]

H ′
k[τ ]

X ′
k[n]

)2

+
∑

k

1

bpk
||S ′

k||pp +
∑

k

1

η2k
||LHk||22

is an auxiliary function for J(S ′, H) with respect to H .
Having defined auxiliary functions, we will use the updating rule derived from (9) to build

an algorithm for iteratively updating matrices S and H in order to minimize J . Notice this
requires minimizing gs and gh with respect to the updating variables, but since gs is quadratic
with respect to S and gh is quadratic with respect to H , we can simply use the first order
necessary conditions in both cases. From this point on, in the context of the iterative updating
process, S ′ and H ′ will refer not to arbitrary nonnegative matrices, but to those estimations of
S and H obtained in the immediately previous step.

5.1.2 Updating rule for S

Firstly, we shall derive an updating rule for Sk[τ ]. That is, we wish to minimize gs w.r.t. S.
The first order necessary condition on gs yields
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0 =
∂gs(S, S

′)

∂Sk[τ ]

=− 2
∑

n

1

σ2
k

H ′
k[n− τ ]

(

Yk[n]−
Sk[τ ]

S′
k[τ ]

X ′
k[n]

)

+
p

b
p
k

S′
k[τ ]

p−2Sk[τ ]

=−
∑

n

H ′
k[n− τ ]Yk[n] +

Sk[τ ]

S′
k[τ ]

∑

n

H ′
k[n− τ ]X ′

k[n] +
pσ2

k

2bpk
S′
k[τ ]

p−2Sk[τ ]

=− S′
k[τ ]

∑

n

H ′
k[n− τ ]Yk[n] +

(

∑

n

H ′
k[n− τ ]X ′

k[n] +
pσ2

k

2bpk
S′
k[τ ]

p−1

)

Sk[τ ],

which easily leads to the multiplicative updating rule

Sk[τ ] = S ′
k[τ ]

∑

n H
′
k[n− τ ]Yk[n]

∑

n H
′
k[n− τ ]X ′

k[n] +
pσ2

k

2bp
k

S ′
k[τ ]

p−1
.

In order to avoid the aforementioned scale indeterminacy, every updating step is to be followed
by scaling Sk so that its ℓ∞ norm coincides with that of the observation Yk.

5.1.3 Updating rule for H

In order to state an updating rule for H , we begin by defining the diagonal matrices Ak, Bk ∈
R

Nh×Nh, whose diagonal elements are Ak
τ,τ

.
=
∑

n S
′
k[n − τ ]X ′

k[n] and Bk
τ,τ

.
= H ′

k[τ ], and the
vector ζk ∈ R

Nh with components ζkτ =
∑

n S
′
k[n− τ ]Yk[n].

It can be shown (see B) that with these definitions, H can be updated by solving the linear
system

(

Ak +
σ2
k

η2k
BkLTL

)

Hk = Bkζk. (11)

Let us notice that under the assumption that the diagonal elements of Ak and Bk are strictly
positive, and since LTL is positive-semidefinite, (Bk)−1Ak + λh,kL

TL is positive-definite, and
hence the linear system has a unique solution. Furthermore, this implies that the solution is
non-negative. The assumption of Ak

τ,τ > 0 is adequate, since these elements correspond to the
discrete convolution of S ′

k and X ′
k. Although the validity of the hypothesis over Bk

τ,τ is not so
clear, in practice, the matrix in system (11) has turned out to be non-singular. Nonetheless,
Hk can be computed as the best approximate solution in the least-squares sense. Solving this
Nh×Nh linear system entails no challenge, since Nh is usually chosen relatively small, depending
on the window step and the reverberation time.

5.2 Minimizing Jhyp

It follows immediately from the fact that the additional terms on equation (7) with respect to
equation (6) do not depend on S nor H , that the minimization steps derived for J are suitable
for Jhyp as well. Thus, it only remains to minimize Jhyp with respect to η, which can be shown
(see C) to be equivalent to solving the following equation:

η3k + (Nh + 1− α)β η2k − 2β||LHk||22 = 0,

for every k = 1, . . . , K. This can be done either explicitly by means of the general solution of
the cubic equation, or by an appropriate iterative method.
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5.3 Final considerations

All steps of the dereverberation process are stated in Algorithm 1. The updating step in line
22 only concerns functional Jhyp, and it must be skipped when minimizing J .

Algorithm 1 Bayesian dereverberation

1: Initializing

2: S ← Y
3: Hk[n]← exp(−n) ∀k = 1 . . .K, n = 1 . . .N
4: MAIN LOOP

5: for i = 1 . . .maxiter
6: Xk[n]←

∑

τ

Sk[n− τ ]Hk[τ ] ∀k = 1 . . .K, n = 1 . . . N

7: for k = 1 . . .K
8: for τ = 1 . . .N

9: Sk[τ ]← Sk[τ ]

∑

nHk[n− τ ]Yk[n]
∑

nHk[n− τ ]Xk[n] +
pσ2

k

2bp
k

Sk[τ ]p−1
.

10: end for

11: Sk ← Sk
‖Yk‖∞
‖Sk‖∞

.

12: end for

13: for k = 1 . . .K
14: Build the diagonal matricesAk, Bk ∈ R

Nh×Nh :
15: Ak

τ,τ =
∑

n Sk[n− τ ]Xk[n],
16: Bk

τ,τ = Hk[τ ].
17: Build the vector ζk :
18: ζkτ =

∑

n Sk[n− τ ]Yk[n]
19: Solve for Hk :

20: (Ak +
σ2
k

η2k
BkLTL)Hk = Bkζk.

21: if Using the hypermodel (Jhyp)
22: Solve for ηk : η3k + (Nh + 1− α)β η2k − 2β||LHk||22 = 0.
23: end if

24: end for

25: if ‖S − S ′‖F ≤ δ
26: return

27: end if

28: end for

In the Initialization Step we define the clean spectrogram S equal to the observation, which
is natural since in a way they both correspond to the same signal, and Hk as a vector with
exponential time decay, which is an expected characteristic of a RIR. Note that with this initial-
ization all the variables result non-negative. Under this condition, it is easy to see that all the
updating rules maintain non-negativitiy, thus complying with the aforementioned restrictions
Sk[n] ≥ 0 ∀k = 1, . . . , K, n = 1, . . . , N , and Hk[n] ≥ 0 ∀k = 1, . . . , K, n = 1, . . . , Nh..
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Finally, we set the stopping criterion over the decay of the norm of two consecutive approx-
imations of S. This has shown to work quite well, although other stopping criteria might be
considered.

Results to illustrate the performance of the proposed algorithms are presented in the next
section.

6 Experimental results

For the experimental results we used both simulated and recorded reverberant signals. While
a large number of artificially reverberant signals were produced to get statistically significant
results, recorded signals were used to corroborate the performance of the methods using real
data.

6.1 Experiments with simulations

For the experiments, we took 110 speech signals from the TIMIT database ([32]), recorded at 16
kHz, and artificially made them reverberant by convolution with impulse responses generated
with the software Room Impulse Response Generator1, based on the model in [33]. Each signal
was degraded under different reverberation conditions: three different room sizes, each with
three different microphone positions and four different reverberation times, which gives us a
total of 3960 signals for testing. Table 1 gives account of the room dimensions and source and
microphone positions that were chosen.2

Table 1: Simulated room settings
Length Width Height

Room 1 dimensions 5.00 [m] 4.00 [m] 6.00 [m]
Room 2 dimensions 4.00 [m] 4.00 [m] 3.00 [m]
Room 3 dimensions 10.0 [m] 4.00 [m] 5.00 [m]
Source position 2.00 [m] 3.50 [m] 2.00 [m]
Microphone 1 position 2.00 [m] 1.50 [m] 1.00 [m]
Microphone 2 position 2.00 [m] 2.00 [m] 1.00 [m]
Microphone 3 position 2.00 [m] 2.00 [m] 2.00 [m]

In order to avoid preprocessing, the choice of the probabilistic model parameters was made
a priori by means of empirical rules, based upon signals from a different database. This is
supported by the fact that the parameters were observed to be rather robust with respect to
variations of the reverberation conditions, and hence they were chosen simply as σ2

k = ‖Yk‖2,
ηk = 1 and bk = ‖Yk‖ × 107. For the case of minimizing functional Jhyp, we set α = 102 and
β = 10−2, so the expected value for ηk is αβ = 1, for the comparison between the Bayesian
model and Hypermodel to be fair. The rest of the model parameters were chosen as specified
in Table 2.

Let us point out that the choice of Nh was done as to allow H to capture early reverberation
while precluding overlapped representations. In the first place, it is desirable for H to represent
the RIR along the full Early Decay Time (EDT), the time period in which the reverberation

1https://github.com/ehabets/RIR-Generator
2A web demo can be found in sinc.unl.edu.ar/web-demo/blindder/
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Table 2: Model parameter values
p Nh win. window size win. overlap. δ max. iter.
1 15 Ham. 512 samples 256 samples ‖Y ‖F × 10−3 20

phenomenon alters the clean signal the most, so its effect can be nullified. On the other hand,
if we were to choose Nh too large, it might lead certain similarities in the observation Y within
a fixed frequency range to be represented as echoes from high energy components of S. It is
worth mentioning, however, that the performance of our dereverberation method has shown no
high sensitivity with respect to the choice of Nh.

In order to evaluate the performance of our models, using both functionals J and Jhyp, we
made comparisons against three state-of-the-art methods that work under the same conditions.
Two of the methods we used were those proposed by Kameoka et al in [16] and the mixed
penalization method proposed in [17], which are not only recent but in a sense precursors to
the method proposed in this article. Also, we included the method proposed by Wisdom et al

in [12], with a window length of 2048, because of its great performance in the Reverb Challenge
([34]).

To measure performance, following [35], we made use of the frequency weighted segmen-
tal signal-to-noise ratio (fwsSNR) and cepstral distance. Furthermore, we also measured the
speech-to-reverberation modulation energy ratio (SRMR, [36]), which has the advantage of
being non-intrusive (it does not use the clean signal as an input). The results for each per-
formance measure are stated in Table 3, and depicted in Figures 4- 6, classified in function
of the reverberation times: 300[ms], 450[ms], 600[ms] and 750[ms]. Notice that for the cases
of fwsSNR and SRMR, higher values correspond to better performance, while for the cepstral
distance, small values indicate higher quality.

Table 3: Mean and standard deviation (between parenthesis) of performance measures for each
method, using simulations. Best results are shown in boldface.

Measure fwsSNR
Cepstral
Dist.

SRMR

Reverber-
ant

4.499 (2.73) 4.358 (0.75) 2.924 (1.48)

Kameoka 4.203 (2.52) 4.836 (0.62) 1.928 (0.78)
Mixed Pen 5.414 (1.55) 4.723 (0.47) 2.550 (0.98)
Wisdom 5.296 (2.35) 4.592 (0.61) 3.770 (1.91)

Bayesian
6.048

(2.32)
4.137

(0.55)
4.168 (1.58)

Hyper-
model

5.954 (2.20) 4.144 (0.52)
4.315

(1.60)

Table 3 shows that the results obtained using the Bayesian methods with functionals J
and Jhyp are significantly better (p < 0.01) than those produced by the other methods for
all the considered performance measures. Also, Figures 4-6 clearly show that in all cases
the improvement is more evident for larger reverberation times, specially for the fwsSNR and
the Cepstral Distance. Furthermore, Figure 5 shows that no competing method is able to
reduce the Cepstral Distance for a reverberation time of 300[ms]. This most likely occurs
because the reverberation time is too short and therefore the introduced distortion, when
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reverberation time (s)

0.3 0.45 0.6 0.75
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fwsSNR

Reverberant signal

Kameoka

Mix. Pen.

Wisdom

Bayesian

Bayesian Hyp

Figure 4: Mean and standard deviations of fwsSNR for different reverberation times.

doing dereverberation, cancels out the potential gains. Yet, for larger reverberation times, our
method does produce a significant improvement as measured by the Cepstral Distance. It is
timely to mention that all the differences between the performance of our methods and every
competing one hold statistical significance (p < 0.01) for every reverberation time (as depicted
in Figures 4-6), with the only exception of the SRMR with a 300[ms] reverberation time, where
our methods produce no significant improvement with respect to Wisdom’s.

6.2 Experiments with recorded signals

For this experiment we have used real recordings obtained in our own office rooms, with a
sampling frequency of 16[kHz]. Two male and two female speakers were randomly selected
from the TIMIT database, and 10 speech signals for each were played in two different rooms.
The dimensions of the fully furnished rooms and microphone positions are specified in Table
4. The reverberation times, measured using sine sweeps ([37]), were found to be 460[ms] on
the first room and 440[ms] on the second. It is timely to mention that for the recordings to be
realistic, they were made during standard office hours, with people working in nearby offices
(although no people were present in the recording room), and some of the computers and air
conditioning were left on.

The model parameters were chosen equal to those used for the experiment with simulations,
except for the variance of the distribution of S, that was changed to cope with the considerably
high noise level. The new choice was simply bk = 10‖Sk‖/σn, where σn is the standard deviation
of the noise, estimated from the first 1000 samples (61[ms]) of the recordings. The parameters
for the competing methods were properly adjusted to the noise level as well.
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reverberation time (s)

0.3 0.45 0.6 0.75
0
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Cepstral Distance

Reverberant signal

Kameoka
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Wisdom

Bayesian

Bayesian Hyp

Figure 5: Mean and standard deviations of Cepstral Distance for different reverberation times.

Results are depicted in Table 5. Once again, we see that the Bayesian methods outperform
the other methods in terms of the fwsSNR and SRMR, although Wisdom’s method performs
slightly better (but not significantly, p > 0.01) in terms of Cepstral Distance.

Table 5: Mean and standard deviation (between parenthesis) of performance measures for each
method. Best results are shown in boldface.

Measure fwsSNR
Cepstral
Dist.

SRMR

Reverber-
ant

5.411 (3.23) 5.521 (0.87) 2.755 (0.75)

Kameoka 6.041 (3.19) 5.125 (0.68) 2.126 (0.48)
Mixed Pen 7.089 (3.19) 5.735 (0.79) 2.45 (0.58)

Wisdom 6.241 (3.60)
4.640

(0.51)
3.227 (0.77)

Bayesian 8.608 (2.83) 4.839 (0.47) 4.860 (1.13)
Hyper-
model

8.660

(2.92)
4.824 (0.41)

4.878

(1.14)

6.3 Computing performance

Finally, we also compared the computing performance of the aforementioned methods using
the TIMIT database of the first experiment. The examples were run using MatLab in a PC
with an Intel Core i7-2600k CPU @3.4GHz×8, with 8Gb of RAM. The CPU-times for each
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Figure 6: Mean and standard deviations of SRMR for different reverberation times.

method are depicted in Table 6, where it can be seen that although not as fast as the Mixed
Penalization method, it is twice as fast as the closest competing method in terms of restoration
quality. Finally, it is appropriate to mention that the speed of our method could be further
improved using parallel computing. This is due to the fact that in our algorithm (just as in
Kameoka’s) the minimization can be performed simultaneously in every frequency bin.

Table 6: Mean CPU time for dereverberation with each algorithm.

Method
Kameoka

Mixed
Pen

Wisdom Bayesian Hyper.

CPU
time

7.61[s] 4.15 [s] 11.14[s] 5.47[s] 5.58[s]

7 Conclusions

In this work a new blind dereverberation method for speech signals based on a Bayesian ap-
proach over a convolutive NMF representation of the spectrograms was introduced and tested.
This includes a basic Bayesian model as well as a model with hyperpriors.

Results show the new introduced method is faster and outperforms the others in terms of
fwsSNR and SRMR, and, moreover, it is comparable to the best of those in terms of Cepstral
Distance. A significant improvement in performance stands out for high reverberation times.
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Table 4: Office rooms settings
Length Width Height

Room 1 dimensions 4.15 [m] 3.00 [m] 3.00 [m]
Source 1 position 3.60 [m] 1.50 [m] 1.50 [m]
Microphone 1 position 1.10 [m] 1.50 [m] 1.50 [m]
Room 2 dimensions 5.85 [m] 4.55 [m] 3.00 [m]
Source 2 position 1.10 [m] 1.50 [m] 1.50 [m]
Microphone 2 position 1.10 [m] 4.00 [m] 1.50 [m]

It is also worth mentioning that the proposed algorithm results fast enough to be considered
for performing on-line dereverberation, endeavor that we plan to engage on in future work.

There is certainly much room for further improvement. Among others, the use of other
prior distributions depending on a-priori information, the introduction of time variability, and
exploring the use of other time-frequency representations analogous to STFT that could help
to improve the obtained restorations.
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A Proof of the fact that gs is an auxiliary function for J

We want to prove that gs, defined as in (10), is an auxiliary function for J , defined in (6). That
is, we must show that gs complies with both conditions stated in (8) .

The equality condition (i) is rather straightforward. In fact,

gs(S, S) =
∑

k,n,τ

1

σ2
k

Sk[τ ]H
′
k[n− τ ]

∑

ν Sk[ν]H
′
k[n− ν]

(

Yk[n]−
Sk[τ ]

Sk[τ ]

∑

ν

Sk[ν]H
′
k[n− ν]

)2

+
∑

k

1

η2k
||LH ′

k||22 +
∑

k,n

1

b
p
k

(p

2
Sk[n]

p−2Sk[n]
2 + Sk[n]

p − p

2
Sk[n]

p
)

=
∑

k,n,τ

1

σ2
k

Sk[τ ]H
′
k[n− τ ]

∑

ν Sk[ν]H
′
k[n− ν]

(

Yk[n]−
∑

ν

Sk[ν]H
′
k[n− ν]

)2

+
∑

k

1

η2k
||LH ′

k||22 +
∑

k,n

1

b
p
k

Sk[n]
p

=
∑

k,n

1

σ2
k

(

Yk[n]−
∑

ν

Sk[ν]H
′
k[n− ν]

)2

+
∑

k

1

η2k
||LH ′

k||22 +
∑

k,n

1

b
p
k

Sk[n]
p

=J(S,H ′).
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To prove condition (ii) in (8) we begin by defining

Pk,n
.
=
∑

τ

S ′
k[τ ]H

′
k[n− τ ]

X ′
k[n]

(

Yk[n]−
Sk[τ ]

S ′
k[τ ]

X ′
k[n]

)2

,

Rk,n
.
=(Yk[n]−

∑

τ

Sk[τ ]H
′
k[n− τ ])2,

and Q : R+ → R such that Q(x)
.
= p

2
xp−2Sk[n]

2 + xp − p
2
xp. With these definitions, we can

write

gs(S, S
′) =

∑

k

(

∑

n

(

1

σ2
k

Pk,n +
1

bpk
Q(S ′

k[n])

)

+
1

η2k
||LH ′

k||22

)

,

and

J(S,H ′) =
∑

k

(

∑

n

(

1

σ2
k

Rk,n +
1

bpk
Sk[n]

p

)

+
1

η2k
||LH ′

k||22

)

.

Hence, to prove that gs(S, S
′) ≥ J(S,H ′) ∀S, S ′ it is sufficient to show that Pk,n ≥ Rk,n and

Q(S ′
k[n]) ≥ Sk[n]

p ∀n = 1, . . . , N, k = 1, . . . , K. In fact,

Pk,n −Rk,n =
∑

τ

S′
k[τ ]H

′
k[n− τ ]

X ′
k[n]

(

Yk[n]−
Sk[τ ]

S′
k[τ ]

X ′
k[n]

)2

− (Yk[n]−
∑

τ

Sk[τ ]H
′
k[n− τ ])2

=
∑

τ

H ′
k[n− τ ]Sk[τ ]

2X ′
k[n]

S′
k[τ ]

−
(

∑

τ

Sk[τ ]H
′
k[n− τ ]

)2

=
∑

τ,ν

H ′
k[n− τ ]Sk[τ ]

2H ′
k[n− ν]S′

k[ν]

S′
k[τ ]

−
∑

τ,ν

Sk[τ ]H
′
k[n− τ ]Sk[ν]H

′
k[n− ν]

=
∑

τ,ν

(

H ′
k[n− τ ]Sk[τ ]

2H ′
k[n− ν]S′

k[ν]

S′
k[τ ]

− Sk[τ ]H
′
k[n− τ ]Sk[ν]H

′
k[n− ν]

)

=
∑

τ 6=ν

(

H ′
k[n− τ ]Sk[τ ]

2H ′
k[n− ν]S′

k[ν]

S′
k[τ ]

− Sk[τ ]H
′
k[n− τ ]Sk[ν]H

′
k[n− ν]

)

=
∑

τ<ν

H ′
k[n− τ ]H ′

k[n− ν]

(

Sk[τ ]
2S′

k[ν]

S′
k[τ ]

− 2Sk[τ ]Sk[ν] +
Sk[ν]

2S′
k[τ ]

S′
k[ν]

)

=
∑

τ<ν

H ′
k[n− τ ]H ′

k[n− ν]

S′
k[ν]S

′
k[τ ]

(

Sk[τ ]S
′
k[ν]− Sk[ν]S

′
k[τ ]
)2 ≥ 0.

To prove that Q(S ′
k[n]) ≥ Sk[n]

p, we begin by noting that Q ∈ C∞(R+). Then, the first
order necessary condition for Q yields

0 =
∂Q

∂x
=

p(p− 2)

2
xp−3Sk[n]

2 + pxp−1 − p2

2
xp−1 =

p(p− 2)

2
xp−1(x−2Sk[n]

2 − 1),

meaning the only point at which the derivative of Q equals zero is at x = Sk[n]. Furthermore,
∂2

∂x2Q(Sk[n]) = Sk[n]
p−2(2p− p2) > 0 ∀p ∈ (0, 2), meaning that Q(Sk[n]) = Sk[n]

p is the global
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minimum of Q. This yields

gs(S, S
′) =

∑

k

(

∑

n

(

1

σ2
k

Pk,n +
1

bpk
Q(S ′

k[n])

)

+
1

η2k
||LH ′

k||22

)

≥
∑

k

(

∑

n

(

1

σ2
k

Rk,n +
1

bpk
Sk[n]

p

)

+
1

η2k
||LH ′

k||22

)

= J(S,H ′).

�

B Derivation of updating rule for H

In order to derive the updating rule for H , we shall write gh as a function of the transposed
rows Hk. We begin by noting

gh(H,H ′) =
∑

k,n,τ

1

σ2
k

S ′
k[n− τ ]H ′

k[τ ]

X ′
k[n]

(

Yk[n]−
Hk[τ ]

H ′
k[τ ]

X ′
k[n]

)2

+
∑

k

1

bpk
||S ′

k||pp +
∑

k

1

η2k
||LHk||22

=
∑

k,n,τ

1

σ2
k

S ′
k[n− τ ]H ′

k[τ ]Y
2
k [n]

X ′
k[n]

− 2
∑

k,n,τ

1

σ2
k

S ′
k[n− τ ]Yk[n]Hk[τ ]

+
∑

k,n,τ

1

σ2
k

S ′
k[n− τ ]X ′

k[n]H
2
k [τ ]

H ′
k[τ ]

+
∑

k

1

bpk
||S ′

k||pp +
∑

k

1

η2k
||LHk||22.

Next, we recall the definition of the diagonal matrices Ak, Bk ∈ R
Nh×Nh, whose diagonal

elements are Ak
τ,τ

.
=
∑

n S
′
k[n − τ ]X ′

k[n] and Bk
τ,τ

.
= H ′

k[τ ], and the vector ζk ∈ R
Nh with

components ζkτ =
∑

n S
′
k[n− τ ]Yk[n]. With these definitions, we can write

gh(H,H ′) =
∑

k,n,τ

1

σ2
k

S ′
k[n− τ ]H ′

k[τ ]Y
2
k [t]

X ′
k[n]

− 2
∑

k

1

σ2
k

HT
k ζ

k

+
∑

k

1

σ2
k

HT
k A

k(Bk)−1Hk +
∑

k

1

bpk
||S ′

k||pp +
∑

k

1

η2k
HT

k L
TLHk.

Now, the first order necessary condition for gh with respect to Hk is given by

0 =
∂gh(H,H ′)

∂Hk
= − 2

σ2
k

ζk +
2

σ2
k

Ak(Bk)−1Hk +
2

η2k
LTLHk,

which readily leads to the linear system

(

Ak +
σ2
k

η2k
BkLTL

)

Hk = Bkζk.
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C Updating rule for η

In order to derive the updating rule for ηk, k = 1, . . . , K, we begin by noting that− log πpost(S,H, η|Y ) ∈
C1(0,∞) with respect to ηk, and hence a local minimum must corresponds to a point with
derivative equal to zero. Differentiating (7) with respect to ηk, we obtain

∂

∂ηk
− log πpost(S,H, η|Y ) = − 2

η3k
||LHk||22 +

Nh + 1− α

ηk
+

1

β
.

The first order necessary condition over (7) is thus tantamount to

η3k + (Nh + 1− α)β η2k − 2β||LHk||22 = 0.

By Descartes’ rule, this polynomial has exactly one positive root η0. Since limηk→∞ (− log πpost(S,H, η|
∞ and limηk→0+ (− log πpost(S,H, η|Y )) =∞, then η0 is the global minimizer.
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