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High class-imbalance in pre-miRNA prediction: a

novel approach based on deepSOM
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Abstract

The computational prediction of novel microRNA within a full genome involves identifying sequences

having the highest chance of being a miRNA precursor (pre-miRNA). These sequences are usually named

candidates to miRNA. The well-known pre-miRNAs are usually only a few in comparison to the hundreds of

thousands of potential candidates to miRNA that have to be analyzed, which makes this task a high class-

imbalance classification problem. The classical way of approaching it has been training a binary classifier in

a supervised manner, using well-known pre-miRNAs as positive class and artificially defining the negative

class. However, although the selection of positive labeled examples is straightforward, it is very difficult to

build a set of negative examples in order to obtain a good set of training samples for a supervised method.

In this work, we propose a novel and effective way of approaching this problem using machine learning,

without the definition of negative examples. The proposal is based on clustering unlabeled sequences of

a genome together with well-known miRNA precursors for the organism under study, which allows for the

quick identification of the best candidates to miRNA as those sequences clustered with known precursors.

Furthermore, we propose a deep model to overcome the problem of having very few positive class labels.

They are always maintained in the deep levels as positive class while less likely pre-miRNA sequences are

filtered level after level. Our approach has been compared with other methods for pre-miRNAs prediction in

several species, showing effective predictivity of novel miRNAs. Additionally, we will show that our approach

has a lower training time and allows for a better graphical navegability and interpretation of the results. A

web-demo interface to try deepSOM is available at http://fich.unl.edu.ar/sinc/web-demo/deepsom/.
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1 INTRODUCTION

The high class-imbalance problem has been largely recognized as an important issue in machine learning

[1], [2] and, more recently, it has been discussed in the context of big data mining [3], [4]. The problem

occurs when there are significantly fewer training instances of one class in comparison to another one.

Most machine learning algorithms work well with balanced data sets. With imbalanced data sets, however,

a supervised classifier can produce a model that tends to be biased towards the majority class and has low

performance on the minority one. In fact, the minority class instances are more likely to be misclassified,

or even considered noise in some cases [5].

Most of the current standard classification algorithms are designed to maximize the overall number

of correct predictions. This criterion is based on an assumption of an equal cost of misclassifications in

each class. When the class sizes differ considerably, most standard classifiers would favor the larger class

having a high accuracy in prediction (sensitivity if the positive class is the majority one, or specificity

if the negative class is the majority class) and the minority class will have a low accuracy. Moreover,

it has been studied that for many kinds of classifiers the class imbalance problem is exacerbated when

data are high-dimensional since it further increases the bias towards the classification into the majority

class, even when there is no real difference between the classes [6]. Supervised classification needs the

definition of both positive and negative class samples. Although many proposals have been published on

supervised classifiers for imbalanced data sets [7], [6], classification of high class-imbalanced data where

one class is significantly under-represented relative to another remains among the leading challenges in

the development of prediction models. This is of particular importance in bioinformatics, where there are

large biological datasets with this type of unbalanced data.

The presence of high class-imbalance has important consequences on the learning process, usually

producing classifiers that have very poor predictive accuracy for the minority class. Thus, this is a

main challenge in high class-imbalanced classification nowadays. This problem is of interest in the

bioinformatics domain for the computational prediction of microRNAs (miRNAs)[8], where there are only

dozens or hundreds (it depends on the organism under study) of well-known miRNAs, versus thousand

hundreds of unknown/unlabeled sequences in the rest of the genome, many of which are really negative

class and among which there can be hidden candidates to miRNAs.

MicroRNAs are a new type of small RNA molecules, present in both animals and plants, which

determine the genetic expression of cells and influence the state of the tissues [9]. Many studies have
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shown that miRNAs are implied, for example, in cancer progression [10] as well as in viral infection

processes [11] and parasites development [12]. Given their role in promoting or inhibiting certain diseases

and infections, the discovery of new miRNAs is of high interest today. MicroRNA precursors generated

during biogenesis have well-known RNA secondary structures (pre-miRNAs, also known as hairpins) that

have allowed the development of computational algorithms for their identification. They typically exhibit

a stem-loop structure with few internal loops or asymmetric bulges. However, a large amount of similar

hairpins can be folded in many genomes. Due to the difficulty in systematically detecting pre-miRNAs by

existing experimental techniques, which have proven to be inefficient and costly, computational methods

play an important role nowadays in the identification of new miRNAs [13], [14]. In this context, many

computational techniques have emerged lately for identifying miRNAs directly from the characteristics of

the RNA sequences. They can be classified into three main categories [13]: i) experimental approaches

driven by data, by direct cloning and genome sequencing; ii) comparative methods, based on either

sequence or structure conservation between species; and iii) machine learning methods, based on the

inherent characteristics (features) of the sequences and secondary structure of these types of molecules.

Machine learning methods essentially identify hairpin structures in non-coding and non-repetitive regions

of the genome that are characteristic of miRNA precursor sequences. Structures of known miRNAs are

used during the learning processes to discriminate between true predictions and false positives [8].

The earliest methods based on machine learning that have been proposed for pre-miRNA identification

have used simple representations to extract the main structural features of known pre-miRNAs [15], [16],

[17], [18]. For example, their typical stem-loop structure, the frequency of occurrence of nucleotides, the

number of base pairs and the minimum free folding energy. It has been established that local sequence

features as well as secondary structure are very important for pre-miRNAs identification [19], [20].

However, the definition of the most suitable characteristics to distinguish between true pre-miRNAs and

negative cases still remains an important challenge [14]. After the feature extraction step, generally a

binary classifier is trained in order to classify or identify sequences highly likely to be miRNA precursors.

Support vector machine (SVM) is the learning algorithm that has been most widely applied to solve this

problem, using as positive sets the genuine pre-miRNA and artificially defining negative sets of hairpins

[15], [21], [22], [23], [24]. Such classification models were expected to perform well in predicting novel

pre-miRNAs from unseen sequences. However, although the selection of positive labeled examples for

training a binary classifier is really straightforward (known miRNAs), it is very difficult to build a set of
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negative examples capable of effectively describing this class [19]. A recent study has stated that most

of existing machine learning classifiers cannot provide reliable predictive performances on independent

testing data sets because the negative training sets are not sufficiently representative [25]. This means that

most existing supervised proposals, although reporting very high accuracies, cannot be really trusted in

practical and realistic situations.

Methods that use only positive samples to predict new pre-miRNAs, namely one-class classifiers,

have been proposed and revised, such as one-class SVM (OC-SVM) and algorithms based on k-nearest

neighbors (OC-KNN) [26], [27]. In one-class classifiers, the positive class is learned in a supervised way

since positive training data is readily available from miRBase. In contrast, the negative class is not learned

at all. Thus, the principal advantage of the one-class approaches is not having to define the negative set

for training. However, it has been shown that these models are underperformed in comparison to the

two-class approach [27]. The main reason is that one-class methods do not model the negative class, or

model it under very simplified assumptions, distant to the real complexity of negative data for this task.

Additionally, one-class and two-class methods can provide useful classification accuracies only when there

is not very large class-imbalance [28].

In summary, this is one of the main reasons why existing supervised computational methods for new

pre-miRNAs identification are not completely satisfactory nowadays [13], [20], [8]. In spite of the fact that

many techniques have proven to be a powerful way of distinguishing pre-miRNA hairpins from pseudo

hairpins and are implemented in a number of miRNA search tools [29], [30], [31], those methods do

not address the high class-imbalance problem properly. This important fact may lead to overlearning the

majority class and/or incorrect assessment of classification performance. Moreover, those tools are only

effective for a narrow range of species, usually just the model ones such as human, mouse, fly or worm.

Given the very large number of candidates to be analyzed (hundreds of thousands sequences), the strong

class imbalance between labeled and unlabeled data and the challenge of training with a high percentage

of unlabeled data, new strategies must be proposed to address these issues [32].

In this work we present a novel approach for dealing with the high imbalance problem in pre-miRNA

prediction. It has been shown that the assumption that many miRNAs occur in clusters can be fruitful for the

discovery of novel miRNAs and that most miRNAs often cluster together in portions of the feature space

[20]. Thus, instead of training a classifier in a classical supervised manner, we propose to identify miRNA

precursors through a novel approach based a hierarchy of self-organizing maps (SOM) organized into a
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deep architecture (deepSOM), where the best highly-likely candidates to pre-miRNAs (from unlabeled

sequences) will be clustered together with well-known pre-miRNAs all along the deeper SOM models.

With our proposal, the strong class imbalance problem can be avoided since only positive class examples,

even if there are just a few, are necessary. This way, the very-hard to build negative artificial examples

must not be defined, making it more useful to analyze genome data from any organism. In fact, the labeling

process through wet experiments is very expensive and most of the time, infeasible, whereas acquisition

of unlabeled data is relatively inexpensive [8]. During training, the deepSOM classifier is refined level

after level, discarding low-quality candidates automatically. Only the best candidates to pre-miRNAs are

preserved at each level. At the last level, the sequences assigned to neurons (clusters) that include well-

known miRNAs are identified as highly likely candidates to miRNAs. The proposed approach has been

tested with several animals and plants miRNAs, using large and varied strongly imbalanced datasets in

10-fold cross-validation tests. As a result, deepSOM has effectively achieved better performance than

other existing miRNA prediction tools.

This paper is organized as follows. Section 2 explains the deepSOM architecture and training algorithm

in detail. Section 3 presents the data sets used in this study, the experimental setup and performance

measures. Section 4 shows the results obtained and their discussion. Finally, the conclusions of this work

can be found in Section 5.

2 DEEPSOM FOR HIGH CLASS-IMBALANCED BIOLOGICAL DATA

Self-organizing maps (SOMs) were first introduced in 1982 by Teuvo Kohonen [33]. SOMs are a special

class of neural networks that use unsupervised competitive learning, which is based on the idea of units

(neurons) that compete to respond to a given set of inputs. Each neuron in a SOM can be considered a

cluster, and it is associated with a prototype or synaptic weight vector [34]. Given an input pattern, its

distance to the neurons weight vector (centroid or prototype) is computed. Neurons compete with each

other, and only the closest neuron prototype to the input becomes activated or fired, becoming this way

a winning neuron. The weight vector of this winning neuron is further moved towards the input pattern

[35].

The goal of SOM is to represent complex high-dimensional input patterns into a simpler low-dimensional

discrete map, with prototype vectors that can be visualized in a two-dimensional lattice structure, while

preserving the proximity relationships of the original data as much as possible. Having finished the training,
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input patterns are projected into the lattice of adjacent neurons, giving a clear topology of how the network

fits into the input space. Therefore, the regions with a high probability of occurrence of patterns will be

represented by larger areas in the map [36]. That is why SOM can be appropriate for visualization and

data analysis when looking for underlying hidden patterns in data. A SOM structures the neurons in a

way that those in closer proximity are more similar to each other than to others that are farther apart [37].

In this work, we propose to identify the best candidates to miRNA precursors through a novel machine

learning approach based on SOM. This proposal is based on the fact that SOMs have the capability of

identifying similar input patterns in the feature space, by assigning them to the same neuron or a group

of adjacent neurons on the map [38]. Thus, instead of the classical approach for pre-miRNA prediction

that requires training a classifier in a supervised manner with positive and negative classes, in this work

we state that only positive examples, together with as many unlabeled sequences as there can be, are

necessary for training a SOM for miRNAs prediction. We propose a hierarchy of SOM in deep levels

(deepSOM) with the aim of refining the original high level map by discarding unlabeled sequences that

are distant to miRNA neurons, level after level.

The training process of deepSOM starts with the root SOM on the first layer. This map undergoes

standard training with the complete set of data, using an initial large map size. When this first SOM

becomes stable, that is to say, no more further adaptation of the weight vectors occurs, only the data in the

neurons having clustered at least one well-known labeled data (plus other many unlabeled sequences) are

chosen as input data for training the next map in the second layer. These neurons are denominated miRNA

neurons and, although they might contain much more unlabeled data than labeled due to the existing high

class-imbalance, they are marked as positive class neurons. The labeling of the miRNA neurons can be

done taking into account the neighbouring neurons as well, based on the topologic conservation properties

of SOM. That is to say, when a neuron has at least one well-known pre-miRNA, not only this neuron

is labeled as miRNA neuron but also its neighbouring neurons (within a certain ratio) can be labeled

positive class. During training, only sequences clustered in miRNA neurons remain for further training

the next level of deepSOM. After training several nested SOM, the best pre-miRNAs can be identified

as the ones that remain close to the prototypes of the miRNA neurons in the last deep level. At the last

level, a very small number of sequences (in comparison to the original input size) is the output of the

last nested SOM.

Algorithm 1 presents the deepSOM model training and labeling in detail, where the following notation
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Algorithm 1: deepSOM training and labeling for pre-miRNA prediction in high class-imbalance data.
Inputs :

G`: labeled input sequences
Gu: unlabeled input sequences
n: initial map size (n× n)
hmax: maximum deep level

Outputs:
Γ: trained neurons at each level
L: sets of miRNA-neurons for each level
C: pre-miRNA candidates at the last level

1 begin
2 n1 ← n
3 D1 ← Gu ∪G`

4 L ← ∅
5 h← 1
6 while h < hmax & nh > 1 & |Dh| < |Dh−1| do
7 Γh ← Train a nh × nh SOM with Dh

8 foreach neuron i ∈ Γh do
9 γΛi ←

⋃
∀j∈Λi

γj

10 if |(γi ∪ γΛi) ∩G`| > 0 then
11 Lh ← Lh ∪ {i}

12 h← h+ 1

13 Dh ←
⋃

∀j∈Lh−1

γj

14 nh ←
⌊√

5
√
|Dh|

⌋
15 C ← Dhmax

is used: G` and Gu are the labeled and unlabeled input training sequences, respectively, where labeled

input sequences correspond to well-known miRNAs; n is the initial map size (n×n neurons); and h is the

maximum deep level. The deepSOM training involves the following steps. While the maximum level of

deep SOMs has not been reached, and there are data to train a map (line 6), a SOM map is trained at each

level (line 7). The top level SOM, at h = 1, is set to the initial map size and trained with all input training

data (labeled and unlabeled data). During training, each input data point is assigned to a map unit γi

according to the minimum Euclidean distance between the feature vector representing each sequence and

each neuron centroid. Due to the high class-imbalance existing in data, there are only very few positive

class labels and most of the data is unlabeled. In large size maps, and because of the topological properties

of SOM, neighborhood neurons can be taken into account for neuron labeling, as well. The neighborhood

neurons to a given neuron i are indicated as Λi and all data samples from neighbors can be taken into

account for labeling i (line 9). Neurons labeling occurs by taking into account the labeled data only, as

follows: if there is at least one labeled input sequence G` in the neuron γi or within its neighborhood

γΛi
(line 10), the neuron is labeled as a miRNA-neuron (line 11), no matter how many other unlabeled

data points are clustered there as well. Then, only sequences clustered on miRNA-neurons pass to the
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next deepSOM level (line 13). At each deepSOM level h, the number of neurons nh × nh is determined

automatically, according to an heuristics suggested by Kohonen [33], [35], which states that the total

number of neurons in a map is related to the number of data points to train it. Thus, nh is set according

to the number of sequences selected in |Dh| (line 14). After training all deepSOM levels, only the data

points that are clustered into labeled neurons at the deepest level are predicted as good candidates with

a high probability of being miRNA precursors (line 15).

In summary, by training a deepSOM with well-known pre-miRNAs and unlabeled sequences together,

knowing that very similar sequences (according to the feature space) will be clustered in the same (or

neighboring) neurons, candidate sequences to be real miRNAs can be found by simply inspecting the

neurons having well-known pre-miRNA samples at the last level of the deep architecture. The advantages

of this proposal are the following. First, only positive label class samples are necessary, no matter if

they are just a few in comparison to the many unlabeled ones. Second, the high class-imbalance is being

diminished automatically during deepSOM training, level after level of the hierarchy, since the worst

(farthest) candidates to miRNAs are filtered in each level and do not pass to the next one; as a consequence

the depeest maps have the possibility of better clustering well-known pre-miRNA sequences and unlabeled

ones. A third important point is data reduction, because at the last level only the best sequences remain

as candidates to pre-miRNAs, no matter how many genome sequences have been used as input to the first

SOM model. The most common case in a real application would be hundreds of thousands of sequences,

while it is commonly expected that only 10% or less of a genome might contain true miRNAs [8]. Thus, a

characteristic that is very desirable in a pre-miRNA classifier: to be able to predict a reasonable number of

candidates to be tested in wet experiments, it is actually very hard to provide with a classical supervised

model in the presence of high class-imbalance sets. This is another important contribution of deepSOM

because the number of candidates requiring further experimental validation is highly reduced within the

hierarchy of the maps.

3 MATERIALS AND EXPERIMENTAL METHODS

This section describes the datasets used in this work, the experimental setup and the measures used for

performance evaluation. The deepSOM source code and training data are freely available for academic

purposes and can be found at https://sourceforge.net/projects/sourcesinc/files/deepSOM/. A web-demo [39]

interface to rapidly test deepSOM is also available at http://fich.unl.edu.ar/sinc/web-demo/deepsom/.
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TABLE 1
Characteristics of the high class-imbalance biological data sets used in the experiments.

Name Labeled samples Unlabeled samples Imbalance ratio
H. sapiens 1406 81228 57.8
A. thaliana 231 28359 122.8
Animals 7053 218154 30.9
Plants 2172 114929 52.9

3.1 High class-imbalance pre-miRNA data sets

The characteristics of the biological data sets used in the experiments are shown in Table 1. For the positive

class, all well-known pre-miRNAs in miRBase v17 [40] (except those sequences lacking experimental

confirmation) for Homo sapiens, Arabidopsis thaliana, a set of animals (Rattus norvegicus, Drosophila

melanogaster, Mus musculus, Caenorhabditis elegans, Pan troglodytes, Gallus gallus, Macaca mulatta, Bos

taurus, Danio rerio, and Monodelphis domestica) and plants (Glycine max, Zea mays, Populus trichocarpa,

Selaginella moellendorffii, Triticum aestivum, Vitis vinifera and Oryza sativa) have been used as in [30].

These data sets include all well-known miRNAs, and in particular the most studied model species H.

sapiens and A. thaliana. Unlabeled sets were built by extracting random sequences from the genomes

and mRNAs of these species. The sequence length distribution in the unlabeled dataset was the same as

in the corresponding positive one. The extracted sequences were filtered to preserve only sequences with

minimum free energy below -0.05 (normalized to the sequence length) and proportion of paired 220 bases

in the stem above 0.15, as in [30]. Class imbalance has been defined as a ratio of number of unlabeled to

number of labeled samples. It can be seen from the table that a wide-range of possible imbalance situation

have been taken into account, from moderate to very high class-imbalance.

3.2 Experimental setup

For training and testing the deepSOM, a 10-fold cross validation (CV) procedure has been used, giving

reliable estimates of classification performance. In all classification experiments, the distributions of testing

samples are the same as for the entire datasets. The performance in each experiment is reported as the

average values on 10 folds for the test partitions only.

Selecting an informative feature set is very important for the pre-miRNA prediction problem. Most

commonly used feature sets contain information about sequence, topology and structure [41]. The earliest

machine learning approaches [15] proposed features, named triplets, computed from the sequence itself
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without including additional characteristics. miPred [42] was the first method that proposed a representative

feature set that has shown great discriminative power and that has been adopted by many other current

methods [30], [14]. Thus, for fair comparisons with state-of-the-art classifiers, we have used the features

of [30] in this study: triplets, maximal length of the amino acid string, cumulative size of internal loops

found in the secondary structure, and percentage of low complexity regions detected in the sequence. For

each training set, in each fold, an independent 10-fold CV feature selection step has been performed (see

details in Supplementary material). In all experiments, deepSOM maximum hidden level has been set to

h = 10 and initial map size has been set to a large number (n = 100). Then, level after level, the map

size and labeling neighborhood are automatically determined according to the number of data selected to

train the next level SOM.

3.3 Model performance

The prediction quality of the model was assessed by the following classical classification measures:

sensitivity (Se), specificity (Sp), accuracy (Acc), and geometric mean (Gm) of classification sensitivity

and specificity. These measures are defined as:

Se =
TP

TP + FN
, (1)

Sp =
TN

TN + FP
, (2)

Acc =
TP + TN

TP + TN + FP + FN
, (3)

Gm =
√
SE × SP , (4)

where TP , TN , FP and FN are true positive, true negative, false positive and false negative predictions,

respectively.

4 RESULTS AND DISCUSSION

This section presents the results of the experiments made to analyze in detail the behavior of deepSOM

for high class-imbalance data sets. After that, comparisons to state-of-the-art miRNA prediction methods

are shown for several animals and plants species.
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TABLE 2
deepSOM classification results for pre-miRNA prediction in high class-imbalance data sets.

Average results are reported on test data in 10-fold CV.

H. sapiens
h nh Se Sp Acc Gm
1 100 0.9722 0.8114 0.8142 0.8881
2 24 0.9722 0.8176 0.8202 0.8915
3 24 0.9698 0.8214 0.8240 0.8925
4 24 0.9680 0.8243 0.8267 0.8932
5 24 0.9664 0.8274 0.8297 0.8941
6 24 0.9606 0.8301 0.8323 0.8929
7 24 0.9592 0.8319 0.8341 0.8932
8 24 0.9564 0.8338 0.8359 0.8930
9 24 0.9564 0.8352 0.8372 0.8937

10 23 0.9556 0.8360 0.8380 0.8937

Animals
h nh Se Sp Acc Gm
1 100 0.9756 0.6502 0.6604 0.7964
2 37 0.9529 0.7123 0.7199 0.8239
3 35 0.9407 0.7372 0.7436 0.8328
4 34 0.9323 0.7540 0.7595 0.8384
5 34 0.9273 0.7675 0.7725 0.8436
6 33 0.9226 0.7767 0.7813 0.8465
7 33 0.9187 0.7839 0.7881 0.8486
8 33 0.9152 0.7909 0.7948 0.8508
9 32 0.9112 0.7982 0.8017 0.8528

10 32 0.9084 0.8045 0.8077 0.8549

A. thaliana
h nh Se Sp Acc Gm
1 100 0.9623 0.9554 0.9555 0.9587
2 13 0.9587 0.9576 0.9576 0.9580
3 13 0.9518 0.9599 0.9598 0.9557
4 13 0.9459 0.9614 0.9612 0.9534
5 13 0.9459 0.9624 0.9623 0.954
6 13 0.9396 0.9635 0.9633 0.9512
7 12 0.9360 0.9645 0.9642 0.9499
8 12 0.9360 0.9651 0.9648 0.9501
9 12 0.9360 0.9656 0.9653 0.9504

10 12 0.9304 0.9663 0.9659 0.9479

Plants
h nh Se Sp Acc Gm
1 100 0.9610 0.7072 0.7119 0.8244
2 29 0.9578 0.7413 0.7453 0.8426
3 29 0.9559 0.7536 0.7573 0.8487
4 28 0.955 0.7597 0.7633 0.8518
5 28 0.9537 0.7664 0.7698 0.8549
6 28 0.9537 0.7709 0.7742 0.8574
7 28 0.9532 0.7751 0.7784 0.8595
8 28 0.9532 0.7783 0.7816 0.8613
9 28 0.9515 0.7815 0.7846 0.8623

10 27 0.9501 0.7839 0.7870 0.8630

4.1 deepSOM in high class-imbalanced data sets

Table 2 shows the deepSOM results for the Homo sapiens, Arabidopsis thaliana, animals and plants

data sets (detailed in Table 1). Average results are reported for test data in 10-fold CV. The first column

shows the deepSOM level. The second column shows the map size at each level. From third to sixth

column, average Se, Sp, Acc and Gm are reported. This table clearly shows how, in average, very high

classification rates are achieved by deepSOM in all cases. For example, with the human data set, the

deepSOM performance for recognizing human pre-miRNAs is very high at the top SOM (97.22%). At

deeper levels, the Se is slightly worsened (up to 96% approximately) and at the same time that the

model improves Sp rate, that is to say, better discarding not-good candidates to pre-miRNAs. The detail

of the Acc and Gm evolution shows how deepSOM is being refined level after level, achieving better

and better global performance at deeper levels. In fact, overall, for human data the deepSOM after 10
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levels has achieved a very good Gm of almost 90%. It has to be taken into account that for this data

set, in each testing fold, the number of sequences presented to the top-level deepSOM is around 8000

sequences, remaining only 1700 candidates at the last level, in average. Thus, the reduction in the number

of candidates at the last level is worth to be highlighted. This shows how, at the same time that the

performance measures are mantained at high values in deeper levels and even improved (as in the case

of Acc and Gm), the number of candidates to pre-miRNA that survive level after level is dramatically

reduced after the first step, and subsequently refined.

In the other data sets, the same general behavior regarding Se, Sp, Acc and Gm can be observed.

In all cases, very high Se values, between 91% and 98%, are reached, depending on the species. Even

for the most imbalanced data set (A. thaliana) as well as in the two largest ones, animal and plants,

the Se values are higher than 90%. In all cases, the Sp values improves with more hidden levels. The

global performance measures, Acc and Gm, improve also in all cases level after level. In this table, it

can be clearly seen that in general, and for all data sets, their values are being increased level after level,

maintaining a constant value at the depeest levels. Regarding the most imbalanced data set, it is worth to

highlight the fact that deepSOM reaches almost 95% of Gm and 97% of accuracy.

The training time is an important issue determining the applicability of the deepSOM method to real-life

problems. Table 3 shows the performance of deepSOM for miRNA prediction in miRBase v17. Training

time is reported as median over 10 cross-validation training folds in format hh:mm:ss. The table shows

that deepSOM training and labeling is always in the range of minutes, around 10 minutes, for all data sets,

even the largest ones. For these same data sets, in comparison, training time in the range of several hours

have been reported in [30] due to the fact that an exhaustive parameter search is performed. Our proposal,

instead, even for the most high class-imbalanced and large sets, has an speed of training and execution

extremely fast: deepSOM is more than 10 times faster than the cited work for the most imbalanced dataset.

Regarding the largest data sets, deepSOM achieves running times in the order of minutes also, against

several hours of computation reported in [30].

Table 4 shows the number of sequences that remain clustered in miRNA neurons at each corresponding

level in deepSOM, for each studied data set. Level h = 0 indicates the total number of sequences that

are input to a SOM for pre-miRNA prediction. From level h = 1 to h = 10, it is indicated the number

of data samples that remained clustered in miRNA neurons and, therefore, pass from one level to the

next one for training another SOM. It can be clearly seen here the significant reduction in the number
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TABLE 3
Training times of deepSOM for pre-miRNA prediction in miRBase 17. Median over all 10-fold

cross-validation training partitions are reported in format hh:mm:ss.

Dataset training time
H. sapiens 00:07:43
A. thaliana 00:04:34

Animals 00:11:21
Plants 00:06:03

TABLE 4
deepSOM results for pre-miRNA prediction in high class-imbalance data sets: number of

pre-miRNA candidates as input in each level.

h H. sapiens A. thaliana Animals Plants
0 82634 28590 225207 117101
1 2342 1542 85883 37986
2 2224 1483 84439 33593
3 2043 1363 83978 31707
4 1971 1276 83827 30795
5 1928 1266 83670 30088
6 1927 1257 83593 29405
7 1918 1233 83468 28801
8 1885 1229 83402 28626
9 1868 1159 83039 28183

10 1853 1159 82399 27714

of pre-miRNA candidates, level after level. The high class-imbalance is greatly diminished after the first

large map, and the successive levels refine the deepSOM prediction model, until it reaches a level where

the number of candidates that pass from one map to the next one almost does not change.

An additional way of viewing this data reduction is through maps visualization at each level. This is

an additional feature of the deepSOM, which helps to the interpretability of the results. The projection

of training data into the deepSOM lattice of neurons at each level gives a clear view of the topological

distribution of well-known pre-miRNAs (labeled class) with respect to unlabeled samples. As an example,

Figure 1 shows the 10 deep maps corresponding to the Arabidopsis thaliana data set. In the figure, the

left map shows all input data projected into the deepSOM model at h = 1, where this top level map

size is 100x100 neurons. The right maps, from up-to-down and left-to-right, show the following 2 to 10

maps. The neurons that have well-known miRNAs are painted in red. The neurons that have unlabeled

sequences (and will be discarded in the next level) are painted in blue. The neurons that have labeled

and unlabeled samples (mixed neurons) are indicated with gray. The marker size indicates the number of
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mirnaSOM - 100x100 neurons - miRNA red - no-miRNA blue - miRNA+no-miRNA black - neighborhood =0

h = 1

mirnaSOM - 14x14 neurons - miRNA red - no-miRNA blue - miRNA+no-miRNA black - neighborhood =0

h = 2

mirnaSOM - 13x13 neurons - miRNA red - no-miRNA blue - miRNA+no-miRNA black - neighborhood =0

h = 3

mirnaSOM - 13x13 neurons - miRNA red - no-miRNA blue - miRNA+no-miRNA black - neighborhood =0

h = 4

mirnaSOM - 13x13 neurons - miRNA red - no-miRNA blue - miRNA+no-miRNA black - neighborhood =0

h = 5

mirnaSOM - 13x13 neurons - miRNA red - no-miRNA blue - miRNA+no-miRNA black - neighborhood =0

h = 6

mirnaSOM - 13x13 neurons - miRNA red - no-miRNA blue - miRNA+no-miRNA black - neighborhood =0

h = 7

mirnaSOM - 13x13 neurons - miRNA red - no-miRNA blue - miRNA+no-miRNA black - neighborhood =0

h = 8

mirnaSOM - 13x13 neurons - miRNA red - no-miRNA blue - miRNA+no-miRNA black - neighborhood =0

h = 9

mirnaSOM - 13x13 neurons - miRNA red - no-miRNA blue - miRNA+no-miRNA black - neighborhood =0

h = 10

Fig. 1. Example of deepSOM model for the A. thaliana data: miRNA neurons (red), no-miRNA
neurons (blue), mixed neurons (gray). Marker size indicates number of sequences in each neuron.

samples that is clustered in each neuron.

This visualization of the deep maps obtained for a dataset shows, very quickly, how the pre-miRNAs

are clustered nearby into a portion of the feature map (in the example, at the top-left corner of the

first big map); while a very large amount of unlabeled sequences are clustered in the rest of the map,

clearly away form the labeled class. This large amount of data is discarded and not passed to the second

level deepSOM. Thus, in this first step, there is an important data reduction and a significant high class-

imbalance reduction as well, thanks to the topological properties of SOM. The use of different markers

size helps understanding the data magnitudes involved in the problem. The subsequent maps (from h = 2

to h = 10) are very similar among them because they have already received, from the first map, the best

candidates to miRNAs and now they have to just specialize more for detecting a reduced list of best pre-

miRNAs. In fact their sizes practically do not change (see Table 2) in the last three levels and more empty

neurons appear because the most similar samples are clustered together, more accurately, while unlabeled

data to be discarded (in the blue neurons) is being reduced. This is a very useful feature of the proposal

because it helps having a real idea of the number of trully candidates inside a genome, their distribution

into the feature space according to the features chosen for their representation, and also, the existing data

class imbalance can be actually seen in a clear and simple graphical way. This visualization could be

used to explore the feature space distribution of a genome data: several deepSOM models could be built,

using different feature sets, and compared in order to see which map could be better for pre-miRNAs
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TABLE 5
Comparison with other tools: animal species. Classification sensitivity of deepSOM on animal

miRNAs recently added in miRBase v18-19.

Species MicroPred [42] OC-KNN [26] OC-SVM [27] HuntMi [30] deepSOM
Bombyx mori 75.00 50.00 50.00 100.00 100.00
Caenorhabditis elegans 87.50 31.25 50.00 93.75 100.00
Ciona intestinalis 89.47 63.16 52.63 73.68 94.74
Homo sapiens 85.14 52.00 33.71 93.14 96.00
Macaca mulatta - 56.25 37.50 81.25 87.50
Mus musculus 64.03 58.27 46.04 94.96 94.96
Oryzias latipes 94.08 57.89 60.53 96.05 97.37
Pongo pygmaeus 83.33 42.59 48.15 94.44 94.44
Rattus norvegicus 76.32 55.26 60.53 97.37 97.37
Taeniopygia guttata 82.61 34.78 26.09 91.30 100.00
Tribolium castaneum 64.29 64.29 50.00 78.57 100.00

TABLE 6
Comparison with other tools: animal species. Classification sensitivity of deepSOM on animal

miRNAs recently added in miRBase v20-21.

Species sequences OC-KNN [26] OC-SVM [27] HuntMi [30] deepSOM
Bombyx mori 2 50.00 50.00 100.00 100.00
Caenorhabditis elegans 50 50.00 42.00 89.80 100.00
Ciona intestinalis 19 63.16 52.63 72.22 94.74
Homo sapiens 467 52.68 44.11 89.91 95.72
Macaca mulatta 140 54.29 31.43 92.81 96.43
Mus musculus 492 51.02 48.98 91.04 95.12
Oryzias latipes 152 57.24 59.87 96.69 98.03
Pongo pygmaeus 63 41.27 50.79 95.16 93.65
Rattus norvegicus 87 64.37 49.43 97.67 98.85
Taeniopygia guttata 14 33.33 25.93 76.92 96.30
Tribolium castaneum 27 64.29 50.00 88.46 100.00

prediction. For example, a top-level map with very disperse labeled class samples all over the map might

not be preferable over a map that has the known miRNAs samples clustered nearby in a specific zone

of the map. Finally, it can be highlighted that for the particular example shown in this figure, the top

level deepSOM has received 28,590 sequences, indicating just about 1000 sequences as the highly likely

candidates to pre-miRNAs.

4.2 Comparison with other tools: animal species

To further test the performance of deepSOM in a realistic scenario, we trained it on the entire animal

dataset from miRBase v17 and tested with animal miRNAs newly introduced in miRBase v18-19 (a

test set of 206 sequences), and with the newest release v20-21 (a test set of 1513 new sequences). We

compared the performance obtained with deepSOM for this task against two recently proposed miRNA

prediction tools, HuntMi [30] and MicroPred [42], as well as versus the one-class classifiers, OC-KNN

[26] and OC-SVM [27]. MicroPred has proven to be the best software for human miRNA prediction at
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the time of its publication; thus its predecessors such as Triplet-SVM [15] or MiPred [17] have not been

considered in the comparisons. The obtained results are shown in Tables 5 and 6. Results not reported

have not been found in the original work.

The tables clearly demonstrate that deepSOM is capable of efficiently identifying novel microRNAs

in animals, achieving a sensitivity of over 90% in 10 out of 11 analysed species. Furthermore, the

proposed model has clearly outperformed other state of the art classifiers in most species and equaling

the performance of a very recent proposal, HuntMi, in four species. DeepSOM has achieved even 100%

effective recognition in four out of eleven cases.

It is worth highlighting here that, although MicroPred is a tool that has been designed specifically for

human pre-miRNAs prediction, has achieved worst prediction rates than deepSOM in human miRNAS,

and in all other animal test species as well. For the specific test case with newly discovered human

miRNAs added to miRBase v18-19, deepSOM has achieved a very high prediction rate (96.00%, 168

out of 175) against 85.14% of MicroPred. HuntMi, in this particular test case, recognised 93.4% of new

human miRNAs. This is a quite significant improvement of deepSOM over state-of-the-art methods for

the discovery of new miRNAs in such well-studied genome as it is H. Sapiens. In the test with the most

recent version of miRBase (Table 6), deepSOM has also shown a very high sensitivity rate, having even

a better performance than the v18-19 test for some species, such as H. Sapiens and R. Norvegicus.

In this kind of tests, it is a very important issue to provide measures about the true negative rate of the

model, because it is hard to measure it in tests where the only well-known samples are the positive ones.

In order to calculate some sort of specificity for the deepSOM model in this real prediction task, and to

better illustrate the predictive performance of the proposed approach on completely independent test data,

the following two experiments have been done. First, we have re-trained the deepSOM model with the

full animals dataset built upon miRBase v17, but leaving now a completely separate set of negative data

sequences for test (10%, randomly selected). In this experiment, the specificity of the deepSOM model

was 80.70%. Additionally, we have tested a trained deepSOM model with a completely independent

negative test set composed by 1,000 human pre-miRNAs, the one defined by the pioneer work of [15].

The specificity of the deepSOM model in this test was of 81.55%, while the HuntMi specificity for this

same test was 72.37%.

In summary, all of these tests show that deepSOM can be reliably used for predicting whether sequences

in an animal genome can be pre-miRNAs or not with very high confidence.
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TABLE 7
Comparison with other tools: plant species. Classification sensitivity of deepSOM on plants

miRNAs recently added in miRBase v18-19.

Species PlantMiRNAPred [43] OC-KNN [26] OC-SVM [27] HuntMi [30] deepSOM
Arabidopsis thaliana 80.88 54.41 35.29 91.18 92.65
Cucumis melo 90.00 41.67 64.17 95.00 95.00
Glycine max - 52.65 55.63 88.41 94.70
Hordeum vulgare 55.56 46.67 40.00 35.56 82.22
Malus domestica 88.83 64.08 57.77 99.51 100.00
Medicago truncatula - 60.33 34.33 72.67 87.33
Nicotiana tabacum 84.66 50.92 61.35 93.25 94.48
Oryza sativa 60.95 49.11 42.01 69.82 80.47
Populus trichocarpa 89.89 48.31 56.18 97.75 98.88
Sorghum bicolor 94.83 55.17 37.93 94.83 100.00

TABLE 8
Comparison with other tools: plant species. Classification sensitivity of deepSOM on plants

miRNAs recently added in miRBase v20-21.

Species sequences OC-KNN [26] OC-SVM [27] HuntMi [30] deepSOM
Arabidopsis thaliana 95 56.84 34.74 89.36 91.58
Cucumis melo 120 41.67 64.17 94.96 95.00
Glycine max 370 51.89 52.43 90.51 95.95
Hordeum vulgare 48 43.75 37.50 38.30 85.42
Malus domestica 205 64.39 58.05 99.51 100.00
Medicago truncatula 327 59.63 34.56 74.85 88.38
Nicotiana tabacum 162 51.23 61.11 93.79 94.44
Oryza sativa 179 48.04 41.90 71.35 81.56
Populus trichocarpa 129 45.74 56.59 98.44 96.90
Sorghum bicolor 57 54.39 36.84 94.64 100.00

4.3 Comparison with other tools: plant species

To further evaluate the performance of deepSOM for plant miRNA prediction, we have trained it on the

full plant dataset built with miRBase v17, and tested it on plant miRNAs introduced in miRBase v18-19

(test set with 1520 sequences) and in the most recent miRBase v20-21 (test set with 1647 sequences).

The comparative results of deepSOM on this task against HuntMi [30], one of the most recent methods

specialising in plant microRNA identification, PlantMiRNAPred [43], and one-class classifiers OC-KNN

[26] and OC-SVM [27]. Comparative results are presented in Tables 7 and 8.

Clearly, deepSOM is superior to the other state-of-the-art methods for miRNA prediction in plants.

Only in one case it has achieved the same performance of the most recent proposed classifier. Regarding

the comparison with the specific plant pre-miRNA classifer, it is worth highlighting that deepSOM has

outperformed it in all test cases. A particular group of plant pre-miRNAs, formed by H. vulgare, M.

truncatula and O. sativa, was characterised by very low sensitivity values in the case of existing methods.

The authors of HuntMi looked into these pre-miRNAs in detail and discovered that a large fraction of
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miRNAs in these species do not meet commonly recognised criteria for annotation of plant miRNAs, while

in some other miRNAs the mature microRNA lies outside the stem part of the hairpin. This makes more

difficult the prediction of miRNAs for these species. In spite of this specific fact, deepSOM achieved very

satisfactory recall rates in all of these cases, increasing the sensitivity for the hardest case (H. vulgare,

from 55.56% [43] and 35.56% [30] to 82.22% for deepSOM). In the more updated test (miRBase v20-21,

Table 8), deepSOM has even increased its average sensitivity rate.Similarly to the animal model, in order

to show that deepSOM is capable of correctly identifying positive miRNAs and rejecting false miRNAs,

we have re-trained the deepSOM model with the full plants dataset built upon miRBase v17, but leaving

out a set of negative data sequences for test (10%, randomly selected), achieving a specificity of 79.56%.

In summary, the model proposed in this work has achieved the best recognition rates in all test cases.

In this plant data set, deepSOM has achieved a very high classification recall in most cases, higher than

90% in seven out of 10 test species, and even reaching a proportion of correctly identified miRNAs of

100% for two species.

5 CONCLUSIONS

In this work we have presented a new and effective approach for the computational prediction of novel

microRNAs precursors. As opposite to the classical supervised classifiers generally used for this problem, it

does not require the artificial and costly definition of a negative class for training. The proposal involves

clustering well-known pre-miRNAs together with unlabeled sequences. This way, clusters having both

known miRNAs and other sequences allow the quick identification of the best candidates to be novel

pre-miRNAs. The proposed approach, named deepSOM, deals with the high class-imbalance problem in

a data set having very few known positive class samples and an excessively larger number of unlabeled

sequences through the model organization into a hierarchical architecture of several deep maps. The use

of a hierarchy of deep SOM models overcomes the problem of having very few positive class labels, since

they are always maintained in the deeper levels, filtering less likely pre-miRNA sequences.

The deepSOM has been tested with several class imbalance real biological data sets, having different

levels of imbalance, showing high accuracy results in all cases. The deepSOM performance has been

further compared with other state-of-the-art methods for the prediction of novel miRNAs in animals and

plants, showing better performance in all tests, even for many different and difficult species. Additionally,

we have shown that the proposal allows for a better graphical interpretation of the results when input
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data is projected graphically into each deep map. The painting of the neurons in the map with different

colors and marker sizes according to the type of data clustered, helps having a clear view of the actual

high class-imbalance in the problem under study and the candidates to miRNAs distribution and location

in the feature space.
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High class-imbalance in pre-miRNA prediction: a
novel approach based on deepSOM

Supplementary Material
G. Stegmayer, C. Yones, L. Kamenetzky, D. H. Milone

F

Selecting an informative feature set is very impor-
tant for the pre-miRNA prediction problem. Most
commonly used feature sets contain information
about sequence, topology and structure. The earliest
machine learning approaches proposed a feature
named triplets, computed from the sequence itself
without including additional characteristics. miPred
was the first method that proposed a representa-
tive feature set that has shown great discrimina-
tive power and that has been adopted by many
other current methods, such as PlantmiRNAPred
and HuntMi.

For fair comparisons with those state-of-the-art
classifiers, we have used those same features in this
study:

• G+C content: calculated as (G + C)/(G + C +
A + U);

• MFEI1: ratio between the minimum free en-
ergy (MFE obtained with the algorithm from
[1]), and the G+C content;

• MFEI2: ratio between the dG and the number
of stems;

• MFEI3: ratio between the dG and number of
loops;

• MFEI4: ratio between the dG and the G+C
content;

• dG: adjusted MFE. MFE divided by the se-
quence length;

• dQ: adjusted Shannon entropy, which charac-
terizes the probability of base pairing in a sec-
ondary structure as a chaotic dynamic system;

• dF: measures the compactness of a tree-graph
where each vertex represents a bulge loop, hair-
pin loop, internal loop, the 5’ and 3’ unpaired
ends, or the multi-branch loop and each edge
is a RNA stem;

• zD: standard score of the base pair distance.
Adjusted base pair distance normalized using
z-score.

• Diversity: set diversity obtained with the algo-
rithm from [2];

• NEFE: normalized ensemble free energy;
• Diff: difference between MFE and EFE;
• dS: structure entropy;
• dS/L: normalized structure entropy;
• |A−U |/L: number of base pairs A-U normal-

ized with the length;
• |G−C|/L: number of base pairs G-C normal-

ized with the length;
• |G−U |/L: number of base pairs G-U normal-

ized with the length;
• Avg BP Stem: average base pair (nucleotides)

per stem (a structural motif of the secondary
structure that has more than three contiguous
base pairs)

• %(A-U)/n stem: base pair proportion A-U per
stem;

• %(G-C)/n stem: base pair proportion G-C per
stem;

• %(G-U)/n stem: base pair proportion G-U per
stem;

• triplets: frequencies of the following secondary
structure triplets composed of three adjacent
nucleotides and the middle nucleotide: ”A(((”,
”U(((”, ”G(((”, and ”C(((”;

• maximal length of the amino acid string with-
out stop codons found in three reading frames;

• cumulative size of internal loops found in the
secondary structure;

• a percentage of low complexity regions de-
tected in the sequence using Dustmasker [3].
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For each training set, in each fold, an independent
10-fold cross-validation (stratified) feature selection
step has been performed by using WEKA1 CfsSub-
setEval algorithm [4], which evaluates the worth of
a subset of attributes by considering the individual
predictive ability of each feature along with the
degree of redundancy between them. Subsets of
features that are highly correlated with the class
while having low intercorrelation are preferred.

The final set of features that have been selected
by dataset are:

Animals:
• MFEI1
• dQ
• Avg Bp Stem
• MFEI3
• loops

Plants:
• MFEI1
• dG
• dQ
• Avg Bp Stem
• MFEI3
• loops

H. sapiens:
• MFEI1
• dQ
• Avg Bp Stem
• MFEI3
• loops

A. thaliana:
• MFEI1
• dG
• Avg Bp Stem
• MFEI3
• loops

Tables 1 and 2 report the classification perfor-
mance of deepSOM on pre-miRNAs recently added
in miRBase (v20-21), with the comparison of full
features versus feature selection, for the animals and
plants datasets, respectively.
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TABLE 1
Classification performance of deepSOM on

animal pre-miRNAs recently added in miRBase
(v20-21)

Full Selected
Species features features
Bombyx mori 100.00 100.00
Caenorhabditis elegans 93.75 100.00
Ciona intestinalis 78.95 94.74
Homo sapiens 98.86 96.00
Macaca mulatta 100.00 87.50
Mus musculus 97.84 94.96
Oryzias latipes 99.34 97.37
Pongo pygmaeus 98.15 94.44
Rattus norvegicus 100.00 97.37
Taeniopygia guttata 95.65 100.00
Tribolium castaneum 100.00 100.00

TABLE 2
Classification performance of deepSOM on

plants pre-miRNAs recently added in miRBase
(v20-21)

Full Selected
Species features features
Arabidopsis thaliana 89.71 92.65
Cucumis melo 97.50 95.00
Glycine max 92.05 94.70
Hordeum vulgare 71.11 82.22
Malus domestica 100.00 100.00
Medicago truncatula 80.67 87.33
Nicotiana tabacum 94.48 94.48
Oryza sativa 82.84 80.47
Populus trichocarpa 94.38 98.88
Sorghum bicolor 94.83 100.00
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