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Abstract The P300 component of event-related potentials (ERPs) is widely used in the imple-
mentation of brain computer interfaces (BCI). In this context, one of the main issues to solve is the
binary classification problem that entails differentiating between electroencephalographic (EEG)
signals with and without P300. Given the particularly unfavorable signal-to-noise ratio (SNR) in
the single-trial detection scenario, this is a challenging problem in the pattern recognition field. To
the best of our knowledge, there are no previous experimental studies comparing feature extraction
and selection methods for single trial P300-based BCIs using unified criteria and data. In order
to improve the performance and robustness of single-trial classifiers, we analyzed and compared
different alternatives for the feature generation and feature selection blocks. We evaluated differ-
ent orthogonal decompositions based on the Wavelet Transform for feature extraction, as well as
different filter, wrapper and embedded alternatives for feature selection. Accuracies over 75% were
obtained for most of the analyzed strategies with a relatively low computational cost, making them
attractive for a practical BCI implementation using inexpensive hardware.
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1 Introduction

The natural communication pathways of the brain with the outside world (i.e. peripheral nerves
and muscles) can be damaged irreversibly as an aftermath of accidents or illness. This damage
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2 R. Acevedo et al.

usually reduces the ability of a person to communicate and interact with the environment. In
extreme cases, and despite the preservation of cognitive abilities, patients completely lose muscle
control (even ocular control), falling into a condition called locked-in syndrome [42]. Nowadays,
there are devices designed to partially replace or supplement the functions of the brain natural
communication pathways, allowing patients to command computers and thereby interact with the
outside world; these systems are called brain-computer interfaces (BCI) [46].

A BCI can be based on different physiological phenomena. One of the most widely used is a
component of the event-related potential (ERP) called P300. When an infrequent or particularly
significant auditory, visual or somatosensory stimulus is mixed with frequent or routine stimuli,
a P300 is generally evoked over the parieto-occipital cortex, and recorded through the electroen-
cephalogram (EEG) [31]. This phenomenon can be used to implement a BCI called P300 speller, in
which the user is prompted to select symbols from a matrix on a computer screen [10]. To determine
which symbol the user selected, the system must be able to solve the binary classification prob-
lem that entails differentiating between electroencephalographic (EEG) signals with and without
P300. To do this, it is common to repeat each stimulus several times to record and subsequently
average all the responses. The repetition improves the classification accuracy by enhancing the
signal-to-noise ratio (SNR) of the responses. However, it comes at the cost of increasing the time
necessary to make a decision, which fatigues the user and may reduce the information transfer rate
of the system. It is therefore highly desirable to solve the single trial classification problem with
the highest possible accuracy. In this work, we will focus in the binary classification of single trial
post-stimulus signals.

The performance of a BCI is highly dependent on the classification and feature extraction meth-
ods used to predict the user’s intention. Several feature extraction methods have been proposed in
the context of P300 based BCIs, among which can be mentioned peak picking and area computa-
tion [10], time-frequency representations [4], matched filtering [41], piecewise prony method [14] and
temporal features [15]. In particular, wavelet decompositions have been applied in different ways,
either using continuous or dyadic transforms [4,25,28,40]. Wavelet representations have a compact
support that allows to capture local characteristics of the P300 wave in the time-frequency plane
that are discriminative in a computationally efficient way [34]. They also provide a flexible frame-
work, allowing to compactly represent several different types of signal characteristics. Moreover the
existence of fast algorithms, combined with feature selection methods allow low-cost BCI hardware
implementations. As an example, Saavedra et al. [35] proposed a new approach of wavelet denois-
ing, taking into account the correlation between channels, with the aim of improving the SNR ratio
in ERP recordings. This was done by combining phase and amplitude information in the wavelet
domain to automatically select a time window on each channel that maximizes the separability of
classes.

Alternatively, Genetic Algorithms (GAs) have also been previously used for feature generation
and selection [7,8,16]. Recursive Feature Elimination (RFE) method has also been proposed with
varying degrees of success, for selection of single features or complete channels [32,33]. Worth
mentioning are the articles of Lindig-León et al. and Kindermans et al. that use the same database
as the main one in the present work [17,20]. The first one developed a method that aims to reduce
the compromise between spelling rate and precision. They used a Bayesian approach to estimate the
a posteriori probability associated with the classification of each target using a linear discriminant
as classifier. The second one proposed a BCI capable of spelling without any training, using inter-
subject information as well as language models based on hidden Markov models, and featuring an
unsupervised classifier.

There are exhaustive reviews in the literature on classification algorithms [21] as well as on fea-
ture extraction and classification algorithms [2,22]. However, these works are limited to reviewing
techniques used by different authors on different studies without unified criteria and data. On the
other hand, different feature extraction strategies have also been compared within single articles.
Amini et al used intelligent segmentation technique that approximates P300 signals with non-si
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Fig. 1: Typical architecture of a brain computer interface.

uniform straight lines [1], Turnip et al compared AAR (Adaptive Autoregressive Model), JADE
(Joint Approximation Diagonalization of Eigen-matrices) and SOBI (second- order blind identi-
fication) algorithms [43] and Wang et al proposed selection of the wavelet coefficients that best
represent the P300, according to a Fisher’s distance criterion [44]. All these works have been carried
out on averaged responses which, as previously stated, constitute an easier problem to solve than
single trial classification. However, to the best of our knowledge, there are no previous experimental
studies comparing feature extraction and selection methods for single trial P300-based BCIs using
unified criteria and data.

The aim of this study was to analyze and compare different alternatives for the feature genera-
tion and feature selection stages in order to improve the performance and robustness of single-trial
classifiers. Different orthogonal decompositions based on the Wavelet Transform for feature gen-
eration, as well as different filter, wrapper and embedded alternatives for feature selection were
evaluated, in order to select the best method based on commonly used performance indexes for
BCIs.

2 Materials and Methods

2.1 BCI architecture

The typical architecture of a BCI, as shown in Figure 1, consists of a signal acquisition block, a signal
processing and classification block and a translation block. Particularly, the signal processing and
classification block can be further divided into pre-processing, feature generation, feature selection
and classification sub-blocks. The pre-processing block receives the temporal signals from the S
sensors as input and prepares them for the following processing stages through different techniques,
such as filtering or outlier remotion, and segments an N length temporal window of each channel
discrete signal xi to present a sample matrix X = [x1, ...,xS ] ∈ RN×S as output. The feature
generation block transforms the original signals xi into their yi representations through basis
changes and outputs the representations Y = [y1, ...,yS ] ∈ RN×S . The feature selection process
reduces the total number of features from a N × S matrix to a z ∈ RK vector, to be presented to
the classification block. The sets containing the training patterns at each stage will be denoted by
TX, TY and Tz and the sets containing the testing patterns by SX, SY and Sz. The following
sections will describe alternatives for feature generation and feature selection sub-blocks, which are
the main focus of the present article.si
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4 R. Acevedo et al.

2.2 UAM Database and preprocessing

The dataset1 used to train and evaluate the different methods was recorded at the Neuroimaging
Laboratory of the Department of Electrical Engineering of the UAM (México) using the P300Speller
application of the BCI2000 system [39]. Each visual stimulus lasted 62.5 ms, with fixed interstimulus
intervals of 125 ms. A g.tech g.USBamp amplifier was used to record 10 EEG channels (Fz, C3,
Cz, C4, P3, Pz, P4, PO7, PO8 and Oz) with a sampling frequency of 256 Hz. Recordings were
taken from 18 healthy subjects, aged between 21 and 25 years old. For each subject, 3780 post-
stimulus signals were recorded, from which 630 contained a P300 response. An 8th-order Chebyshev
bandpass filter (0.1-60 Hz) and a notch filter (60 Hz) were applied to the recorded signals, which
were afterwards down-sampled to 64 Hz and segmented to obtain 64-sample epochs. All experiments
in this work contemplated a training stage and a testing stage. The available epochs were balanced
so each class (with P300 and without P300) was equally represented. As a result, 630 epochs from
each class were used from each subject: 480 epochs were used for training and 150 epochs were
used for testing. The same partition was used in all the experiments to allow a direct comparison
between the proposed strategies. The system was trained and tested for each individual, and the
results presented are averaged across subjects.

2.3 Feature generation

From the perspective of signal spaces, a discrete signal x ∈ RN can be written as x = {xn}, with
1 ≤ n ≤ N , where it is implicitly represented in the canonical basis as a linear combination of
displaced Kronecker deltas according to Equation 1:

x[n] =
N∑
k=1

x[k]δ[n, k]. (1)

Given a basis transformation matrix Φ ∈ RN×N , it is possible to write x = Φy, where y can
be seen as a representation of x on another basis. The basis change operation is performed using
Equation 2:

y = Φ−1x. (2)

This new representation of the original signal could be used to highlight certain features; in this
particular case, we are specifically interested in the P300 wave, which is immersed in the background
EEG. It should be mentioned that in the case of unitary transformations (such as the ones used in
this work), Φ−1 from Equation 2 is equal to the conjugate transpose of Φ, which notably simplifies
the computations. The canonical basis is implicitly used for the raw temporal patterns, which
consist of the concatenation of the 64-sample epochs from the ten channels. Bases obtained through
the Discrete Dyadic Wavelet Transform (DDWT) and the Wavelet Packet Transform (WPT) are
further evaluated in this work.

Discrete Dyadic Wavelet Transform

The Discrete Dyadic Wavelet Transform (DDWT) is one of the most commonly used methods to
generate orthogonal bases from the Wavelet Transform, due to its simple and inexpensive com-
putational implementation. A dyadic wavelet is a function ψ(t) ∈ L2(R) such that the family of
functions ψk,n(t) = 2k/2ψ(2kt−n) for k, n ∈ Z form an orthonormal basis in L2(R). To define useful
orthogonal wavelets, the multiresolution analysis (MRA) is commonly used. The MRA establishes
a relation between the pair of wavelet and scaling functions and a pair of quadrature mirror filters:

1 Available in http://akimpech.izt.uam.mx/p300db/doku.phpsi
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the low-pass filter is associated with the scaling function and the high-pass filter is associated with
the wavelet function. Using the results derived from the MRA and appropriately discretizing the
signal and filters, it is possible to obtain the following recursive expressions:

cm−1[n] =
√

2

+∞∑
i=−∞

h[i− 2n]cm[i],

dm−1[n] =
√

2

+∞∑
i=−∞

g[i− 2n]cm[i],

(3)

where cm are the approximation coefficients, dm are the detail coefficients in scale m, h[i] and
g[i] are ith samples of the impulse responses belonging to the discretized low-pass and high-pass
quadrature mirror filters associated with the scaling and wavelet functions, respectively. Equations
3 state that the approximation and detail coefficients on a certain scale can be obtained through
the approximation coefficients from the previous scale. This property can be exploited to efficiently
compute the DDWT through a filter bank. Equivalently to Equation 3, a recursive expression can
be used to reconstruct the transformed signal:

cm[n] =

+∞∑
i=−∞

h[n− 2i]cm−1[i] +

+∞∑
i=−∞

g[n− 2i]dm−1[i], (4)

where k < l and m = l, ..., k − 1.
It is important to mention that most of the wavelet and scaling functions cannot be written in

closed-form and are defined trough their corresponding filters. To obtain the discrete ψm−1 and
φm−1 associated with the ith coefficient of the m − 1 scale, vectors with value one in the sample
i and zeros otherwise have to be inverted using Equation 4. This process is called the cascade
algorithm and it allows to obtain temporal functions ψ and φ. Using the the discretized versions
of ψ and φ, the DDWT can be written as a discrete basis change matrix:

Φ−1
DDWT =

[
{φl[i− 2l−k+1n]}n ∈ Z; {ψm[i− 2m−k+1n]}k−1<m≤l,n∈Z ∈ Z

]
, (5)

where 0 < i ≤ N − 1 indicates the rows and the columns vary with m, n and l to complete N
columns in total.

In the case of the DDWT patterns, the multiresolution decomposition was performed up to level
6. The decomposition was applied independently to each channel and consisted of the coefficients
corresponding to the first (32 coefficients), second (16 coefficients), third (8 coefficients), fourth (4
coefficients), fifth (2 coefficients) and sixth (1 coefficient) details and the sixth approximation (1
coefficient), totaling 64 coefficients per channel, and consequently 640 features were obtained per
pattern. The Daubechies wavelet with 4 vanishing moments (db4) with periodic padding was used
2.

Wavelet Packet Transform

The Wavelet Packet Transform (WPT) is a generalized version of the DDWT. It performs the
decomposition of the high frequency components (details) as well as the low frequency components
(approximations). As in the DDWT, the discrete temporal waveforms associated with each coeffi-
cient in each scale can be obtained using the cascade algorithm to get a dictionary of waveforms D.
However, the decomposition D in the WPT can be redundant, i.e. the number of waveforms in D
is larger than the waveforms’ dimension. There are nevertheless several different possible subsets

2 The DDWT decompositions were obtained using the MATLAB Wavelet Toolbox (Mathworks, Inc., Natica,
MA, USA)si
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6 R. Acevedo et al.

γ of functions capable of constituting orthogonal bases. In fact, with a depth k, a total of 22(k−1)

different orthogonal bases Φγ , γ ∈ Γ can be extracted from the complete WPT decomposition
dictionary D [36].

Different methods have been proposed to select the best orthogonal basis among all the afore-
mentioned possibilities. Some of these methods exploit the particular tree structure of the WPT to
implement a fast algorithm to perform this task. Specifically, Wikerhauser and Coifman proposed
an algorithm to adaptively estimate the best basis for a given signal x, according to a conve-
nient cost function [6]. The cost function J : y = yi → R has to be additive, i.e. J(0) = 0 and
J(y) = J(yi). Using this notation, the problem can be written as:

min
γ∈Γ

J(Φ−1
γ x). (6)

The most common form of cost function used in this cases is the Shannon Entropy, since the
choice of the appropriate basis is usually made with the aim of retaining the greatest amount of
information in the smallest number of coefficients [38]. The fast method used to solve problem is
called Best Orthogonal Basis (BOB) [6]. There is a variant of this algorithm that can be applied to
several signals called Joint BOB, used to obtain the best representation in terms of the efficiency of
all the signals representations simultaneously. However, these methods do not necessarily provide
good representations in terms of classification performance.

For the classification problem, the cost function should measure the discrimination power of each
possible decomposition rather than the flatness of the signal representation energy distribution. To
tackle this problem, Saito and Coifman proposed a method called Local Discriminant Basis (LDB)
that, in a similar way to the BOB algorithm, allows to efficiently select an orthogonal basis from
a WPT dictionary with the objective of maximizing the separation between the different classes
[36]. Several discrimination measures have been proposed, among them are the relative entropy
(also called Kullback-Leibler distance or I-Divergence), the J-Divergence and the sum of squares
[37]. As in the case of the BOB algorithm, the cost function used in LDB should be additive. It
is important to remark that along the optimal basis the LDB algorithms also provides a score for
each of its elements, allowing to rank them according to their discrimination power.

As for the DDWT, the WPT decomposition was performed up to level 6. The Daubechies
wavelet with 4 vanishing moments (db4) with periodic padding was used and the decompositions
were obtained 3. As expected, the BOB algorithm did not perform better than DDWT on pre-
liminary ERP classification experiments [30]. For this reason, only the LDB algorithm has been
considered in this work to extract orthogonal bases from the WPT dictionary [37]. As mentioned
before, the LDB algorithm returns a ranking for the basis elements selected. The number of coef-
ficients was hence reduced using this information, keeping the best 18 coefficients in each channel
[29].

2.4 Feature selection

Feature selection methods can be classified in filter, wrapper and embedded models [12]. In the
filter model, the feature evaluation criteria is independent of the classification stage. Therefore, the
classifier learning process is not included in the feature selection method [12]. Two simple filter
feature selection methods were tested in this work. The first one was the remotion of the lower
ranking basis elements provided by the LDB algorithm and the second one was the remotion of
coefficients after wavelet smoothing (WS). For the wrapper model, the classifier is considered as
a black box and its performance is used to select the optimal feature subset [45]. In this case, a
feedback loop is established between the classifier and the feature selection block. Different random

3 The WPT decompositions were obtained using the MATLAB Wavelet Toolbox (Mathworks, Inc., Natica,
MA, USA)si

nc
(i

) 
R

es
ea

rc
h 

In
st

itu
te

 f
or

 S
ig

na
ls

, S
ys

te
m

s 
an

d 
C

om
pu

ta
tio

na
l I

nt
el

lig
en

ce
 (

fi
ch

.u
nl

.e
du

.a
r/

si
nc

)
R

. C
. A

ce
ve

do
, Y

. A
tu

m
, I

. E
. G

ar
ei

s,
 J

. B
iu

rr
un

, V
. M

ed
in

a 
B

añ
ue

lo
s 

&
 H

. L
. R

uf
in

er
; "

A
 c

om
pa

ri
so

n 
of

 f
ea

tu
re

 e
xt

ra
ct

io
n 

st
ra

te
gi

es
 u

si
ng

 w
av

el
et

 d
ic

tio
na

ri
es

 a
nd

 f
ea

tu
re

 s
el

ec
tio

n 
m

et
ho

ds
 f

or
 s

in
gl

e 
tr

ia
l P

30
0-

ba
se

d 
B

C
I"

M
ed

ic
al

 a
nd

 B
io

lo
gi

ca
l E

ng
in

ee
ri

ng
 a

nd
 C

om
pu

tin
g,

 2
01

8.



Title Suppressed Due to Excessive Length 7

search techniques can be used in this model, from which Genetic Algorithms (GAs) were chosen to
be tested in this study. Lastly, in the embedded model, the feature selection method and the classifier
can not be separated [45]. This is due to the fact that both stages are integrated, performing the
feature selection during the classifier’s learning process. Generally, the selection method is specific
for each type of classifier. An example of embedded model is the recursive feature elimination
(RFE) algorithm tested in this work.

Although the aforementioned is generally true, it is incorrect to state that a particular feature
selection methodology belongs exclusively to an embedded or wrapper model. Instead, this classifi-
cation depends on the relationship between the feature selection method and the classifier. In this
way, most algorithms (including RFE and GAs) can be implemented as part of a wrapper or an
embedded model [5].

Wavelet Smoothing

When performing a decomposition trough the DDWT, the frequency range of each of the details and
that of the resulting approximation is known, so it is possible to eliminate the ranges of frequencies
that are not of interest by zeroing the corresponding coefficients. The smoothing process consists on
removing the coefficients corresponding to the the components associated with the signal’s fastest
changes. It can be considered as a projection of the signal representation y into an orthogonal
subcomplete basis [30].

Considering that a large part of the energy in the frequency spectrum of the P300 is below 8
Hz [13], two alternatives of wavelet smoothing were tested. The first one consisted on removing
the coefficients corresponding to the first detail (≈16-32 Hz), thus generating patterns consisting of
320 features (32 per channel) which will subsequently be called DDWT-D1. The second alternative
consisted on removing the coefficients corresponding to the first and second details (≈8-32 Hz),
obtaining patterns of 160 features that will be called DDWT-D1D2.

Genetic Algorithm

GAs are based on the manipulation of a population of possible solutions to a given problem. These
solutions are encoded as binary chains that represent the genetic material of a population of individ-
uals [24]. Artificial operators of selection, crossover and mutation are applied in a stochastic search
process to find the best individual (best solution) thus simulating a natural evolutionary process.
Each potential solution is associated with a fitness value that measures its goodness. The fitness
function is related to the performance of the classifier for patterns generated with this particular
subset of features (dimensionality was also taken into account). The method’s implementation can
be seen in Algorithm 1.

Algorithm 1 Genetic Algorithm Wrapper’s pseudocode

1: procedure GAWRAPPER(TY) . Input: feature vectors
2: initialize(P): a population of p individuals is randomly initialized.
3: Fitness=evaluate(P): for each individual, a new set of patterns is generated (training and validation),

the classifier is trained and the fitness value is computed based on its performance.
4: while best(Fitness) ≤ Required F itness do
5: S=select(P): selection of new parents is performed.
6: O=crossover(S): crossover is used for each pair of parents to generate offsprings.
7: P=mutate(O): each offspring is mutated.
8: Fitness=evaluate(P).

9: return Pbest of all . Output: selected features
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8 R. Acevedo et al.

For the wrapper task, the number of bits for each individual is its total number of features, so
that each bit is related with a particular feature of the input pattern. In order to reduce the size of
search space, a unique template for all the channels is used. In this way, the ith bit value indicates
the presence (1) or absence (0) of the ith feature for all channels. The population size was set to
100 individuals. Each individual can be represented with a vector p ∈ ZK2 where K is the number
of bits and is chosen equal to the number of features per channel (64, 32 or 16). This result, along
with the number of active bits of the individual, is used to compute the fitness function

A(p;Tz) = waAccuracy(p;Tz) + wc
1∑K

i=1 p[i]
. (7)

where wa = 0.80, wc = 0.20 and Accuracy(p;Tz) consists on the accuracy obtained training an LDA
using a portion of Tz and testing it with its other portion, in both cases using only the coefficients
selected by p. This equation is defined to maximize the classification accuracy and minimize the
number of features simultaneously, with more emphasis in the accuracy [48]. The selection of
parents was implemented using tournament selection with competitions between two randomly
chosen individuals [27]. This process is repeated 20 times in order to select 20 individuals from the
population as progenitors for the new generation [23]. Simple crossover with a 0.95 probability and
single-bit mutation with a probability of 0.05 were employed [11].

Recursive Feature Elimination

The RFE is an iterative process consisting of three main steps: training the classifier, establishing
the feature ranking and removing the feature from the lowest ranking position [12]. In this work, the
RFE algorithm uses the absolute value of the classifier weights as the criterion for feature ranking.
The pseudocode of this process is presented in Algorithm 2. Note that the features selected using
RFE are not necessarily the same for all channels, in contrast with the other methods proposed in
which the same coefficients are selected for each channel. For this particular implementation of the
RFE algorithm, only one feature was removed at every iteration and the loop ended when only one
feature remained in the pattern. The criteria used to choose the subset of features that represents
the best solution was the classifier accuracy.

Algorithm 2 Recursive Feature Elimination pseudocode

1: procedure RFE(TY) . Input: the feature vector
2: Vectorization. Reshapes the matrices Y ∈ RN×S to vectors z ∈ RK : K = N × S
3: The training set Tz is divided into training (Tt1z) and validation (Tv1z) subsets.
4: for i=1:K do
5: Classifier training. Train the ith classifier Ci using Ttiz.
6: Storage of accuracy. Evaluate the Ci using Tviz and storage the .
7: Determination of the feature to remove. Find the classifier weight wn with the lowest absolute

value.
8: Removal of worst remaining feature. Set Tti+1

z and Tvi+1
z as Ttiz and Tviz without the nth feature.

9: return Subset of features with highest accuracy. . Output: selected features

2.4.1 Classifier

The Fisher Linear Discriminant Analysis (LDA) was chosen for the classification stage. Even though
the LDA has a simple implementation and low computational cost, it delivers similar performance
in comparison with more complex methods for the P300 classification problem [3].

The LDA, as any binary linear classifier, can be characterized by a function g(z) = wT z + b,
where w = [w1, ..., wK ] is the projection vector, z ∈ RK is the input vector and b is the bias term.si
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Title Suppressed Due to Excessive Length 9

The classification function assigns the class label c to each pattern z depending on the sign of the
function g(z). It is assumed that the probability distributions of each class are Gaussian.

To obtain the optimal projection vector w cost function that measures the ratio of the between-
class variance to the within-class variance is maximized. Defining as mi the mean of all z ∈ Tiz,
where Tiz is the set containing the training patterns belonging to class i, the between-class covariance
matrix is defined as

SB = (m2 −m1)(m2 −m1)T , (8)

and the within-class covariance matrix as

SW =
∑
z∈Ti

z

(z−m1)(z−m1)T +
∑
z∈Ti

z

(z−m2)(z−m2)T . (9)

Using these matrices the cost function for the LDA can be written as

F (w;Tz) =
wTSBw

wTSWw
. (10)

The direction of the w that maximizes F can be found by

w ∝ S−1
W (m2 −m1). (11)

The optimal bias term b is chosen to be between the mean of each projected class

b =
1

2
wT (m2 −m1). (12)

It is assumed that the probability distributions of feature vectors from each class are Gaussian.
It is important to highlight the effect of working with balanced data on the LDA performance.
The imbalanced data sets will not have effects on the projection vector w if the two covariance
matrices are identical, which is not true in most cases [47]. For this reason, balanced data was used
as described in the database description section.

The implementation of LDA provided in the PRTools library was used to perform the training
and evaluation of the patterns [9].

2.5 Performance indexes

The indexes selected to evaluate the performance are the Accuracy (Acc), Sensitivity (Sen), and
Specificity (Spe), defined as:

Acc =
TP + TN

NT
, Sen =

TP

FN + TP
, Spe =

TN

FP + TN
. (13)

where TP , TN , FP and FN are the number of true positives (correctly classified patterns with
P300), true negatives (correctly classified patterns without P300), false positives (incorrectly clas-
sified patterns without P300) and false negatives (incorrectly classified patterns with P300), re-
spectively, and NT is the total number of patterns in the test partition. Since in the case of the
P300-Speller the available data is imbalanced the balanced accuracy (BalAcc), was also computed.
This metric is designed to be insensitive to unbalanced data and can facilitate the analysis of the
results. It is defined as:

BalAcc =
Spe + Sens

2
. (14)

The number of features obtained with each method is also an important index to evaluate,
particularly in potential scenarios considering low-cost BCI hardware implementations with limited
processing power. In case of similar classification performance, methods resulting in fewer features
are preferable.si
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10 R. Acevedo et al.

2.6 Data analysis and statistics

A first analysis was performed within the different type of methods (i.e. feature selection from
temporal patterns, feature generation from DDWT patterns, feature generation and selection from
DDWT patterns), in order to determine which of the alternatives within that family provided
the best performance. A final comparison using the best performing methods was carried out
afterwards. To determine if there were statistically significant differences in performance indexes
among strategies, the normality of the performance index distributions was first evaluated using
the Shapiro-Wilk test. In most cases, data distributions failed the test, so the non-parametric
Friedman test was used to evaluate differences in performance between methods. In case that this
test detected a significant difference between groups, the Tukey test on mean ranks for post hoc
comparisons between pairs of methods was used. The level of statistical significance was set at
0.054.

3 Results

Performance indexes obtained by applying each of the methods are shown in Table 1, grouped
according to the experiments described below.

Table 1: Performance indexes means and standard deviations.

Patterns Sensitivity Specificity Accuracy # of features
Temporal 0.696± 0.05 0.695± 0.06 0.695± 0.05 640

Temporal and GAs 0.766± 0.07 0.774± 0.07 0.770± 0.05 131± 29
Temporal and RFE 0.768± 0.08 0.786± 0.08 0.777± 0.07 120± 74

DDWT 0.695± 0.05 0.696± 0.06 0.695± 0.05 640
DDWT-D1 0.770± 0.06 0.767± 0.06 0.768± 0.06 320

DDWT-D1D2 0.758± 0.06 0.739± 0.05 0.747± 0.05 160
DDWT-D1 and GAs 0.777± 0.06 0.786± 0.07 0.781± 0.06 163± 41

DDWT-D1D2 and GAs 0.732± 0.07 0.763± 0.07 0.748± 0.06 140± 16
DDWT-D1 and RFE 0.766± 0.07 0.789± 0.07 0.778± 0.06 111± 58

DDWT-D1D2 and RFE 0.727± 0.07 0.749± 0.08 0.738± 0.06 63± 34
WPT and LDB 0.785± 0.08 0.785± 0.08 0.785± 0.08 180

3.1 Feature generation using DDWT and smoothing (DDWT, DDWT-D1 and DDWT-D1D2)

Significant differences in performance indexes were found for the proposed methods and the refer-
ence method (Friedman, p < 0.001 for all variables). The DDWT-D1 and DDWT-D1D2 methods
resulted in significantly higher sensitivity than the reference method (Tukey, p < 0.05), and there
were no significant differences between them (Tukey, p > 0.05). Furthermore, the DDWT-D1 re-
sulted in significantly higher specificity than the reference and DDWT-D1D2 methods (Tukey,
p < 0.05). The DDWT-D1 and DDWT-D1D2 methods resulted in significantly better accuracy
than the reference method (Tukey, p < 0.05), and there were no significant differences between
them (Tukey, p > 0.05). In summary, the DDWT-D1 method was selected for the final analysis,
since its sensitivity and accuracy rates were comparable to DDWT-D1-D2, but it demonstrated
better specificity.

4 Statistics were carried out using SigmaPlot 12 from Systat Software, Inc., San Jose California USA, www.
systatsoftware.com.si
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3.2 Feature selection in temporal patterns(Temporal+RFE and Temporal+GAs)

Significant differences in performance indexes were found when feature selection methods were
applied to raw temporal patterns (reference method) (Friedman, p < 0.001 for all variables). Post
hoc analysis revealed that both alternatives for feature selection provided sensitivity, specificity, and
accuracy rates significantly higher the reference method with a lower number of features (Tukey,
p < 0.05). Furthermore, there were no significant differences between feature selection methods for
any of the indexes (Tukey, p > 0.05), so that both methods were considered for the final analysis.

3.3 Feature generation and selection in DDWT patterns (DDWT-D1+GAs, DDWT-D1+RFE,
DDWT-D1D2+GAs and DDWT-D1D2+RFE)

Significant differences were found in sensitivity (Friedman, p < 0.001), specificity (Friedman, p <
0.002), accuracy (Friedman, p < 0.001), and number of features (Friedman, p < 0.001). All feature
selection and generation alternatives performed better than the reference method (Tukey, p < 0.001
for all indexes). In particular, DDWT-D1D2+RFE and DDWT-D1D2+GAs resulted in significantly
lower sensitivity, specificity and accuracy than the other proposed alternatives (Tukey, p < 0.05).
Furthermore, DDWT-D1+ RFE presented similar values of sensitivity, specificity and accuracy
compared to DDWT-D1+GAs and DDWT-D1, but using significantly fewer features (Tukey, p <
0.05), so it was selected for the final analysis and the latter is discarded.

3.4 Final analysis (Temporal+RFE, Temporal+GAs, DDWT-D1+RFE and WPT+LDB)

Performance indexes for the methods selected for the final analysis are shown in Fig. 2. No sig-
nificant differences were found between the selected methods in terms of sensitivity (Friedman,
p < 0.615), specificity (Friedman, p < 0.376) or accuracy (Friedman, p < 0.457). However, there
were significant differences between in terms of number of features (Friedman, p < 0.001). In partic-
ular, Temporal+RFE, Temporal+GAs and DDWT-D1+RFE use significantly fewer features than
WPT+LDB (Tukey, p < 0.05), without any other significant differences between methods.

4 Discussion

In general terms, it can be said that performance indexes were higher than 0.70 in most of the
proposed strategies, and above 0.75 in more than half; which is an important achievement con-
sidering that with these values it would be possible to establish the communication of a person
through a BCI and eventually control a device [18,19]. Taking into account potential hardware
implementations of BCIs, strategies using temporal patterns and feature selection have advantages
over strategies based on DDWT and WPT, as they are simpler and generate patterns with smaller
dimensionality.

These results were contrasted with those reported by researchers who used the same UAM
database. Among these are included Saavedra et al., Lindig-León et al. and Kindermans et al., that
report the P300 classification rate [17,20,35]. In Table 2 we summarize the described results. In
general terms, the results obtained in this study are similar or better (in the case of single-trial
classification) than those reported in the literature, with the additional advantage of the reduced
computational cost for the methods that use temporal patterns with feature selection (GA or RFE).
Although Kindermans et al obtains a higher accuracy rate, they use patterns built using the average
of 3 trials, which represents an advantage compared to single trial patterns.

Finally, in order to test the robustness of the proposed methodology, we selected a few repre-
sentative methods from each strategy and we tested them using the BCI competition III databasesi
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Fig. 2: Performance of best feature generation and selection methods for the UAM database.

Table 2: Comparison of the results obtained for other authors using the UAM database.

Authors Accuracy # of trials
This work 0.78 Single trial

Saavedra et al [35] 0.56 Single trial
Lindig et al [20] 0.75 2 trials

Kindermans et al [17] 0.89 3 trials

[26]. This database is widely used in the field, but it has the disadvantage that it contains recording
from 2 subjects only. A total of 64 channels were acquired in positions of the 10-20 system and it
includes a pre-specified train/test data partition. To closely resemble the conditions of the UAM
database the signals, the patterns in this database were downsampled with a sampling frequency
of 64 Hz and segmented to obtain 64-sample epochs. Only ten of the original 64 channels were
used (Fz, C3, Cz, C4, P3, Pz, P4, PO7, PO8 and Oz). Due to the high class imbalance of this
datasets the balanced accuracy was also computed. The detailed results are presented in Table 3.
The average balanced accuracy for both subjects of evaluated methods were: temporal patterns
achieved 0.67, temporal+GAs patterns achieved 0.72, DDWT-D1 patterns achieved 0.68 and WPT
patterns achieved 0.67. The results corroborate the notion that all the proposed algorithms in this
article provide acceptable and comparable performance.

5 Conclusions

In this study, we compared different orthogonal decompositions based on the Wavelet Transform for
feature extraction, as well as with different filter, wrapper and embedded alternatives for feature se-
lection. To the best of our knowledge, there are no previous experimental studies comparing featuresi
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Table 3: Performances indexes obtained over the test patterns with the Wadsworth Center database for each of
the subjects (A or B).

Patterns Sensitivity Specificity Accuracy Bal. Accuracy # of features
A B A B A B A B A B

Temporal 0.74 0.76 0.56 0.65 0.59 0.66 0.65 0.70 640 640
WPT + LDB 0.73 0.76 0.55 0.65 0.58 0.67 0.64 0.70 180 180
DDWT sin D1 0.76 0.77 0.55 0.65 0.58 0.67 0.65 0.71 320 320

Temporal + GAs 0.79 0.85 0.62 0.62 0.67 0.68 0.71 0.73 270 280

generation strategies using wavelet dictionaries combined with different dimensionality reduction
techniques for BCIs based on single-trial classification of P300.

The use of strategies to improve the signal-to-noise ratio of single-trial EEG in the wavelet
domain, either through smoothing of dyadic discrete wavelet transform or wavelet packet trans-
form, proved to be valid alternatives to detect the P300 wave, since acceptable performance indexes
were obtained. On the other hand, feature selection methods showed similar performances, both
in wavelet and temporal patterns. However, the latter have an advantage when considering hard-
ware implementation of BCIs given their reduced computational cost, since it is not necessary to
transform the EEG signal.
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Biomédica, 7(14):51–59, 2013.

31. T. W. Picton. The P300 wave of the human event-related potential. Journal of Clinical Neurophysiology,
9(4):456–479, 1992.

32. H. Qi, M. Xu, W. Li, D. Yuan, W. Zhu, X. An, D. Ming, B. Wan, and W. Wang. Feature selection study of
P300 speller using support vector machine. In Robotics and Biomimetics (ROBIO), 2010 IEEE International
Conference on, pages 1331–1334. IEEE, 2010.

33. A. Rakotomamonjy and V. Guigue. BCI Competition III: Dataset II- Ensemble of SVMs for BCI P300
Speller. IEEE Transactions on Biomedical Engineering, 55(3):1147–1154, Mar. 2008.

34. L. Rufiner. Análisis y modelado digital de la voz. Técnicas recientes y aplicaciones. Ediciones UNL, Colecci’on
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