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Computational prediction of novel miRNAs
from genome-wide data

G. Stegmayer, C. Yones, L. Kamenetzky, N. Macchiaroli and D. H. Milone

Abstract The computational prediction of novel microRNAs (miRNAs) within a
full genome involves identifying sequences having the highest chance of being bona
fide miRNA precursors (pre-miRNAs). These sequences are usually named candi-
dates to miRNA. The well-known pre-miRNAs are usually only a few in comparison
to the hundreds of thousands of potential candidates to miRNA that have to be an-
alyzed. Although the selection of positive labeled examples is straightforward, it is
very difficult to build a set of negative examples in order to obtain a good set of
training samples for a supervised method. In this chapter we describe an approach
to this problem, based on the unsupervised clustering of unlabeled sequences from
genome-wide data, and the well-known miRNA precursors for the organism under
study. Therefore, the protocol developed allows for quick identification of the best
candidates to miRNA as those sequences clustered together with known precursors.

Key words: microRNAs prediction; genome-wide data; unsupervised model; clus-
tering; self-organizing map; high class imbalance.

1 Introduction

MicroRNAs (miRNAs) are a class of small non coding RNA molecules, present
in both animals and plants, with a major role in regulation of gene expression [1].
Many studies have shown that miRNAs are implied in several important processes,
for example, in cancer progression [2] as well as in viral infection progress [3]
and parasites development [4]. Given their role in promoting or inhibiting certain
diseases and infections, the discovery of new miRNAs is of high interest today.
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2 G. Stegmayer, C. Yones, L. Kamenetzky, N. Macchiaroli and D. H. Milone

MiRNA precursors (pre-miRNAs, also known as hairpins) generated during bio-
genesis have well-known RNA secondary structures that have allowed the develop-
ment of computational algorithms for their identification. They typically exhibit a
stem-loop structure or hairpin, with few internal loops or asymmetric bulges. Since
large amount of similar hairpins can be folded in a given genome, the identifica-
tion of those structures having the highest chance of being bona fide pre-miRNAs
should be addressed. Due to the difficulty in systematically detecting pre-miRNAs
by existing experimental techniques, which have proven to be time consuming and
costly, computational methods play an important role nowadays in the identifica-
tion of novel miRNAs [5, 6]. Machine learning methods essentially identify hairpin
structures in non-coding and non-repetitive regions of the genome that are charac-
teristics of miRNA precursor sequences, using structures, properties and features
of well-known pre-miRNAs during the learning processes to discriminate between
true predictions and false positives [7].

In a realistic scenario, when genome-wide data is used, a huge imbalance is of-
ten present between the positive class (a few known pre-miRNAs) and the unlabeled
data (hundreds of thousands sequences). This important fact may lead to overlearn-
ing the majority class and/or incorrect assessment of classification performance.
This means that most existing supervised proposals, although reporting very high
accuracies, cannot be really trusted in practical situations.

In this chapter we present a protocol to predict novel pre-miRNAs from genome-
wide data, with a classifier based on unsupervised learning. The model can predict
the best candidates to pre-miRNAs, as sequences are clustered together with the
well-known pre-miRNAs of the genomics data under study. This way, the very-hard
to build negative artificial examples must not be defined, making it useful to work
with genome-wide data from any organism.

2 Materials

2.1 Input data

• genomic DNA: A fasta file of genomic DNA (for example, genome.fa), with an
entry for each chromosome. The genomics data will be mined to identify the best
miRNA precursors.

• pre-miRNAs: A fasta file of known pre-miRNA sequences. These sequences are
retrieved from specialized databases or reported in the literature as experimen-
tally validated. These pre-miRNAs could be from the organism under study or a
phylogenetically related one.

• other known non miRNA RNA sequences (optional): A fasta file of CDSs,
tRNAs, rRNAs, non coding RNAs, and other no miRNAs sequences. These se-
quences can be used for filter out known other non miRNA RNAs.
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Computational prediction of novel miRNAs from genome-wide data 3

2.2 Software

• Einverted (EMBOSS package). Program for finding inverted repeats in nu-
cleotide sequences and genome folding.
Free available from emboss.sourceforge.net/download/.

• RNA fold. This program reads RNA sequences, calculates their minimum free
energy (MFE) structure and prints the MFE structure in bracket notation and its
free energy. It can be downloaded from
www.tbi.univie.ac.at/RNA/RNAfold.1.html.

• MiRcheck. Scripts to call and process einverted and RNAfold outputs. Free avail-
able from bartellab.wi.mit.edu/software.html

• BLAST. This program finds regions of similarity between biological sequences.
Available at
ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/

• miRNA-SOM. This is a tool for the discovery of pre-miRNAs from genome-wide
data. Available at
sourceforge.net/projects/sourcesinc/files/mirnasom/
(download version 23)

• miRNAfe (optional). It is a comprehensive tool to extract features from RNA
sequences, providing almost all state-of-the-art feature extraction methods used
today in several works from different authors.
Available at fich.unl.edu.ar/sinc/blog/web-demo/mirnafe/

3 Methods

This section shows in detail the individual steps necessary to carry out the pipeline
proposed for the analysis of raw genome-wide data, which is presented in Figure 1.
Each step of the pipeline will be described and exemplified with linux commands1.
Before beginning, the following software must be installed:

• Install einverted:
sudo apt-get install emboss

• Install RNAfold:
sudo apt-get install vienna-rna

3.1 Cut and fold genome-wide data

The input genome-wide data (a multi-fasta file named, for example, genome.fa) is
pre-processed by miRcheck scripts, which calls einverted and RNAfold [8]. These
steps can be done as follows:

1 Commmand-line examples for Ubuntu Linux.
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4 G. Stegmayer, C. Yones, L. Kamenetzky, N. Macchiaroli and D. H. Milone

• Cut full genome into sequences: the original run_einverted.pl script from
miRcheck can be used, but previously the gap penalty and other thresholds of
einverted must be configured (see Note 1 and 2). A modified version of the script
with these parameters is provided in the utils folder of miRNA-SOM (version
23). With the modified script, the following linux command can be used to run
einverted:

./run_einverted.pl genome.fa genIR

• If the fasta file has extra information appart from the chomosomes (for example,
mitochondrial DNA), it should be disregarded, leaving the chomosomes infor-
mation only. For example, suppose that genome.fa has a particular string (such
as Chr_<number>) that identifies chomosomes. Then, you can run:

cat genIR | grep Chr_ > genIR_chr

• Folding sequences: this step can be done by editing fold_inverted_repeats

.pl, adding RNAfold options to produce structures without lonely pairs (noLP)
and avoid the generation of postscript drawings (noPS)2. After that, you can run:

./fold_inverted_repeats.pl genIR_chr genome.fa genIR_chr_f

3.2 Filter by energy and loops

The sequences obtained in the previous step, from the raw genome-wide data cut and
folding procedure, must be filtered to improve prediction. Two filters can be applied:
a minimum free energy (MFE) threshold of -20 according to the miRNA biogenesis
model [1], and multi-loops sequences can be discarded, obtaining a reduced fasta
file. This step can be done by running the script:

filterle.m

provided with the source code of miRNA-SOM. Inside this matlab script, the men-
tioned filters are applied and a fasta file named all_folded_selected_le.fa is
obtained as output.

In this step, the script filterle.m also extracts the following features, that are
the most commonly used in literature for pre-miRNA prediction [6]:

• Triplets [9]: combines the local contiguous structures with sequence informa-
tion to characterize the hairpin structure. This feature focus on the information
of every 3 adjacent nucleotides. In the predicted secondary structure, there are
only two status for each nucleotide, paired or unpaired, indicated by brackets,
“(” or ”)”, and dots, respectively. The left bracket “(” means that the paired nu-
cleotide is located near the 5’-end and can be paired with another nucleotide
at the 3’-end, which is indicated by a right bracket “)”. For any 3 adjacent nu-
cleotides, there are 23 possible structure compositions: (((, ((., (.., (.(, .((,

2 A modified version of the script is also provided in the utils folder of miRNA-SOM version 23.

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

G
. S

te
gm

ay
er

, C
. Y

on
es

, L
. K

am
en

et
zk

y,
 N

. M
ac

ch
ia

ro
li 

&
 D

. H
. M

ilo
ne

; "
C

om
pu

ta
tio

na
l P

re
di

ct
io

n 
of

 N
ov

el
 m

iR
N

A
s 

fr
om

 G
en

om
e-

W
id

e 
D

at
a"

, p
p.

 2
9-

37
, 2

01
7.



Computational prediction of novel miRNAs from genome-wide data 5

.(., ..( and .... Considering the middle nucleotide among the 3, there are 32
possible structure-sequence combinations, which are denote as U(((, A((., etc.

• MFE value [10]: minimum free energy when folding; and
• Sequence length: count of the length of the nucleic acid string.

All these features are saved in the data folder of miRNA-SOM, to train the model
as detailed in Section 3.5. Additionaly, any number of features can be extracted
and used to train the miRNA-SOM classifier. The web-tool miRNAfe [11], which
is a comprehensive tool to extract features from RNA sequences, can be used for
features extraction. It provides almost all state-of-the-art feature extraction methods
used today in several works from different authors.

3.3 Filter known non miRNA RNA

This is an optional step. If a fasta file of CDS, tRNAs, rRNAs and long non coding
RNAs, as well as any other non miRNA sequences of the organism under study is
available (for example, in a file named known_rna.fa), they can be used for filter
out known non miRNAs. This can be done by using BLAST[12] with the following
linux script:

./delkrna.sh known_rna.fa all_folded_selected_le.fa
all_folded_to_remove.csv

This script is also provided with miRNA-SOM. It generates the file
all_folded_to_remove.csv, which indicates the indexes of the sequences that
must be removed from all_folded_selected_le.fa.

3.4 Mark well-known pre-miRNAs

As a result of the previous steps, the files all_folded_selected_le.fa and
all_folded_to_remove.csv are obtained. The first one includes sequences that
correspond to well-known pre-miRNAs of the organism under study. These known
pre-miRNAs can be identified after a BLAST match against the microRNA hairpins
deposited in the most recent version of miRBase3, and put together into a multi-fasta
file, for example named mirnas.fa.

These sequences must be labeled as positive class in order to properly train the
miRNA-SOM classifier. This step can be done this way:

./selmirs.sh mirnas.fa all_folded_selected_le.fa
all_folded_known_mirna.csv

3 http://www.mirbase.org/
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6 G. Stegmayer, C. Yones, L. Kamenetzky, N. Macchiaroli and D. H. Milone

This script is also provided with miRNA-SOM. It generates the file
all_folded_known_mirna.csv, which has the indexes of the sequences that cor-
respond to well-known pre-miRNAs in all_folded_selected_le.fa.

3.5 Train miRNA-SOM and predict novel pre-miRNAs

The mainsom.m script provided in miRNA-SOM trains the SOM classifier [13]
(shown in Figure 2). It learns the labeled sequences as positive class, and identifies
novel candidates to pre-miRNAs. When this main script is run, the miRNA-SOM
classifier is trained according to the Algorithm shown in Figure 3, where the fol-
lowing notation is used: G` and Gu are the labeled and unlabeled input training se-
quences, respectively, extracted from the input genome-wide data and represented
by a feature vector (steps 1 to 4 of the pipeline of Figure 1). Labeled input sequences
correspond to well-known pre-miRNAs; n is the initial map size (n×n neurons); and
hmax is the maximum deep level.

The miRNA-SOM model training and prediction involves the following steps.
While the maximum deep level of SOMs has not been reached (line 4), a SOM map
is trained at each level (line 5). The top level SOM, at h = 1, is set to the initial
map size (see Note 3) and trained with all input training data (labeled and unlabeled
data). During training, each input data point is assigned to a map unit (neuron) ac-
cording to the minimum Euclidean distance between the feature vector representing
each sequence and each neuron centroid. Neurons are labeled by taking into account
the labeled data only, as follows: if there is at least one labeled input sequence in
a neuron (line 6), then this neuron is labeled as a miRNA-neuron, no matter how
many other unlabeled data points are clustered there as well. Then, only sequences
clustered on miRNA-neurons pass to the next level (line 8). After training all SOM
levels, up to hmax, only the sequences that are clustered into labeled miRNA-neurons
at the deepest level (hmax) are predicted as pre-miRNA candidates with a high proba-
bility of being miRNA precursors (line 9). This final list of top candidates is saved in
the results folder of miRNA-SOM software. For practical applications of this model
and the protocol, see Notes 4 and 5.

The deep structure of this classifier is shown in Figure 2. When the root SOM,
on the first layer, is trained and becomes stable, only the data in the neurons hav-
ing clustered together with at least one well-known pre-miRNA are chosen as in-
put data for training the next map, in the second layer. These neurons are marked
miRNA-neurons and, although they might contain much more unlabeled data than
labeled one, due to the existing high class-imbalance, they are marked as positive
class neurons. During model training, only sequences clustered in miRNA-neurons
remain for further training the next deep level of miRNA-SOM. After training sev-
eral layers, the best pre-miRNAs candidates are those sequeces that remained in the
miRNA-neurons at the last deep level.

With this approach, each internal map is trained only with a portion of the whole
input genome-wide data. This method reduces significantly the number of possi-
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Computational prediction of novel miRNAs from genome-wide data 7

ble candidate to pre-miRNAs, level after level, retaining at the last level only the
high confidence candidates. In this last level, each well-known pre-miRNA in the
miRNA-neurons (in dark blue) is grouped together with unlabeled sequences. They
are selected as the best bona-fide candidates to novel pre-miRNAs.

4 Notes

1. In the first step (Section 3.1), the recommended paramenters for einverted are:
gap penalty $GAP = 6; minimum score threshold $THRESH = 25; match score
$M = 3; mismatch score $MM = 3; and maximum separation between the start
and end of the inverted repeat $DIST = 95.

2. Also in the first step the recommended paramenters to cut sequences are: window
size $WIN = 500000; and window step $step = 400000.

3. It is recommended to start with a large initial SOM map, such as for example
n = 100. After the first level, a large number of sequences will not pass to the
next SOM level and they will be naturally discarded. After that, the map size
number can be reduced.

4. A practical example on the application of this protocol to genome-wide data from
Echinococcus multilocularis can be found in [13] and online in:
http://fich.unl.edu.ar/sinc/web-demo/mirna-som/. The source code is
available for free academic use at:
http://sourceforge.net/projects/sourcesinc/files/mirnasom/

(download version 23)
5. Another example on a model organism (Caenorhabditis elegans) is available at:

http://fich.unl.edu.ar/sinc/blog/web-demo/mirna-som-ce/.
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Computational prediction of novel miRNAs from genome-wide data 9

1. Cut and fold                                                                   
genome-wide data                                                                    

2. Filter by                                                        
energy & loops                                                                          Low energy

                    & multi-loops

3. Filter known                                                         
non miRNA RNA                                                                   Known

       RNA

4. Mark well-known                                                                   
pre-miRNAs                                                                    

5. Train miRNA-SOM                                                                    
and predict novel                                                                  
pre-miRNAs                                                                                   miRNA-SOM

                           filtered sequences

pre-miRNA
 candidates

Fig. 1 Flow of the pipeline for novel pre-miRNA discovery from genome-wide data.
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Fig. 2 miRNA-SOM classifier. Dark blue neurons have highly likely pre-miRNA candidates,
which are input to the next level SOM (black lines).

Fig. 3 Unsupervised training and labeling of SOMs for novel pre-miRNA prediction from
genome-wide data.
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