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Escuela de Ingenierı́a Eléctrica, Universidad de Costa Rica
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Abstract—Over the past several decades, numerous speech
enhancement techniques have been proposed to improve the
performance of modern communication devices in noisy environ-
ments. Among them, there is a large range of classical algorithms
(e.g. spectral subtraction, Wiener filtering and Bayesian-based
enhancement), and more recently several deep neural network-
based. In this paper, we propose a hybrid approach to speech
enhancement which combines two stages: In the first stage, the
well-known Wiener filter performs the task of enhancing noisy
speech. In the second stage, a refinement is performed using
a new multi-stream approach, which involves a collection of
denoising autoencoders and auto-associative memories based on
Long Short-term Memory (LSTM) networks.

We carry out a comparative performance analysis using two
objective measures, using artificial noise added at different signal-
to-noise levels. Results show that this hybrid system improves the
signal’s enhancement significantly in comparison to the Wiener
filtering and the LSTM networks separately.

Index Terms—Deep learning, Denoising autoencoders, LSTM,
Signal processing.

I. INTRODUCTION

The enhancement of speech in the presence of noise

has been a topic of interest over the past several decades,

giving that speech signals are often adversely affected in

real world environments through the introduction of different

types of noise and reverberation. Communication devices and

systems may be affected in their quality and recognition

performance [1]–[4] with such noise addition to the speech

information.

A speech enhancement algorithm can be viewed as suc-

cessful if it suppresses perceivable background noise, and

preserves or enhances perceived signal quality [5].

For the task of improving speech recognition systems and

enhance speech signals, deep neural networks (DNN) have

been presented in [6]–[9]. One approach that has been applied

successfully is that of mapping spectral features from noisy

speech into the features of the corresponding clean speech,

using autoencoders based on perceptrons or recurrent neural

networks (RNNs).

Among the new types of RNNs, the Long Short-Term

Memory Network (LSTM) has succeeded in mapping noisy

or reverberant speech parameters to clean speech, by using

features derived from the spectrum, usually MFCC. These

features are of interest and have been used widely because

automatic speech recognition systems are frequently based

on them. One recent line of research is to include additional

information in this approach e.g. fundamental frequency (f0)

and energy coefficients, to improve the obtained results.

After considering both traditional signal processing-based

methods, such as the Wiener filtering, and the deep neural net-

works approach, we are proposing a hybrid denoising method

in two stages. Benefits from this type of speech enhancement

can be applied to mobile phones, VoIP, speech recognition, and

are especially important for hearing-impaired listeners, given

their particular difficulty in noisy backgrounds [10].

A. Related work

Some techniques for feature enhancement of speech signals

based on deep learning have been presented recently. These

techniques rely on the enhancement of features derived from

the spectrum, typically MFCC. For example, MFCCs (cepstral

coefficients plus its first and second delta) are used in [11],
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[12], and super-vectors, with 24 MFCCs formed by splicing

together 9-frame windows of MFCCs in [13].

Some of these techniques have outperformed other denois-

ing algorithms on speech recognition tasks, where the speech

signals contain noise of different types with various signal-to-

noise levels [14]–[16]. It has been observed the advantage in

reducing the annoying musical artifact commonly present in

classical speech enhancement algorithms [17].

The principal mechanism for enhancing speech signals

using deep learning algorithms is to use deep neural networks

as regression models which map the noisy speech into the

corresponding clean speech [1] [2]. This approach has been

successfully applied to speech signals obtained from speakers

under different conditions, such as noise types and signal-to-

noise ratios and single and two channel comparison.

Reverberant speech has also been analyzed using a similar

framework in [18], [19], by mapping reverberant MFCC

to clean ones. These mappings have been used for speech

recognition, for example, in [20], and include a hybrid deep

neural network/HMM approach. Also, the enhancement of

speech signals with background music has been successfully

tested with deep neural networks [21].

Features other than MFCC, such as 13-dimensional Percep-

tual Linear Prediction (PLP) with windowed mean-variance

normalization and up to third-order derivatives, have also been

tested [22].

LSTM networks for speech enhancement have been pre-

sented previously in [23], using also MFCC as features, and

a single step of networks in the enhancement. In the present

paper a two steps approach is presented, combining Wiener

filters and LSTM networks.

The use of several steps for the speech enhancement

problem has been approached stacking many denoising au-

toencoders in [24]. Deep learning algorithms have been em-

ployed as estimators of speech enhancement techniques such

as Wiener filters in [3]. To our knowledge, the opposite

direction remains unexplored before our proposal: training

deep network-based algorithms using Wiener filters or other

techniques as its inputs.

B. Overview

In this paper, we present a new approach for enhancing

noisy speech, by considering a hybrid two stages of Wiener

filtering and a collection of LSTM networks that maps the

output of the Wiener filter to clean features. The whole

system is trained and tested with examples from the Carnegie

Mellon University speech database. Several objective measures

are used to test the results, which show the benefits of our

proposed method.

The rest of this paper is organized: Section II gives the

background and context of the problem of denoising, Section

III presents the proposed hybrid systems. Section IV describes

the experimental setup, Section V presents the results with a

discussion, and finally, in Section VI, we present the conclu-

sions.

II. BACKGROUND

A. Problem Statement of Speech Enhancement

In speech enhancement, a speech signal degraded with

additive noise is processed so as to improve its quality with

respect to factors such as intelligibility or perceptual quality.

We can assume that the corrupted signal, y, is the sum of

a speech signal, x, and noise d, given by:

y(t) = x(t) + d(t) (1)

Applying the Short-time Fourier Transform, in the spectral

domain, the formulation of the problem becomes:

Yk(n) = Xk(n) +Dk(n), (2)

where k is the frequency index and n the time-segment

index. In classical methods, x(t) is considered uncorrelated

to d(t), and a broad class of speech enhancement algorithms

estimate Xk(n) from the power spectral domain of x(t) and

d(t). Among them, the Wiener filter, which was presented for

the first time in the decade of 1940, aims is to filter a noise-

corrupted input, while output an estimate of the original signal,

based on statistical computations of the noise. Let x̃(t) be the

estimation of the signal using this algorithm.

In deep learning approaches, x(t) (or Xk(n)) can be esti-

mated using algorithms that learn an approximated function

f(·) between the noisy and clean data of the form:

x̂(t) = f (y(t)) . (3)

The precision of the approximation f(·) usually depends on

the amount of training data and the algorithm selected.

In a hybrid approach combining both systems, the x̂ of the

deep learning algorithm is approximated from the output of

the Wiener filter, so the relation can be established as

ˆ̃x(t) = f (x̃(t)) . (4)

It is expected that ˆ̃x(t) is a better estimation of x(t) than

x̃(t) and x̂(t). The idea is that the Wiener filter can reduce

the noise, but at the cost of introducing artifact. Then the deep

LSTM network would eliminate the artifact, preserving the

good information produced by the Wiener filter.

B. Wiener filter

Speech enhancement techniques commonly estimate a

short-term suppression factor, adjusted for each frequency

component with a posteriori signal-to-noise ratio. Some recent

techniques have included an a priori signal-to-noise ratio

for the computation of the adjustment in the enhancement

process [25]. These factors can be estimated using several

techniques, for example Wiener estimation.

We are using an implementation of this approximation

that defines the Noise Power Spectral Density P̂ t(·) at each

frequency component fk as:

P̂ t
B(fk) = λP̂ t−1

B (fk) + (1− λ)|Bt(fk)|2 (5)
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where B is the spectrum of the noise, P (·) denotes half-wave

rectification at the time interval t.
The proposed a priori signal-to-noise ratio is defined as:

ˆSNR
t

prio(fk) = (1−β)P [ ˆSNR
t

prio(fk)−1]+β
|Ŝt−1(fk)|2
P̂B(fk)

(6)

Further details can be found in [25]. In our implementation,

we fix the main parameters to the values λ = β = 0.98.

C. Long Short-term Memory Neural Networks

Several kinds of neural networks have been tested for classi-

fication and regression purposes over the past several decades.

Recently, new kinds of networks organized in many layers

achieved good results in many problems of a wide spectrum

of applications. From the emergence of RNNs for modeling

sequential parameters, e.g. in human speech, handwriting

recognition and synthesis [26] [27], new trends in modeling the

dependent nature of sequential information have been opened.

RNNs can store information by feedback connections between

neurons in the hidden layers to themselves or others neurons

in the same layer.

With the aim of storing information in the short and the

long term, LSTM networks presented in [28] have introduced

a set of gates and memory cells that control the access, writing

and propagation of memory values over the network. LSTM

networks presented encouraging results in speech recognition

and music composition, which heavily depends on previous

states of the information [29] [30] [28].

Figure 1 illustrates a unit (substituing the neuron) in the

hidden layer of the network. The four gates controls the

operations of input, output, and erasing (forget gate) the

memory value. More details on the training procedure and the

mathematical modeling of the LSTM can be found in [31].

Fig. 1. Unit memory of a LSTM. x(t) is the input and h(t) the output of
the unit. i, o, f represent the gates, and c the value of the memory.

D. Denoising with Deep Neural Networks

The idea of training a neural networks in speech enhance-

ment and denoising was first introduced about thirty years

ago, with networks trained and tested on binary input patterns,

corrupted by randomly flipping a fraction of the input bits.

Other than binary inputs, acoustic coefficients were modeled

with a single layer a few years later. Neither the computer

capabilities nor the algorithms were adequate for including

more hidden layers or considering much larger sets of data, so

the benefits could not encourage many more experiences [16].

As usual, parameters of the DNN are found using training

data in order to minimize the average reconstruction of the

input, that is, to have output f(y) as close as possible to the

uncorrupted signal x [32].

One of the recent architectures of neural networks that have

achieved considerable success is called a denoising autoen-

coder, consisting of two steps: the first one is the encoder,

which performs a mapping f that transforms an input vector

y into a representation h in the hidden layers. The second step

is the decoder, which mapped back the hidden representation

into a vector x̂ in input space.

For this purpose, during the training stage, noise corrupted

features are presented at the inputs of the autoencoders, while

the corresponding clean features of the same dimensionality

became the outputs. The training algorithm adjusts the param-

eters of the network in order to learn the complex relationships

between them.

III. PROPOSED SYSTEM

In order to improve the enhancement of noisy utterances, we

apply as a first stage the Wiener filter at the noisy utterances.

In the second stage, we parametrize the waveform at the output

of the filter and train a autoencoders of LSTM. Each network

maps the Wiener-enhanced parameters x̃ to clean parameters

x.

Figure 2 illustrate this procedure for denoising 39 MFCC,

as used in this paper. After training, for an input vector y, the

network produces an output x̂(y,W) which depends on the

input y and the parameters W of the network (i.e., the set of

weights). The purpose of training is to ensure that the outputs

represent a closer version of the correspondent clean vector

x. The process can be expressed in terms of the objective

function [33]:

min
W

E [x− x̂(y,W)] . (7)

Also, the process requires the training of one autoencoder

for each noise type and level.

IV. EXPERIMENTAL SETUP

We shall describe in some detail the experimental setup

that was followed in the paper. The whole process, from data

generation to evaluation, can be summarized in the following

steps:

1) Noisy database generation: Files containing different

types of noise were generated and added to each audio

file in the database for a given signal-to-noise ratio

(SNR). Two types of noise were generated and added:

White Noise and Pink Noise. Five noise levels were
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Fig. 2. Denoising autoencoder with LSTM units in hidden layers

added, in order to cover a range from light to heavy

noise levels for each noise type.

2) Feature extraction and input-output correspondence: A

set of parameters was extracted from the noisy, the

Wiener-enhanced and the clean audio files. Those from

the noisy files (or from the Wiener-filtered) were used

as inputs to the networks, while the corresponding clean

features were the outputs.

3) Training: During training, using forward pass and back-

propagation through time algorithm, the weights of the

networks were adjusted as the noisy and clean utterances

were presented at the inputs and at the outputs. A total

of 900 utterances (about 80% of the total database) were

used for training. Details and equations of the algorithm

followed can be found in [34].

4) Validation: After each training step, the sum of squared

errors were computed within the validation set of 182

utterances (about 15% of the total database), and the

weights of the network updated in each improvement.

5) Test: A subset of 50 randomly selected utterances (about

5% of the total amount of utterances of the database) was

chosen for the test set. These utterances were not part of

the training process, to provide independence between

the training and testing. The same 50 sentences were also

used for the results obtained with the Wiener filter alone

and the LSTM networks without the hybrid system.

In the following subsections, further details of the main

experimental setup are given.

A. Database

In our work, we chose the SLT voice from the CMU

ARCTIC databases [35], designed for speech research. The

whole set of 1132 sentences were used to randomly define

the training, validation and test sets. In our work, we chose

the female SLT voice, and the whole set of 1132 sentences

were used to randomly define the training (849 sentences),

validation (233 sentences) and test sets (50 sentences).

B. Noise

Artificially generated White and Pink noise was added to the

waveforms of the database to achieve a desired SNR. The SNR

levels considered for the experiments were selected according

to the criteria of degrading the speech signal from heavy to

light in the three cases of added noises.

C. Feature extraction

The audio files of the noisy and the Wiener-filtered database

were downsampled to 16kHz, 16 bits, to extract parameters

using the Ahocoder system [36]. A frame size of 160 samples

and frame shift of 80 samples were used to extract 39 mfcc,

f0 and energy of each sentence.

After the enhancement, a waveform can be synthesized from

parameters using the same Ahocoder system, from a sequence

of 41-dimensional vectors, using separate files for f0 and

energy + mfcc (enhanced) values.

D. Evaluation

Two objective measures were selected to evaluate the results

given by the different enhancement methods:

• PESQ: This measure uses a psychoacoustic model to

predict the subjective quality of speech. This measure is

defined in the ITU-T recommendation P.862.ITU. Results

are given in interval [0.5, 4.5], where 4.5 corresponds to

a perfect reconstruction of the signal [37].

• Weighted-slope spectral distance (WSS): This measure

calculates the weighted difference between spectral slopes

in frequency bands, by measuring the difference between

adjacent spectral magnitudes [38].

E. Experiments

For comparison purposes, we kept the output of the Wiener

filter, and also trained another set of LSTM networks to

directly map the noisy features to clean features. The base

system is described following the nomenclature:

• LSTMA: One autoencoder LSTM network is used to

enhance 39 MFCCs, leaving the noisy energy and f0
parameter without enhancing.

Each LSTM (one for each noise level) was trained to

map the corresponding noisy features (or enhanced by

the Wiener filter) of the waveform to clean features. The

proposed hybrid system is described using the following

nomenclature:

• HW-LSTMA: On the first stage, the Wiener filter is

applied to the waveform. At the output of the Wiener

filter, one denoising LSTM is used to enhance 39 MFCCs,
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leaving the energy and f0 parameter of the Wiener filter

output.

Each sentence was parameterized using the Ahocoder sys-

tem. The LSTM architecture for the networks was defined by

trial and error. Initially, we considered a single hidden layer

with 50 units and then increased the size with steps of 50

units, up to three hidden layers with 300 units in each layer.

The final selection consisted of a network with three layers

containing 150, 100 and 150 units in each one.

This network gave the best results in the trial experiments,

and also had a manageable training time, considering that we

use 20 LSTM networks in this work. The training procedure

was accelerated by a NVIDIA GPU system, taking about 7

hours to train each LSTM.

V. RESULTS AND DISCUSSION

The results are organized into two parts. In the first part

(Section V.A), we present the average scores of objective

measurements of the test set for the hybrid system and its

comparison to the Wiener filtering and LSTM system alone.

In the second part V.B, statistical test are applied to determine

whether or not each system represent statistically significant

enhancement of the noisy signal.

A. Objective measures

The results for WSS for the two kinds of noise and the

five noise levels are presented in Table I. The hybrid system

HW-LSTMA achieves the best results for three levels of white

noise, corresponding to the higher levels. The most remarkable

improvement for the White noise with the Hybrid system was

at SNR-10, where HW-LSTMA obtained a 45% better value

than the Wiener filter. The LSTM autoencoder achieves best

results in the lighter levels of noise.

For the Pink noise, the hybrid system achieves best result

for the higher SNR, where the LSTMA obtained best results

in the rest of levels. The hybrid approach performs similar in

most of cases, and both succeed in enhancing significantly the

noisy signal, as described in the next subsection.

The results for PESQ are shown in Table II. For this

objective measure, the hybrid HW-LSTMA gives the best

results in every level of White Noise. For SNR-10, the PESQ

raised 50% with the Hybrid system compared to the Wiener

Filter. In SNR-5 the PESQ was 54% better with the Hybrid

system than the Wiener filter, and 82% better than the LSTM

alone.

For the case of Pink noise, the Wiener filter alone achieved

the best result for the higher noise level, but in the rest of

levels, the hybrid HW-LSTMA present the best results, sharing

the best result in some noise levels with the LSTMA. For the

ten cases of noise types and levels, the hybrid system achieved

the best PESQ in nine cases.

Figure 3 illustrate some spectrograms of the same utterance,

from the noisy to the clean version filtered with Wiener and

the Hybrid proposal.

B. Statistically significant enhancement of the noisy speech
signal

In this section, we present a statistical analysis in order

to determine when the results presented so far significantly

enhance the noisy speech signal. One reason for this is the

fact that an algorithm may give the best result for a measure

without significantly enhancing the noisy signal.

For the statistical analysis, we applied Tukey’s HSD

test [39] [40] to assess significant differences between the

enhanced speech signal and the noisy signal. This test gives

pairwise comparisons between all results and the Tables III-IV

report which of the algorithms significantly improve the noisy

speech utterances.

In Table III, we see that hybrid HW-LSTMA achieves

significant enhancement for WSS at all noise levels of White

noise, succeeding among the rest of systems. For Pink noise,

the results of HW-LSTMA and LSTMA also improved the

noisy signal significantly

In the case of PESQ, Table IV, the results for White noise

are similar concerning the enhancing the noisy signal at all

noise levels for the hybrid system. Wiener and the LSTMA’s

improved significantly only at the lower noise levels. For

Pink noise, the results of significance are similar for all the

algorithms, where it can also be noticed that none of them did

improve the noisy signal for this measure at the higher noise

level.

From these results, it can be established that at high SNR

levels, it is convenient to use only the LSTM networks,

which have a better capacity to recover information from the

noisy signal. This can be explained given that the frequency

information has not been corrupted significantly. At these

levels, with the hybrid approach, some information is lost

and the process does not result in benefits for the purpose of

enhancing the signal. This happens for more values of SNR

in White noise than in Pink noise.

When noise is presented at lower SNR levels (SNR -5, SNR

-10), the useful frequency information is hardly detectable

on the noisy signal. Here, the hybrid approach that first uses

the Wiener filter presents evident benefits, by eliminating part

of the noise component and allowing the LSTM networks to

reconstruct the content in a better way, as shown previously

in Figure 2.

VI. CONCLUSIONS

In this work, we have presented a new proposal for speech

enhancement using a hybrid approach consisting on Wiener

filters and deep neural networks.

We conducted an extensive comparison with the single

Wiener filter and the LSTM networks alone, and performed

statistical tests to assess the statistical significance in enhanc-

ing the noisy speech signals.

We evaluated the proposals using speech utterances taken

from a well-known speech database. Two different types of

noise, White and Pink were added to the utterances at five SNR

levels. The evaluations were performed using two common

objective quality measures.
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TABLE I
WSS RESULTS (AVERAGE MEASURES FOR THE TEST SET). THE LOWER VALUES REPRESENT BETTER RESULTS. * IS THE BEST RESULT.

White Noise Enhancement SNR -10 SNR -5 SNR 0 SNR 5 SNR 10
None 49.7 42.6 37.1 32.9 30.0

Wiener 68.8 57.8 47.8 40.2 34.5
LSTMA 72.0 54.9 27.8 21.0* 17.0*

HW-LSTMA 38.5* 30.6* 26.6* 23.7 20.0
Pink Noise Enhancement SNR -10 SNR -5 SNR 0 SNR 5 SNR 10

None 63.6 55.1 47.0 39.4 33.3
Wiener 79.2 67.5 33.7 41.9 34.1
LSTMA 70.9 41.3* 28.3* 19.7* 15.2*

HW-LSTMA 64.8* 45.0 29.5 22.8 18.1

TABLE II
PESQ RESULTS (AVERAGE MEASURES FOR THE TEST SET). THE HIGHER VALUES REPRESENT BETTER RESULTS. * IS THE BEST RESULT.

White Noise Enhancement SNR -10 SNR -5 SNR 0 SNR 5 SNR 10
None 1.0 1.1 1.3 1.6 1.9

Wiener 1.0 1.3 1.7 2.1 2.4
LSTMA 0.8 1.1 1.8 2.4* 2.7*

HW-LSTMA 1.5* 2.0* 2.2* 2.4* 2.7*
Pink Noise Enhancement SNR -10 SNR -5 SNR 0 SNR 5 SNR 10

None 0.8 1.1 1.3 1.7 2.0
Wiener 1.0* 1.3* 1.9 2.1 2.5
LSTMA 0.7 1.3* 1.9 2.5* 2.9*

HW-LSTMA 0.7 1.3* 2.1* 2.5* 2.9*

(a) Pink Noise results for SNR 10

(b) White Noise results for SNR -10

Fig. 3. Spectrograms for the noisy, clean and enhanced utterances
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TABLE III
WSS RESULTS. TICKS INDICATE SIGNIFICANT ENHANCEMENT OF NOISY SPEECH

White Noise Enhancement SNR -10 SNR -5 SNR 0 SNR 5 SNR 10
Wiener
LSTMA � � �

HW-LSTMA � � � � �
Pink Noise Enhancement SNR -10 SNR -5 SNR 0 SNR 5 SNR 10

Wiener �
LSTMA � � � �

HW-LSTMA � � � �

TABLE IV
PESQ RESULTS. TICKS INDICATE SIGNIFICANT ENHANCEMENT OF NOISY SPEECH

White Noise Enhancement SNR -10 SNR -5 SNR 0 SNR 5 SNR 10
Wiener � � �
LSTMA � � �

HW-LSTMA � � � � �
Pink Noise Enhancement SNR -10 SNR -5 SNR 0 SNR 5 SNR 10

Wiener � � � �
LSTMA � � � �

HW-LSTMA � � � �

The results show that our hybrid approach achieves better

results than the Wiener filter and the LSMT networks alone in

enhancing the speech signals for the majority of noise levels

and noise types.

The main shortcoming of out hybrid approach is the com-

putational cost of training the number of networks required,

because kind of noise and every noise level requires indepen-

dent networks, and each one a training time of about seven

hours. After training, applying the LSTM networks for noise

reduction in test sentences requires less than a second to

enhance an utterance.

The computational cost is an obstacle, for example, to

the time needed for finding good network architectures and

suitable training parameters. However, the results have shown

the capacity of the hybrid systems to significantly enhance

noisy speech of different types. For implementation in devices

or applications, additional noise aware systems should be

integrated to match the specific noise type and level of the

trained networks.

Future work will include the new combination of hybrid

algorithms, to improve the enhancing of the noisy speech,

as well as exploring ways of reducing the computational

cost of training. Finally, new types of noise and multiple-

noise conditions could be considered for the proposal, with

additional evaluation measurements.
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[23] M. Coto-Jiménez, J. Goddard-Close, J. and F.M. Martı́nez-Licona.
“Improving automatic speech recognition containing additive noise
using deep denoising autoencoders of LSTM networks.” International
Conference on Speech and Computer. Springer, Cham, 2016, pp. 354-
361.

[24] X. Lu, et al. “Speech enhancement based on deep denoising autoen-
coder.” Proceedings of INTERSPEECH 2013, pp. 436-440.

[25] P. Scalart. “Speech enhancement based on a priori signal to noise
estimation.” IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP), 1996, pp. 629-632.

[26] F. Yuchen, et al. “TTS synthesis with bidirectional LSTM based recur-
rent neural networks.” Proceedings of INTERSPEECH 2014, pp. 1964-
1968.

[27] H. Zen, and H. Sak. “Unidirectional long short-term memory recurrent
neural network with recurrent output layer for low-latency speech
synthesis.” IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP) 2015, pp. 4470-4474.

[28] H. Sepp, and J. Schmidhuber. “Long short-term memory.” Neural
computation 9.8 (1997), pp. 1735-1780.

[29] A. Graves, N. Jaitly, and A. Mohamed. “Hybrid speech recognition
with deep bidirectional LSTM.” IEEE Workshop on Automatic Speech
Recognition and Understanding (ASRU), 2013, pp. 273-278.

[30] A. Graves, S. Fernández, and J. Schmidhuber. “Bidirectional LSTM
networks for improved phoneme classification and recognition.” In-
ternational Conference on Artificial Neural Networks. Springer Berlin
Heidelberg, 2005, pp. 799-804

[31] F.A. Gers, N. Schraudolph, and J. Schmidhuber, “Learning precise
timing with LSTM recurrent networks.” Journal of machine learning
research, 2002 3(Aug), pp. 115-143.

[32] V. Pascal, et al. “Stacked denoising autoencoders: Learning useful
representations in a deep network with a local denoising criterion.” The
Journal of Machine Learning Research, 2010(11), pp. 3371-3408.

[33] S. Thomas, S.H.R. Mallidi, S. Ganapathy and H. Hermansky. “Adap-
tation transforms of auto-associative neural networks as features for
speaker verification.” In Odyssey, 2012, pp. 98-104.

[34] K. Greff, R.K. Srivastava, J. Koutnı́k, B.R. Steunebrink and J. Schmid-
huber, J. “LSTM: A search space odyssey”. IEEE transactions on neural
networks and learning systems, 28(10), 2017, pp. 2222-2232.

[35] J. Kominek and A.W. Black. “The CMU Arctic speech databases”. Fifth
ISCA Workshop on Speech Synthesis, 2004, pp. 223-224.

[36] D. Erro, I. Sainz, E. Navas and I. Hernaez. “Improved HNM-based
Vocoder for Statistical Synthesizers.” Proceedings of INTERSPEECH
2011, pp. 1809-1812.

[37] G. Beerends, et al. “Perceptual evaluation of speech quality (pesq)
the new itu standard for end-to-end speech quality assessment part ii:
psychoacoustic model.” Journal of the Audio Engineering Society 50.10,
2002, pp. 765-778.

[38] D. Klatt. “Prediction of perceived phonetic distance from critical-band
spectra: A first step.” IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP) 1982, pp. 1278-1281.

[39] J.W. Tukey. “Comparing individual means in the analysis of variance.”
Biometrics (1949): pp. 99-114.

[40] D.C. Montgomery. “Design and analysis of experiments.” John Wiley
& sons, 2017.

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

M
. C

ot
o-

Ji
m

en
ez

, J
. G

od
da

rd
, L

. D
i P

er
si

a 
&

 H
. L

. R
uf

in
er

; "
H

yb
ri

d 
sp

ee
ch

 e
nh

an
ce

m
en

t w
ith

 w
ie

ne
r 

fi
lte

rs
 a

nd
 d

ee
p 

L
ST

M
 d

en
oi

si
ng

 a
ut

oe
nc

od
er

s"
20

18
 I

E
E

E
 I

nt
er

na
tio

na
l W

or
k 

C
on

fe
re

nc
e 

on
 B

io
in

sp
ir

ed
 I

nt
el

lig
en

ce
 (

IW
O

B
I)

, 2
01

8.


		2018-09-12T09:31:28-0400
	Preflight Ticket Signature




