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Abstract. Deformable image registration is a fundamental problem in
medical image analysis. During the last years, several methods based on
deep convolutional neural networks (CNN) proved to be highly accurate
to perform this task. These models achieved state-of-the-art accuracy
while drastically reducing the required computational time, but mainly
focusing on images of specific organs and modalities. To date, no work
has reported on how these models adapt across different domains. In
this work, we ask the question: can we use CNN-based registration mod-
els to spatially align images coming from a domain different than the
one/s used at training time? We explore the adaptability of CNN-based
image registration to different organs/modalities. We employ a fully con-
volutional architecture trained following an unsupervised approach. We
consider a simple transfer learning strategy to study the generalisation
of such model to unseen target domains, and devise a one-shot learn-
ing scheme taking advantage of the unsupervised nature of the proposed
method. Evaluation on two publicly available datasets of X-Ray lung
images and cardiac cine magnetic resonance sequences is provided. Our
experiments suggest that models learned in different domains can be
transferred at the expense of a decrease in performance, and that one-
shot learning in the context of unsupervised CNN-based registration is
a valid alternative to achieve consistent registration performance when
only a pair of images from the target domain is available.

1 Introduction

Deformable image registration (DIR) is one of the key problems in medical image
computing. It is a crucial step in numerous image analysis tasks, ranging from
data aggregation for population analysis to atlas based anatomical segmentation.
For more than three decades, the research community has made major efforts
towards developing more accurate and efficient registration methods. DIR has
been modelled through different approaches, ranging from diffusion equations
[15] to probabilistic graphical models [8]. During the last years, we have witnessed
the birth of new image registration methods learned from data. Since image data
became massively available, and computational power grew powerful enough to
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process it, learning-based registration algorithms emerged as an alternative to
traditional approaches based on iterative optimization.

CNN-Based Deformable Image Registration. Recently, several DIR meth-
ods based on deep learning have been proposed [14, 16, 7, 1]. Most of them aim
at learning a function (in the form of a CNN) to predict a spatial transformation
mapping a moving image to a fixed image. These approaches can be categorised
into supervised [14] and unsupervised [16, 7, 1] techniques based on how they
utilise GT deformation fields. Note that, in the context of DIR, the term unsu-
pervised learning refers to the case when no ground-truth annotations such as
deformation fields are required for training. An alternative term that has been
used in [7] to describe this approach is self-supervised DIR, given that learning
is driven by image similarity metrics computed on the input data. In this work,
we will use both terms interchangeably. Regarding supervised methods, since
generating manual ground-truth annotations for DIR is an extremely hard and
time consuming task, most supervised approaches resorted to using simulated
annotations. The main limitation of such approaches is that their capture range
is limited by the ground-truth annotations in the training datasets, which may
not always be realistic.

On the contrary, unsupervised approaches like [16, 7, 1] do not inherit this
limitation. These methods use a differentiable spatial transformer layer [4] to
warp the source image during training, performing end-to-end optimization of a
similarity metric between the deformed source and the target input images. The
resulting CNN learns to predict (in a single forward pass) the transformation
that maximizes such similarity. In this work, we follow a similar unsupervised
approach and explore how it adapts to unseen scenarios where the images to be
registered correspond to a domain different to that used at training time.

Domain Adaptation for CNN-based Deformable Image Registration.
Different from CNN-based methods which learn from data, traditional image reg-
istration is usually performed through iterative optimization of a (dis)similarity
measure. These methods are slower than CNN-based registration, but they are
robust, can be used on unseen domains and work independently of the image res-
olution. Toolboxes like Elastix [6] for example, which use classical iterative image
registration, have been widely applied to align different anatomical structures
and image modalities1. In contrast, most of the aforementioned CNN-based im-
age registration methods were validated only for specific domains such as brain
MRI [7, 1] and cardiac cine-MRI [16]. One of the fundamental questions that still
needs to be addressed to enable the development of more robust and reusable
CNN-based image registration toolboxes is how to adapt such models to new
domains. The recent work [1] shows that, when dealing with multiple datasets of
the same imaged anatomy (where the only difference among them is the machine
used to capture the images or the acquisition parameters), registration models
tailored for a specific dataset outperforms more general models trained on all

1 A complete list of configuration parameters for Elastix can be found in
http://elastix.bigr.nl/wiki/index.php/Parameter file database
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of them. This observation calls for a deeper adaptation study, focusing on more
diverse datasets consisting of different anatomies and modalities. In this work,
we show empirical evidence that such adaptation can be performed
Contributions. We emphasize that the main contributions of this paper are not
related to novel CNN-based architectures for image registration, but to address-
ing a more general question about the adaptability of such models. In that sense,
our contributions are two-fold: (i) we present an explorative study of the perfor-
mance of such models when they are trained, fine-tuned and tested on different
organs/modalities and (ii) we show that a simple one-shot learning strategy can
be used when the only available data is the pair of images to be registered.

2 Materials and Methods

2.1 Datasets and Clinical Context

For validation, we will focus on two clinically relevant applications of image
registration with distinct domains, both in terms of anatomy and modality.

Cardiac Cine-MR Dataset: We employ a simplified version of the Sunny-
brook Cardiac Dataset (SCD) [10]2. It contains 45 cine-MR images (every image
composed of 6 to 12 short-axis (SAX) 2D slices) captured at end-systole (ES)
and end-diastole (ED) time points, amounting to a total of 416 2D images per
cardiac phase. Image registration of 2D slices at different phases is crucial in
many cardiac image analysis tasks, e.g. when generating strain fields to study
left ventricular (LV) (dys)function [9]. After removing 27 slices because of lack of
correspondence, we kept 256 pairs for training and 133 for testing (following the
same test/train folds specified in the SegNetCMR site), where both images in ev-
ery pair correspond to the same spatial location at ED and ES. Image resolution
is 256x256, covering a field of view of 320 mm x 320 mm. The dataset includes
expert annotations for the LV myocardium, which were used for quantitative
evaluation. Image intensities were normalized to range [0,1].

Chest X-Ray Dataset: We used images from the chest X-ray dataset of the
Japanese Society of Radiological Technology (JSRT) [13]. It includes 247 chest
radiographs: 154 with one lung nodule and 93 healthy cases. We generated 247
pairs of images (with resolution 256x256) for registration (199 for training, 48
for testing, randomly split), by using the original image as fixed target and a
left/right reversed version as moving image. In this context, DIR is used to warp
the flipped image when applying a contralateral subtraction (C-Sub) technique
[5], which consists in enhancing nodules in chest images by subtracting their
reversed mirror version from the original. Since here we focus on deformable
registration, images were previously aligned using affine registration [6]. At test
time, we used expert annotations for left and right lungs (included in the dataset)
for quantitative evaluation. Image intensities were normalized to range [0,1].

2 publicly available at https://github.com/mshunshin/SegNetCMR
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2.2 Unsupervised CNN-based Image Registration

Inspired by recent works on unsupervised CNN-based image registration [16, 7,
1], we employ a registration model consisting of two main components. The first
one follows the U-Net architecture [11], taking the concatenated moving M and
fixed F images as input and predicting a deformation field Dl = Ul(M,F ;Θl),
where Ul corresponds to a U-Net like CNN, Θl to the CNN parameters that have
to be learned and l is the down-sampling factor applied to the input images. We
perform down-sampling through an initial average-pooling layer in Dl, where
the pooling size is 2l. Following [3], we reduce the model complexity by imple-
menting skip connections via summations instead of the concatenation originally
proposed by [11]. The second component is a differentiable spatial transformer
module which warps the input moving image M using Dl, producing a warped
image M ◦Dl.

During training, the parameters Θ are learned using stochastic gradient de-
scent (SGD) so that the warped moving image M◦Dl minimizes a particular dis-
similarity measure with respect to F . Since we are dealing with monomodal regis-
tration, the negative of the global normalized cross correlation NCC(M◦Dl,F)
is adopted. NCC is known to perform well for monomodal cases and has been
used in the context of CNN-based registration [7, 1]. A regularization term impos-
ing smoothness constraints is adopted to produce more anatomically plausible
deformation fields. Following [7], we consider the total variation of the deforma-
tion field TV (Dl). Finally, an extra regularization term taking the L2 norm of
Dl is included, resulting in the following loss function to be minimized during
training:

L(M, T ,Dl) = −NCC(M ◦Dl,F) + λ1TV (Dl) + λ2
||Dl||
n

, (1)

where λ1,λ2 are weighting factors for the regularization terms and n is the
number of pixels in the image.

2.3 Fine-tuning and One-shot Learning in the Context of
Unsupervised CNN-based Image Registration

Learning a discriminative classifier or other predictor in the presence of a shift
between training and test distributions is known as domain adaptation [2]. In the
context of DIR, such shift may be due to a change in the image modality, acqui-
sition parameters or the organs being imaged. This is a rather common scenario
for an image registration toolbox: users may download the software and use it
to register a single pair of arbitrary images. In the case of iterative image regis-
tration algorithms like those implemented in Elastix, this is not a problem since
the method will infer the transformation parameters by iteratively minimizing
a similarity measure for the pair of images at hand. However, CNN-based DIR
methods need to be trained before they can predict a deformation field. This
is one of the main drawbacks of learning based image registration: models are
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trained on a source domain, and their performance decreases when being applied
to images from a different target domain (see Section 3 for empirical evidence).

In this work, we focus on the case where the only sample available from
the target domain is the actual pair of images to be registered. As stated before,
this is a rather common scenario for people working in medical image computing,
specially those developing toolboxes which could be used to register arbitrary
images. In this scenario, we explore two alternatives:

1. One-shot domain adaptation: Here the pair of images to be registered
is used to update a model pre-trained using images from a source domain
(different to the target domain). Since we are in an unsupervised setting (in
the sense that our method does not require image annotations at training
time), nothing stops us from using the pair of test images for this update of
the model parameters before registering them. We call this strategy one-shot
domain adaptation by analogy with the concept of one-shot learning where
the aim is to recognize categories based on very few training examples [12].
Such adaptation is performed by simply fine-tuning the pre-trained model.

2. One-shot learning from scratch: In this case, the CNN registration model
is trained from scratch using only the pair of images to be registered and
no pre-trained model. This is possible given the unsupervised nature of the
approach. This scenario resembles the classic non-learning based iterative im-
age registration algorithms, where the transformation parameters are learned
from scratch by minimizing a dissimilarity measure on the pair of images to
be registered. In our case, such parameters will be the CNN itself.

We also include results when fine-tuning a model pre-trained with images
sampled from the target domain, using the pair of images to be registered.
Clearly, this is not a case of domain adaptation, since the model has already
been trained with images from the target domain. However, we include it to
evaluate if fine-tuning an already good model following a one-shot strategy leads
to even more accurate results. Finally, in terms of time restrictions, we consider
two scenarios: (i) having real time constraints: the models are trained/fine-tuned
for only 50 iterations (0.5s in GPU) and (ii) no time constraints: the models are
trained/fine-tuned until convergence using the pair of images to be registered. 3

3 Results and discussion

In this section we present the results for the alternative studies discussed in
the previous section. We use the mean of absolute differences (MAD) between
warped moving image and fixed target as an indicator of the quality of the
registration since we are dealing with monomodal cases. Moreover, additional
indicators reflecting complementary information (namely Dice coefficient (DSC)

3 Fine-tuning for 50 iterations takes only 0.5s on GPU. When training from
scratch/fine-tuning until convergence, we update the model for 3000 iterations lead-
ing to about 30s per registration case.
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Fig. 1: Experimental validation when fine-tuning/training from scratch using a
one-shot strategy. We report results for models pre-trained with images from the
target domain (rows a, b, c), from the source domain (rows d, e, f) and without
pre-training (rows g, h). See Section 3 for a complete analysis of these results.

and contour mean distance (CMD)) based on warped moving and fixed seg-
mentations are also reported.4 Results are presented in Fig. 1, considering the
cardiac MR images as target domain and chest X-ray as source, and vice versa.
We use down-sampling factor l = 2 in both cases, since it resulted to be the best
performing level in our initial experiments.5 Let us analyse Fig. 1 in detail.

- Baselines: For comparison, we include results before (row (j)) and after reg-
istration using the state-of-the-art Elastix toolbox [6] (row (i)) 6. At first sight,
we can observe that models trained using images from the target domain (row
(c)) achieve performance equivalent (and even better) to that of Elastix, signifi-
cantly outperforming models trained on a different source domain (f). Note that
in these experiments, training is performed from scratch as in previous works [1]
(i.e., no one-shot strategy is applied).

4 We used Pyhton and Tensorflow for implementation. Experiments were run in a
machine with CPU Intel Core i7-7700, 64GB of RAM and NVidia Titan XP GPU.
In order to encourage reproducible research, the project source code and Elastix
parameter files can be downloaded from: https://gitlab.com/eferrante/.

5 The CNN-based models take 0.06s on GPU and 0.08 s on CPU to register a pair
of images, while Elastix 2.47s. In all the experiments we used Adam optimization,
with LR = 1e-4 and λ1 = λ2=1e-6

6 Elastix parameters were chosen by grid search using the training data and are avail-
able online in our project website.
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- One-shot domain adaptation: In this case, we fine-tune a model pre-trained
on the source domain using just the pair of images to be registered (from a
different target domain)7. Note that, in order to simulate the one-shot scenario
(i.e. just a single pair of images from the target domain is available), we restore
the original pre-trained model before performing one-shot domain adaptation
for every pair of images. We show results for fine-tuning until convergence (row
(d)) and just for 50 iterations (row (e)). On the one side, fine-tuning a model
pre-trained on a different source domain does not seem to have a systematic
positive impact across all measures in both datasets. On the other side, fine-
tuning a model originally trained with other images from the target domain
seems to lead to a consistent improvement (row (a)), even when performing just
50 iterations of one-shot fine tuning (row (b)). We hypothesize that initializing
the model with weights learned when training in a very different source domain
leads the optimization process towards local minima which are not favourable for
the target domain registration. However, when test images are closer to the ones
used for training, doing one-shot fine-tuning results in systematic improvements.
This suggests that one-shot fine-tuning may be a good solution to the multi-site
domain adaptation problem reported by [1], when dealing with datasets of the
same imaged anatomy captured at different sites or using different machines.
- One-shot learning from scratch: We train the model from scratch using
only the pair of images to be registered (i.e. the model is initialized with random
weights before registering every pair of images). We show results when training
just for 50 iterations (row (h)) and until convergence (row (g)). Interestingly,
one-shot learning from scratch (training until convergence) achieves results com-
parable to Elastix, and even at the level of those obtained when training with
other images from the target domain. One could argue that doing one-shot learn-
ing from scratch is actually overfitting the model. However, this is not the case
since we are following an unsupervised strategy in a one-shot scenario, obtaining
a model that is performing well for the data of interest (i.e. the single pair of
images from the target domain to be registered). Moreover, this model could be
used as initialization to register similar images in the future.

4 Conclusions and future works

We present the first study on domain adaptation across different organs/modalities
for unsupervised CNN-based DIR, focusing on the extreme case when a single
pair of images from the target domain is available at test time. In this context,
we evaluate the performance of a model pre-trained with data from a different
source domain, observing a clear decrease in performance when used to register
images from the target domain. As a potential solution, we propose one-shot
domain adaptation, by fine-tuning the original model using the target pair of
images, taking advantage of the unsupervised nature of proposed approach. Pre-
training does not seem to help when dealing with images from extremely different

7 We experimented with fine-tuning the model in whole or in part, but we found that
fine-tuning the complete model achieved better results in general.
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domains, but it achieves systematic improvement when fine-tuning a model pre-
trained on similar images. This opens the door to future research where one-shot
domain adaptation could alleviate problems when dealing with multi-site data.
Last but not least, we show that one-shot learning for CNN-based DIR (trained
from scratch using just the pair of images to be registered) achieves very good
results, comparable to those produced by state of the art algorithms.

This work constitutes another step towards constructing more robust deep
learning models for image registration. In the future, we plan to extend the
validation to volumetric image registration and explore one-shot domain adap-
tation for multi-site datasets. Moreover, more sophisticated strategies focusing
on learning features invariant to image domain could also be adopted.
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