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Abstract. Cardiovascular diseases are among the leading causes of death
globally. Cardiac left ventricle (LV) quantification is known to be one of
the most important tasks for the identification and diagnosis of such
pathologies. In this paper, we propose a deep learning method that in-
corporates 3D spatio-temporal convolutions to perform direct left ven-
tricle quantification from cardiac MR sequences. Instead of analysing
slices independently, we process stacks of temporally adjacent slices by
means of 3D convolutional kernels which fuse the spatio-temporal infor-
mation, incorporating the temporal dynamics of the heart to the learned
model. We show that incorporating such information by means of spatio-
temporal convolutions into standard LV quantification architectures im-
proves the accuracy of the predictions when compared with single-slice
models, achieving competitive results for all cardiac indices and signifi-
cantly breaking the state of the art [10] for cardiac phase estimation.

Keywords: Left ventricle quantification, Spatio temporal convolutional
neural network

1 Introduction

In 2015, around 17.7 million people died worldwide due to heart diseases. Left
ventricle (LV) quantification is a key factor for the identification and diagnosis
of such pathologies [2]. However, the estimation of cardiac indices remains a very
complex task due to its intricated temporal dynamics and the inter-subject vari-
ability of the cardiac structures. Indices such as cavity and myocardium area,
regional wall thickness, cavity dimensions, among others, provide useful informa-
tion to diagnose various types of cardiac pathologies. Cardiovascular magnetic
resonance (CMR) is one of the preferred modalities for LV related studies since
it is non invasive, presents high spatio-temporal resolution, has a good signal-
to-noise ratio and allows to clearly identify the tissues and muscles of interest
[6].

The classical approach to LV quantification consists in estimating such indices
by means of automatic segmentation [3–7, 9]. Segmentation is usually performed
following supervised learning approaches, which require expert manual annota-
tions contouring the edges of the myocardium for training. Once the segmenta-
tion is performed, the indices are computed from the resulting mask. Therefore,
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Fig. 1: Illustration of indices of the left cardiac ventricle (based on Fig. 1 from
[10]). (a) Cavity area (brown) and myocardial area (orange). (b) Directional
dimensions of cavity (white arrows). (c) Regional wall thicknesses. A: anterior;
AS: anterospetal; IS: inferoseptal; I: inferior; IL: inferolateral; AL: anterolateral.
(d) Cardiac phase (systole or diastole)

the accuracy of the predicted indices is conditioned on the quality of the segmen-
tation. In this work, we follow an alternative strategy that directly estimates the
indices of interest from the input image sequence. Inspired by the work of [11,
10, 12], our model is based on a convolutional neural network directly operating
on images and regressing the target indices. Different from previous approaches
like [10] where the temporal dynamics of cardiac sequences is incorporated using
recurrent neural networks (RNNs), we propose a simple but effective strategy
based on the use of spatio-temporal convolutions [8]. In the context of video
analysis, spatio-temporal convolutions are standard 3D convolutions that op-
erate on spatio-temporal video volumes [7]. Here we employ them to process
subsets of temporally contiguous CMR slices, leveraging temporal information
towards improving prediction accuracy.

We investigate the use of spatio-temporal convolutions for estimating car-
diac phase, directional dimensions of the cavity, regional wall thicknesses and
area of cavity and myocardium under the hypothesis that such indices may be
better explained when taking into account the temporal dynamics of the heart.
We benchmark the proposed architecture using the LVQuan Challenge 20181

dataset, which provides CMR sequences with annotations for the aforementioned
indices, and provide empirical evidence that incorporating the temporal dynam-
ics of the heart through 3D spatio-temporal convolutions improves prediction
accuracy when compared with single-slice models.

2 Materials and methods

2.1 Architecture

An overview of the proposed CNN architecture is presented in Figure 2. The
network takes sequences of κ slices and outputs the corresponding indices only
for the central slice. In such way, we incorporate information from the surround-
ing slices, easing the prediction task. In what follows, we describe in detail the

1 LVQuan Challenge website: https://lvquan18.github.io/
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Fig. 2: Overview of proposed architecture.

main components of the proposed architecture.

Encoder-CNN. We use a first CNN (referred as encoder-CNN in Figures 2
and 3) to extract informative features from individual slices. Inspired by [11], we
designed the per-slice encoding phase using a two-layers CNN where the convo-
lutional and pooling kernels are of size 5x5, instead of the frequently used 3x3,
to introduce more shift invariance (see Figure 3 for more details). We use ReLU
activation function and batch normalization to alleviate the training process.

Spatio-Temporal CNN. After the encoding phase, the 40 filters generated for
every individual encoder-CNN are used to construct a spatio-temporal volume
with 40 channels per temporal slice. This volume is then processed using 3D
convolutions that operate on the temporal and spatial dimensions (see Figure
3), producing compound feature maps that incorporate information from both
of them. This module is composed of two 3D convolutional layers with kernels of
size 3x5x5 and 2x5x5 when considering κ = 5 slices. When considering κ = 1, 3, 7
slices, the proposed architecture is modified by using padding in the temporal
dimension (κ = 1, 3) and adding an extra convolution (κ = 7) so that the shape
of the output tensor matches 1x6x6, the size required by the CNN Regression
and Fully Connected modules. ReLU activations and batch normalization are
also used in this module.

Final parallel branches. After fusing the spatio-temporal features, two par-
allel branches are derived: (i) the first branch corresponds to a shallow CNN
coupled after the spatio-temporal module, acting as a regressor of the direc-
tional dimensions, wall thickness and areas; (ii) in the second branch, a third
convolutional layer is coupled to the spatio-temporal module, followed by a fully
connected multi layer perceptron (MLP) with 640 neurons in the hidden layer
and 2 output neurons encoding the probability for the cardiac phase (systole or
diastole).si
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(a)

(b)

Fig. 3: (a) Deatiled overview of the spatio-temporal CNN based on 3D convo-
lutions. (b) Zoomed version of the individual encoder-CNNs: for a single input
slice of size 80x80 it outputs 40 filters of size 16x16 which are then fed to the
spatio-temporal CNN.

Training procedure and loss function. We train the proposed network by
minimizing a loss function over sets of κ slices where annotations are provided
only for the central slice. Given a set of κ slices xi = {x0, ..., xκ−1}, ground-truth
annotations for the central slice yi = {ydim, yareas, yrwt, yphase} and correspond-
ing predictions from the proposed neural network φphase and φdim, φareas, φrwt
the loss function is defined as:

L(xi,yi) = Lmse(φareas, yareas) + Lmse(φdim, ydim)+

Lmse(φrwt, yrwt) + Lce(φphase, yphase) + λLreg,
(1)

where Lmse is the mean squared error between predictions and ground truth,
Lce is the cross-entropy loss, Lreg is the regularizer (L2 norm of the network

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

A
. D

eb
us

; "
L

ef
t v

en
tr

ic
le

 q
ua

nt
if

ic
at

io
n 

th
ro

ug
h 

sp
at

io
-t

em
po

ra
l C

N
N

s"
St

at
is

tic
al

 A
tla

se
s 

an
d 

C
om

pu
ta

tio
na

l M
od

el
in

g 
of

 th
e 

H
ea

rt
 (

ST
A

C
O

M
 2

01
8)

, 2
01

8.



5

weights) and λ is a weighting factor. We minimize this loss using stochastic gra-
dient descent with momentum, with mini-batches of size s = 20.

Circular hypothesis. Since we require sets of temporally contiguous slices as
input for our spatio-temporal architecture, given a sequence of N slices, we adopt
a circular hypothesis meaning that slice number N − 1 is temporally followed
by slice 0. This hypothesis was corroborated by visual inspection of the training
dataset. Following this strategy, we generate sets of κ slices for every sequence
and use them as independent data samples. At prediction time, we employ the
same hypothesis to generate the sets of test slices.

2.2 Dataset and experimental setting

Our method is experimentally validated using the training data provided by the
LVQuan challenge 2018, composed of short axis cardiac MR images of 145 sub-
jects. For each subject, it contains 20 frames corresponding to a complete cardiac
cycle (giving a total of 2900 images in the dataset with pixel spacing ranging
from 0.6836 mm/pixel to 2.0833 mm/pixel, with a mean of 1.5625 mm/pixel).
The images have been collected from 3 different hospitals and subjects are be-
tween 16 and 97 years of age, with an average of 58.9 years. All cardiac images
undergo several preprocessing steps (including historical tagging, rotation, ROI
clipping, and resizing). The resulting images are roughly aligned with a dimen-
sion of 80x80. Epicardium and endocardium borders were manually annotated
by radiologists, and used to extract the ground truth LV indices and cardiac
phase. The values of regional wall thickness and the dimensions of the cavity are
normalized by the dimension of the image, while the areas are normalized by
the pixel number (6400).

In our experiments, we used cross validation with 3, 5 and 7 folds as suggested
by the LVQuan organizers, resulting in partitions of size (49, 48, 48), (29, 29,
29, 29, 29) and (21, 21, 21, 21, 21, 20, 20) respectively. We used learning rate
= 1e-4, momentum = 0.5 and λ = 0.005 (these parameters were obtained by
grid-search).

The model was implemented in Python2, using PyTorch and trained in GPU.

Evaluation criteria. Pearson correlation coefficient (PCC) and Mean Absolute
Error (MAE) were used to assess the performance of the algorithms for estima-
tion of areas, dimensions and regional wall thicknesses. Error Rate (ER) was
used to assess the performance for cardiac phase classification.

PCCind =

∑N
i=1(φ

(i)
ind − φ̄ind)(y

(i)
ind − ȳind)√∑N

i=1(φ
(i)
ind − φ̄ind)2

∑N
i=1(y

(i)
ind − ȳind)2

, (2)

2 The source code for the proposed architecture is publicly available at
https://github.com/alejandrodebus/SpatioTemporalCNN lvquan
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MAEind =
1

N

N∑
i=1

|φ(i)ind − y
(i)
ind|, (3)

where ind ∈ (A1, A2, D1...D3, RWT1...RWT6) , yind is the ground-truth
value and φind is the estimated value.ȳind and φ̄ind are their mean values, re-
spectively.

ERphase =

∑N
i=1 1(φ

(i)
phase 6= y

(i)
phase)

N
100% (4)

where 1() is the indication function, φphase and yphase are the estimated and
ground truth value of the cardiac phase, respectively.

3 Results and discussion

The effectiveness of the proposed method was validated under the experimental
setting discussed in Section 2.2. We measured the influence of the parameter κ
(number of contiguous slices fed to the network) for κ = 1 (single slice), 3, 5
and 7 for the proposed spatio-temporal model based on 3D convolutions, and
compare with the state of the art method recently proposed in [10]. Results are
presented in Table 1 for a 5-fold cross validation setting (the same experimental
setting and dataset was used in [10]). Note that using sets of κ = 5 slices signif-
icantly outperforms the configurations κ = 1, 3 for all the indices, highlighting
the importance of the temporal dynamics. However, considering κ = 5 and κ = 7
slices achieves a similar performance. Therefore, we consider κ = 5 as enough
temporal context for the remaining experiments.

In quantitative terms, we reduce the error rate from 28.45.06% to 3.85% for
cardiac phase estimation and the MAE from 270 to 190mm2, 3.18 to 2.29mm and
2.62 to 1.42mm in average for the areas, directional dimensions of the cavity and
regional wall thickness when comparing the performance for κ = 1 and κ = 5
slices respectively. Moreover, considering the baseline [10] we observe similar
results for most indices, expect for the phase, where our model improves over
the state of the art by a significant margin (reducing the error rate from 8.2%
to 3.2%)

Finally, table 2 presents these results for 3 different cross-validation con-
figurations (3, 5 and 7 folds) as required by the LVQuan challenge organizers,
together with the results for phase, directional dimensions, regional wall thick-
nesses and area of cavity and myocardium obtained with the best performing
spatio-temporal model (κ = 5). Note that performance is consistent across folds.
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Model

κ=1 κ=3 κ = 5 κ=7 DMTRL [10]

Areas (mm2)

a-cav
239 ± 198 194 ± 188 181 ± 130 180 ± 145 172± 148

0.861 ± 0.053 0.922 ± 0.035 0.940 ± 0.014 0.923 ± 0.016 0.943

a-myo
301 ± 243 223 ± 179 199 ± 138 207 ± 141 189± 159

0.852 ± 0.047 0.892 ± 0.029 0.923 ± 0.016 0.931 ± 0.017 0.947

average
270 ± 154 208 ± 141 190 ± 122 193 ± 115 180± 118

0.857 ± 0.049 0.907 ± 0.033 0.932 ± 0.015 0.927 ± 0.018 0.945

Dimensions (mm)

dim1
3.05 ± 2.84 2.63 ± 2.01 2.27± 1.79 2.31 ± 1.81 2.47 ± 1.95

0.861 ± 0.031 0.925 ± 0.018 0.961± 0.012 0.952 ± 0.015 0.957

dim2
3.23 ± 3.02 2.80 ± 1.89 2.38± 1.90 2.41 ± 2.03 2.59 ± 2.07

0.879 ± 0.061 0.932 ± 0.023 0.957 ± 0.012 0.961± 0.013 0.894

dim3
3.27 ± 3.12 2.56 ± 1.75 2.22± 1.78 2.23 ± 1.67 2.48 ± 2.34

0.912 ± 0.047 0.939 ± 0.021 0.963± 0.011 0.959 ± 0.010 0.943

average
3.18 ± 2.54 2.66 ± 1.75 2.29± 1.59 2.31 ± 1.62 2.51 ± 1.58

0.884 ± 0.044 0.932 ± 0.022 0.960± 0.011 0.957 ± 0.012 0.925

Regional wall Thickness (mm)

wt1 (IS)
2.02 ± 1.32 1.89 ± 1.04 1.23± 1.14 1.24 ± 1.17 1.26 ± 1.04

0.625 ± 0.063 0.793 ± 0.056 0.854 ± 0.014 0.846 ± 0.011 0.856

wt2 (I)
2.67 ± 1.69 2.45 ± 1.48 1.44 ± 1.22 1.43 ± 1.87 1.40± 1.10

0.618 ± 0.055 0.751 ± 0.037 0.797 ± 0.011 0.801± 0.014 0.747

wt3 (IL)
2.95 ± 2.01 1.74 ± 1.56 1.57± 1.41 1.60 ± 1.59 1.59 ± 1.29

0.595 ± 0.049 0.735 ± 0.033 0.765± 0.013 0.740 ± 0.010 0.693

wt4 (AL)
2.77 ± 1.65 1.66 ± 1.17 1.48 ± 1.13 1.46± 1.45 1.57 ± 1.34

0.603 ± 0.052 0.763 ± 0.024 0.785± 0.022 0.782 ± 0.018 0.659

wt5 (A)
3.06 ± 2.12 1.49 ± 1.35 1.35 ± 1.19 1.39 ± 1.21 1.32± 1.10

0.642 ± 0.061 0.808 ± 0.029 0.842 ± 0.019 0.851± 0.015 0.777

wt6 (AS)
2.25 ± 1.72 1.65 ± 1.11 1.46 ± 1.32 1.49 ± 1.37 1.25± 1.01

0.651 ± 0.047 0.825 ± 0.032 0.870 ± 0.015 0.866 ± 0.013 0.877

average
2.62 ± 2.10 1.81 ± 1.05 1.42 ± 0.65 1.43 ± 0.71 1.39± 0.68

0.622 ± 0.054 0.779 ± 0.033 0.819± 0.015 0.814 ± 0.014 0.768

Phase (ER%)

phase 28.45 ± 5.50 14.67 ± 3.65 3.85± 2.82 3.91 ± 2.76 8.2

Table 1: Sensitivity analysis for the parameter κ (number of neighbouring slices)
when using the spatio-temporal model based on 3D convolutions with 5-folds
cross validation, compared with the state of the art DMTRL proposed in [10].
Note that incorporating the temporal dynamics by considering multiple slices
(κ = 3, 5, 7) makes a significant different with respect the single slice case
(κ = 1). However, considering κ = 5 and κ = 7 slices present a similar per-
formance. Therefore, we consider κ = 5 as enough temporal context for the
remaining experiments. When comparing with [10] we observe similar results for
most indices, expept for the phase, where the proposed model breaks the state
of the art significantly (from 8.2% to 3.2%).si

nc
(i

) 
R

es
ea

rc
h 

In
st

itu
te

 f
or

 S
ig

na
ls

, S
ys

te
m

s 
an

d 
C

om
pu

ta
tio

na
l I

nt
el

lig
en

ce
 (

fi
ch

.u
nl

.e
du

.a
r/

si
nc

)
A

. D
eb

us
; "

L
ef

t v
en

tr
ic

le
 q

ua
nt

if
ic

at
io

n 
th

ro
ug

h 
sp

at
io

-t
em

po
ra

l C
N

N
s"

St
at

is
tic

al
 A

tla
se

s 
an

d 
C

om
pu

ta
tio

na
l M

od
el

in
g 

of
 th

e 
H

ea
rt

 (
ST

A
C

O
M

 2
01

8)
, 2

01
8.



8

4 Conclusions

In this work, we proposed a new CNN architecture for LV quantification that in-
corporates the dynamics of the heart by means of spatio-temporal convolutions.
Differently from other methods that rely on more complex mechanisms (like
recurrent neural networks [10]) we employ simple 3D convolutions to fuse infor-
mation coming from temporally contiguous CMR slices. We generated training
samples following a circular hypothesis, meaning that first and last slices of the
sequences are considered as temporally contiguous. Validation was performed
using CRM sequences provided by the LVQuan challenge organizers. Results
show that incorporating temporal information through spatio-temporal convo-
lutions significantly boosts prediction performance for all the indices. Moreover,
when compared with the RNN based model presented in [10], we observe a sig-
nificant reduction in error rate for phase estimation (from 8.2% to 3.85%) while
keeping equivalent results for the other indices. More importantly, our method
achieves state of the art results employing simple 3D convolutions instead of the
more complex parallel RNN and Bayesian based multitask relationship learning
module proposed in [10].

In this work we incorporated the spatio-temporal dynamics by means of 3D
convolutions. However, if we consider the slices as multiple channels of a stan-
dard 2D architecture, conventional 2D convolutions could also be used, reducing
the complexity of the model. Moreover, temporal information encoded by inter-
slice deformation fields (obtained trough deep learning based image registration
methods [1]) could also be considered to improve model performance. In the
future, we plan to explore the performance of these models when compared with
the proposed architecture.
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N-fold cross validation as required by LVQuan Challenge

MAE PCC

N=3 N=5 N=7 N=3 N=5 N=7

Areas (mm2)

a-cav 185 ± 125 181 ± 130 183 ± 115 0.932 0.940 0.939
a-myo 204 ± 143 199 ± 138 198 ± 145 0.915 0.923 0.930
average 194 ± 131 190 ± 122 190 ± 110 0.924 0.932 0.935

Dimensions (mm)

dim1 2.71 ± 2.11 2.27 ± 1.79 2.26 ± 1.82 0.938 0.961 0.959
dim2 2.65 ± 2.09 2.38 ± 1.90 2.32 ± 2.01 0.926 0.957 0.954
dim3 2.51 ± 2.20 2.22 ± 1.78 2.24 ± 1.91 0.933 0.963 0.958
average 2.62 ± 1.87 2.29 ± 1.59 2.27 ± 1.52 0.932 0.960 0.957

Regional wall Thickness (mm)

wt1 (IS) 1.31 ± 1.16 1.23 ± 1.14 1.25 ± 1.15 0.831 0.854 0.857
wt2 (I) 1.58 ± 1.10 1.44 ± 1.22 1.43 ± 1.41 0.768 0.797 0.802
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