
DEEP LEARNING WITH ULTRASOUND PHYSICS FOR FETAL SKULL SEGMENTATION 

 

Juan J. Cerrolaza1, Matthew Sinclair1, Yuanwei Li1, Alberto Gomez2, Enzo Ferrante3,  

Jaqueline Matthew2, Chandni Gupta2, Caroline L. Knight4,5, Daniel Rueckert1 

 
1Biomedical Image Analysis Group, Imperial College London, UK 

2Division of Imaging Sciences and Biomedical Engineering, King’s College London, UK 
3Universidad Nacional del Litoral / CONICET, Santa Fe, Argentina 

4Department of Women and Children’s Health, King’s College London, UK 
5Fetal Medicine Unit, Guy’s and St Thomas’ NHS Foundation Trust, London, UK 

 

ABSTRACT 

 

2D ultrasound (US) is still the preferred imaging method for 

fetal screening. However, 2D biometrics are significantly 

affected by the inter/intra-observer variability and operator 

dependence of a traditionally manual procedure. 3DUS is an 

alternative emerging modality with the potential to alleviate 

many of these problems. This paper presents a new automatic 

framework for skull segmentation in fetal 3DUS. We propose 

a two-stage convolutional neural network (CNN) able to 

incorporate additional contextual and structural information 

into the segmentation process. In the first stage of the CNN, 

a partial reconstruction of the skull is obtained, segmenting 

only those regions visible in the original US volume. From 

this initial segmentation, two additional channels of 

information are computed inspired by the underlying physics 

of US image acquisition: an angle incidence map and a 

shadow casting map. These additional information channels 

are combined in the second stage of the CNN to provide a 

complete segmentation of the skull, able to compensate for 

the fading and shadowing artefacts observed in the original 

US image. The performance of the new segmentation 

architecture was evaluated on a dataset of 66 cases, obtaining 

an average Dice coefficient of 0.83 ± 0.06. Finally, we also 

evaluated the clinical potential of the new 3DUS-based 

analysis framework for the assessment of cranial 

deformation, significantly outperforming traditional 2D 

biometrics (100% vs. 50% specificity, respectively).  

Index Terms— Segmentation, deep learning, fully 

convolutional network, fetal imaging, ultrasound, skull. 

 

1. INTRODUCTION 

 

Two-dimensional ultrasound (2DUS) is the primary 

screening modality for fetal screening, thanks to the lack of 

harmful effects on the fetus and mother, relatively low cost, 

and possibility of real time imaging and reporting. Nowadays, 

a second trimester US examination is routinely performed at 

18-20 weeks of gestation in most countries, including a fetal 

survey, and a complete anatomical screening examination. As 

part of this comprehensive analysis, 2DUS-based biometry 

(i.e., sonographic measurements of the fetal anatomy) has 

been extensively used to indirectly assess the growth and 

well-being of the fetus, and estimating fetal weight [1]. The 

assessment of the fetal skull is an essential part of routine 

sonographic examination, including head circumference 

(HC), biparietal diameter (BPD), and occipitofrontal 

diameter (OFD). However, these biometrics are prone to 

errors, still relying on 2D measurements manually extracted 

from a specific anatomical planes (i.e., the transthalamic or 

transventricular planes). This subjectivity and operator 

dependence can affect the diagnostic capability of US-based 

fetal screening, limiting reproducibility, and may hinder the 

early detection of malformations [2]. Moreover, the early 

detection of cranial malformations, such as dolichocephaly, 

or brachycephaly, requires the detail structural analysis of the 

skull, its curvilinear bones, and boundaries, which may be 

difficult to visualize and quantify in a single 2D plane.  

Despite its limitations, manual 2DUS-based biometry 

remains the current gold standard in obstetric sonography [3]. 

3DUS has the potential to mitigate many of these drawbacks, 

whose superior diagnostic power, higher reproducibility, and 

consistency has been reported by numerous studies [4]. The 

possibility to scan and analyze volumetric data provides a 

more comprehensive, and anatomically consistent view of the 

complex anatomy of the fetus, as well as the definition of a 

new generation of objective and more accurate volumetric 

biometrics. In this context, the development of automatic 

segmentation methods for 3DUS is paramount to alleviate the 

tedious and subjective manual delineation process. Despite 

the growing interest of the image analysis community in the 

development of new segmentation strategies for sonographic 

images, the complete automatic segmentation of the skull in 

fetal 3DUS has not yet been satisfactorily addressed.  

US-imaging remains, arguably, the most difficult imaging 

modality upon which to perform segmentation, suffering 

from low signal-to-noise ratio, signal attenuation and 

dropout, and missing boundaries. The use of predefined 

parametric curves was exploited by early works on 2DUS 

[5][6] as strategy to deal with fuzzy and incomplete skull 

boundaries, approximating the head contour to an ellipse. 

Shape priors were also used by the first skull segmentation 
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framework for 3DUS presented by Chen et al. [7]. In the 

proposed registration-based framework, the authors used a 

fetal phantom to incorporate shape constraints into a 

registration-based method. However, the use of restrictive 

shape priors limits the flexibility of these models, and their 

capacity to capture the local shape abnormalities of skulls 

presenting mild or severe cranial deformity. A more general 

approach was presented by Namburete and Noble [8], using 

a classic random forest classifier to identify cranial pixels in 

2DUS images. Recently, Cerrolaza et al. [9] presented the 

first automatic framework for the segmentation of the skull in 

3DUS, using a random forest classifier that combined 

contextual features and structured semantic labels. However, 

despite the promising results, competitive with the state-of-

the-art deep learning-based methods, only a partial 

reconstruction of the skull was provided.  

Frequently, the contours of fetal skulls appear 

discontinuous and irregular in clinical sonographic images, 

due to fading and shadowing artefacts, both inherent to the 

imaging physics of US. In US imaging, it is known that those 

edges tangent to the propagation direction of the wavefront 

can be affected by low contrast and fading effects, due to the 

dependence of the echo with the angle of incidence. On the 

other hand, acoustic shadows casted by the section of the 

skull closer to the US probe can also obscure and hamper the 

detection of more distant regions of the cranium (see Fig. 

1(a)). In this paper, we present the first fully automatic 

framework able to accurately segment the whole skull in fetal 

3DUS. Inspired by the underlying physics of US imaging, we 

propose a two-stage cascade deep convolutional neural 

network (2S-CNN) architecture, tailored to deal with the 

specific challenges raised by the segmentation of fetal US 

images.  

2. METHODOLOGY 

 

Recently, CNN-based architectures have become the current 

state-of-the-art for many image segmentation tasks, including 

organ segmentation in medical imaging.  Unlike most 

common implementations, where a single CNN is used, we 

propose a new two-stage cascade approach as alternative 

architecture to incorporate additional information channels 

into the segmentation process. These new channels are 

specifically tailored to deal with the inherent challenges and 

limitations of fetal 3DUS (i.e., shadowing and fading effects), 

providing relevant information for the complete 

reconstruction of the skull. The overall flow diagram of the 

proposed framework is depicted in Figure 2(a).  

 

2.1. Two-Stage Cascade CNN Architecture 

 

The proposed 2S-CNN separate the segmentation process 

into two stages, using a 3D convolutional U-Net [11] (i.e., a 

fully convolutional network which includes shortcut 

connections between a contracting encoder and a successive 

expanding decoder; see Fig. 2(b)) as basic structural element 

of the architecture. Taking the original 3DUS volume as 

single input channel, the aim of the first block (B1) is to 

generate a partial reconstruction of the skull by segmenting 

the cranial bone visible in the US data. Despite the numerous 

artifacts and low signal-to-noise ratio of US imaging, bone 

tissue can be partially identified by its hyperechoic nature, 

and its characteristic structural curved pattern. Thanks to the 

concatenation of multiple convolutional and pooling layers, 

the proposed CNN-based architecture learns specific filters at 

multiple resolutions able to identify these distinctive features, 

thus providing an accurate, yet incomplete, initial estimation 

of the skull.  

Based on this initial estimation, the aim of the second block 

(B2) is to generate a full reconstruction of the skull, 

completing those gaps and missing regions generated by the 

combination of fading and shadowing effects. Inspired by the 

auto-context architecture [10], the output probability map 

from B1 is used as additional input channel for B2, which 

provides valuable contextual and structural image 

information. Additionally, the input to B2 is completed with 

two additional channels, the incidence angle map (IAM; see 

Fig. 1(b)) and the shadow casting map (SCM; see Fig. 1(c)), 

both derived from the initial partial segmentation obtained in 

B1 (see Section 2.2 for details). The IAM and SCM, provide 

relevant complementary information regarding the 

underlying physics of US imaging, the angle of incidence of 

the US wavefront, and the shadowing effect caused by the 

bone structures closer to the probe, respectively. The impact 

of IAM and SCM in the segmentation process is analyzed in 

Section 3.  

 

2.2. Additional Information Channels 

2.2.1. Incidence Angle Map 

 
 

Figure 1. US-based information channels. (a) US axial view of a fetal 

skull (marked with a red contour) and geometric description of the 
incidence angle and shadow casting maps (see Section 2.2). White arrows 

indicate missing regions suffering from fading effects, corresponding to 

regions tangent to the US wavefront in (b). (b) Incidence angle map. The 
incidence angles corresponding to the whole skull are shown for 

illustration purposes only. (c) Shadow casting map corresponding to the 

complete skull shown in (a). 
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Suppose 𝑰 is the original US volume, and 𝑺1 represents the 

partial segmentation obtained in B1 (i.e., the cranial tissue 

visible in 𝑰), with 𝑺1(𝒑) = 1 if the voxel 𝒑 ∈ ℝ3 belongs to 

the foreground, and 𝑺1(𝒑) = 0 otherwise. For every voxel 

𝒑|𝑺1(𝒑) = 1, the value of 𝐼𝐴𝑀(𝒑) is approximated by the 

angle of incidence at 𝒒 ∈ ℝ3, the closest point to 𝒑 located 

on the outer surface of the skull. Let the center of mass of 𝑺1,  

𝑪 =  (∑𝒑| 𝑺1(𝒑) = 1) (∑𝑺1(𝒑))⁄  approximate the center of 

the skull. Assuming the skull is an approximately convex 

structure, the points on the surface of the skull {𝒒}, can be 

easily identified via ray casting, using 𝑪 as origin. In 

particular, given a ray 𝑅⃗ , 𝒒 =  𝑎𝑟𝑔𝑚𝑎𝑥𝒑𝑑𝑖𝑠𝑡(𝑪, 𝒑)|𝑺1(𝒑) =

1 ∧ 𝒑 ∈ 𝑅⃗ , where 𝑑𝑖𝑠𝑡(∙,∙) is the Euclidean distance. Suppose 

now 𝒅𝑞
⃗⃗ ⃗⃗   is a unitary direction vector that represents the 

propagation direction of the wavefront at 𝒒, and that  𝒏𝑞⃗⃗ ⃗⃗   is 

the unitary vector normal to the skull at that point. Defining 

the center of the US probe as 𝑶 (which can be easily 

interpolated from the US image cone), 𝒅𝑞
⃗⃗ ⃗⃗   can be 

approximated as 𝒅𝑞
⃗⃗ ⃗⃗  ≈  𝑶, 𝒒⃗⃗ ⃗⃗ ⃗⃗  ⃗ ‖𝑶, 𝒒⃗⃗ ⃗⃗ ⃗⃗  ⃗‖⁄ , where ‖∙‖ represents 

the Euclidean norm. Finally, for every surface point 𝒒, 

𝐼𝐴𝑀(𝒒) = 𝑐𝑜𝑠−1
[0,𝜋 2⁄ ](𝒅𝑞

⃗⃗ ⃗⃗  ∙ 𝒏𝑞⃗⃗ ⃗⃗  ). The IAM is finally 

completed with three additional channels containing the x, y, 

and z components of the unitary directional vector at every 

voxel of the image (i.e., 𝑑𝑥𝑝, 𝑑𝑦𝑝, and 𝑑𝑧𝑝). 

 

2.2.2. Shadow Casting Map 

The SCM is defined by a distance map where, for every 

location 𝒑, 𝑆𝐶𝑀(𝒑) represents the minimum distance from 𝒑 

to the section of the skull detected in B1, in the opposite 

direction to the wavefront propagation in 𝒑 (see Fig.1(a)). Let 

𝒗𝑟𝑝⃗⃗ ⃗⃗ ⃗⃗   represents the unitary vector pointing from 𝒓 to 𝒑, i.e., 

𝒗𝑟𝑝⃗⃗ ⃗⃗ ⃗⃗  =  𝒓, 𝒑⃗⃗ ⃗⃗ ⃗⃗  ‖𝒓, 𝒑⃗⃗ ⃗⃗ ⃗⃗  ‖⁄ . Thus, 𝑆𝐶𝑀(𝒑) can be mathematically 

defined as 𝑆𝐶𝑀(𝒑) = min(𝑑𝑖𝑠𝑡(𝒓, 𝒑)|𝑺1(𝒓) = 1 ∧  𝒅𝑝
⃗⃗ ⃗⃗  ∙

𝒗𝑟𝑝⃗⃗ ⃗⃗ ⃗⃗  = −1). 

 

3. EXPERIMENTAL RESULTS AND DISCUSION 

 

In the experiments we used a database of 66 fetal 3DUS 

images. The mean gestational age (GA) was 24.7 weeks, 

ranging from 20 to 36 weeks. The volumes were acquired 

from an axial transventricular plane using a Philips Epiq7G 

scanner with a X6-1 xMatrix array transducer. All the 

volumes were preprocessed using non-local means filtering, 

and resized to 96 × 96 × 96 voxels. For each image, the skull 

was delineated manually by experienced members of the 

team, and under the supervision of an expert radiologist. The 

set of images was randomly divided into two groups, using 

52 images for training and 14 for testing. We included 

training data augmentation applying random affine 

transformations on-the-fly, thus resulting in as many different 

images as training iterations. The networks (B1 and B2) were 

trained separately using cross-entropy loss, and stochastic 

gradient descent with momentum (Adam with learning rate = 

0.001, 𝛽1 = 0.9, 𝛽2 = 0.995) on Theano. We ran a total of 

500 epoch on an NVIDIA® GeForce® GTX 1080 Ti (which 

took a total of 10 hours). 

 

3.1. Segmentation Accuracy 

 

Table I shows the segmentation accuracy for different 

configurations of the 2S-CNN architecture, including a 

single-channel implementation (i.e., a classic auto-context 

approach where only the original US volume and the output 

probability map from B1 are used in B2). To analyze the 

contribution of each new information channel (SCM and 

IAM), we also tested the 2S-CNN when incorporating only 

SCM, only IAM, or both together (SCM+IAM). The intra-

user accuracy (IUA) is also included. It can be observed how 

the best performance is provided by the combination of both 

channels, SCM+IAM, with a DC of 0.83 ± 0.06. However, no 

TABLE I 

SKULL SEGMENTATION ERROR 

 DC JI SSD (mm) 
Single-Channel 0.78 ± 0.07 0.65 ± 0.09 1.11 ± 0.74 
SCM 0.77 ± 0.01 0.63 ± 0.11 1.02 ± 0.83 
IAM 0.83 ± 0.07 0.71 ± 0.08 0.99 ± 0.22 
    
IAM+SCM 0.83 ± 0.06 0.70 ± 0.08 0.98 ± 0.52 

IUA 0.84 ± 0.01 0.72 ± 0.02 0.75 ± 0.12 
 

Segmentation accuracy. The table presents the average error and standard 

deviation for the Dice coefficient (DC), Jaccard index (JI), and symmetric 

surface distance (SSD) for different configurations of the architecture: 
single-channels (i.e., not including SCM and IAM), using only SCM, using 

only IAM, and combining both additional information channels, SCM and 

IAM. The table also includes the intra-user accuracy (IUA). 
 

 

 
 

 
Figure 2. Segmentation architecture diagram. (a) Block diagram of the 

two-stage convolutional network. (b) Detail of the 3DU-Net architecture 

used in the proposed 2S-CNN segmentation framework. 
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statistically significant difference was observed (p-value < 

0.05 using a Wilcoxon paired signed non-parametric test) 

when using only the IAM (DC 0.83 ± 0.07). This suggests 

that only the IAM provides additional relevant information to 

complete the skull in B2. Moreover, no difference was 

observed when comparing the implementation using only the 

SCM (DC 0.77 ± 0.01) and the single-channel approach (DC 

0.78 ± 0.07). The incorporation of IAM into the 2S-CNN 

model provides similar results in terms of DC (0.83 ± 0.07) 

and JI (0.71 ± 0.08) to the intra-user accuracy (DC 0.84 ± 0.01 

and JI 0.72 ± 0.02). The average segmentation time was 0.08 

sec. per volume. 

 

3.2. Volumetric Biometrics for Skull Shape Assessment: 

A pilot study 

 

In this section we present a pilot study to evaluate the 

potential of the proposed 3D segmentation method for fetal 

skull shape assessment. We analyze the value of 3D-based 

shape analysis for the identification of cranial deformities, 

such as dolichocephaly, a condition where the head becomes 

disproportionately long and narrow, for example due to 

mechanical forces associated with breech positioning in 

utero. The ground truth was established by an experienced 

obstetric sonographer and a fetal medicine specialist, 

identifying two cases with dolichocephaly in our database. 

The traditional 2D cephalic index CI is calculated by 

BPD/OFD. We proposed an alternative 3DCI derived from 

the volumetric analysis of the skull. Once the complete skulls 

were segmented, we used principal component analysis to 

create a statistical model of the cranium, defining the 3DCI 

as the distance to the mean shape of the skull normalized to 

the patient’s gestational age. The 5th percentile threshold was 

used to identify potentially abnormal cases in both metrics, 

CI and 3DCI. The accuracy, specificity, and sensitivity for 

the abnormal shape identification were 98%, 100% and 98% 

for 3DCI, significantly outperforming the CI with 90%, 50%, 

and 92%, respectively (p-value < 0.005 using McNemar’s 

test). Despite the limited number of cases with skull 

deformation in our database, this pilot study suggests the 

potential of 3D-based biometry to provide objective and 

accurate assessment of the fetal head. We plan to extend this 

study in the future. 

 

4. CONCLUSIONS 

 

This paper presents the first fully automatic framework for 

the complete segmentation and quantification of the skull in 

fetal 3DUS. We propose a new two-stage CNN-based 

architecture that integrate additional information channels in 

the segmentation process. The incorporation of these new 

maps, derived from the imaging physics of US, provides 

relevant contextual and structural information for the 

complete reconstruction of the skull. In particular, the 

incident angle map has proven particularly useful in 

regenerating the skull, allowing the network to compensate 

for the fading effects caused by the dependence of the 

contrast with the angle of incidence in US-imaging. The 

promising results in terms of segmentation accuracy and fetal 

skull assessment demonstrate the potential of the proposed 

framework to objectively assess fetal 3DUS and support 

better informed clinical decision making.  
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