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Abstract

This work reviews the advancements in the non-conventional analysis of speech signals, particularly from an AM-FM
analysis point of view. The benefits of such an analysis, as opposed to the traditional short-time analysis of speech, is
illustrated in this work. The inherent non-linearity of the speech production system is discussed. The limitations of
Fourier analysis, Linear Prediction (LP) analysis, and the Mel Filterbank Cepstral Coefficients (MFCCs), are presented,
thus providing the motivation for the AM-FM representation of speech. The principle and methodology of traditional
AM-FM analysis is discussed, as a method of capturing the non-linear dynamics of the speech signal. The technique
of Empirical Mode Decomposition (EMD) is then introduced as a means of performing adaptive AM-FM analysis of
speech, alleviating the limitations of the fixed analysis provided by the traditional AM-FM methodology. The merits
and demerits of EMD with respect to traditional AM-FM analysis is discussed. The developments of EMD to counter
its demerits are presented. Selected applications of EMD in speech processing are briefly reviewed. The paper concludes
by pointing out some aspects of speech processing where EMD might be explored.
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1. Introduction

Speech is the principal method of communication
amongst human beings. It is a signal generated by a com-
plex psycho-acoustic process developed as a result of thou-
sands of years of human evolution. However, it is not just
a tool for communication. It is a signal which contains
a multitude of information like the speaker’s age, height,
emotion, accent, health and physiological disorders, iden-
tity, etc., which give rise to the various fields of Speech Pro-
cessing today [1–3]. However, speech is a highly non-linear
and non-stationary signal, and hence unearthing such in-
formation is not a trivial task [3, 4]. Even though meth-
ods for analyzing non-stationary signals like the Wavelet
Transform and the Wigner-Ville Transform have been de-
veloped, they have not been popular in the speech process-
ing community mainly because they decompose the signal
in an alternate domain and introduce additional complex-
ity to the analysis [5–7]. Thus, the source-filter theory

of speech production has remained the backbone of speech
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processing [1–3]. The treatment of the speech signal as be-
ing linear and stationary for short intervals of time (10-50
ms) gives a simplistic and time-affordable analysis. Such
an analysis, though, is arguable and provides an oversim-
plified view of the phenomena related to speech produc-
tion [4, 8–10]. Thus, the Linear Prediction (LP) analysis
of speech provides us with a noisy excitation signal as a
representation of the glottal source, and a vocal tract fil-
ter which represents only the resonant cavities of the vocal
tract (the high pass filter characteristics of the lips is in-

cluded in the filter) [1–3]. Further, the oversimplification
of the speech production process makes the LP analysis
vulnerable to errors [11].

From the speech perception point of view, the Mel fil-

terbank, which is based on the characteristics of the hu-
man ear, has been widely appreciated in speech processing
[1–3]. The Mel Filterbank Cepstral Coefficients (MFCCs)
are derived solely from the magnitude spectrum (or power
spectrum) of the speech signal while neglecting the phase
spectrum of speech. However, the phase spectrum of
speech is equally critical to speech perception as the mag-
nitude spectrum and has found important use in many
speech processing applications [12–17]. Again, it has been
observed that while the Mel filterbank may be used for a
variety of speech applications, it does not always provide
the optimal features, and filterbanks tuned for different
applications might be more suitable for better results [18–
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22].
To overcome some of these limitations of conventional

speech analysis the sinusoidal representation of speech was
proposed, which models the speech signal as being consti-
tuted of a finite number of time-domain sinusoidal sig-
nals, in terms of their frequencies, amplitudes, and phases
[23]. The sinusoidal model and the Teager Energy Op-
erator (TEO) provided the impetus for the AM-FM rep-
resentation of the speech signal [4, 24–28]. The concept
of Multiband Demodulation Analysis (MDA) was intro-
duced, wherein the speech signal is passed through a par-
allel bank of fixed bandpass filters, generating different time
domain signals from the speech signal. These signals are
then represented in terms of their instantaneous frequen-
cies and amplitudes, as estimated from the Hilbert Trans-
form or the TEO [4, 27, 28]. In the recent years, such a
representation has been found to be useful in many areas
of speech processing [4].

Though the sinusoidal and the AM-FM representation of
speech are effective alternatives to the conventional anal-
ysis and processing of speech, they have some demerits as
well. Neither the sinusoidal analysis nor the MDA provides
a complete decomposition, i.e., a finite number of compo-
nents derived from them cannot add up to be exactly the
same speech signal. The sinusoidal model, again, involves
short-time processing, to compute parameters pertaining
to the signal components [23, 27, 28]. Further, apart from
the signal components which carry the vocal tract reso-
nances and the glottal source information, a multitude of
other components are also generated by sinusoidal analysis
or MDA of speech [23, 27, 28].

If there were a method of completely decomposing the
speech signal into a finite number of time domain compo-
nents without involving any computation of parameters,
and without using short-time processing of the data, it
would be more appealing to the speech community. It
is also desired that such a method be able to decompose
the speech signal into components whose frequency spec-
tra are dominated by the formant frequencies (and the

fundamental frequency for voiced speech) alone. Such a
decomposition would produce less but meaningful speech
components. Ideally, the frequency spectra of the compo-
nents so generated should not overlap, and each compo-
nent should carry information about a single formant or
the glottal source only. Such components, then, may be
considered narrowband with respect to the speech signal,
and therefore the piecewise linearity and stationarity as-
sumptions might be more applicable to them. Thus, even
conventional short-time analysis based on the source-filter
theory might be more effective provided such speech com-
ponents be available. In the pursuit of such time domain
speech components, we may look towards Empirical Mode

Decomposition (EMD) of speech [7].
Empirical Mode Decomposition (EMD) is a non-linear

and non-stationary data analysis technique with the abil-
ity to extract AM-FM components, called Intrinsic Mode

Functions (IMFs), of the signal, in the time domain itself

[7]. This ability of EMD to decompose a time-series data
into different time-series components without the require-

ment of any a priori basis has been widely appreciated in a
variety of fields [29]. In this paper, we discuss the various
facets of EMD, its developments, and its applications in
speech processing.

The rest of the work is organized as follows: Section 2
discusses the non-linearity and non-stationarity of speech.
As such, the limitations of conventional short-time analy-
sis of speech, with emphasis on the source-filter model and
the Mel filterbank, are discussed. Some non-conventional
approaches which cater to the inherent non-stationarity
of the speech signal but within the “linear” framework
are then briefly discussed. Section 3 presents the AM-FM
analysis of speech as a means for processing the speech sig-
nal in both a non-stationary and a non-linear framework.
The principal philosophy and methodology behind AM-
FM analysis are reviewed. Section 4 introduces the tech-
nique of EMD as a method for adaptive AM-FM analysis

of speech, eliminating some of its conventional drawbacks.
Section 5 is dedicated to reviewing the advancements of
EMD for the purpose of making it a more effective tool.
Section 6 compares EMD with other non-conventional
speech processing techniques. Section 7 presents some ap-
plications where EMD has been used in speech processing,
thus projecting its practical utility. Section 8 summarizes
this article and concludes this work.

2. Limitations of conventional short-time analysis,
and utilization of non-conventional methods for
speech processing

“Much of what speech scientists believe about the mech-

anisms of speech production and hearing rests less on an

experimental base than on a centuries-old faith in linear

mathematics.” - Teager & Teager, 1990.
To verify the validity of the source-filter theory of speech

production, Teager measured the air flow at different posi-
tions inside the oral cavity. To his surprise, he found that
most of the air flow was concentrated along the roof of the
mouth and along the surface of the tongue. There was
very little airflow at the center of the oral cavity, as de-
picted in Fig.1. Later, Teager also observed the presence
of radial and axial airflows in the vocal tract. Thus, the air
flow in the speech production system is not laminar, and
hence the planar wave assumptions upon which the lin-
ear source-filter theory is based may be deemed arguable
[4, 9, 30, 31].

To analyze the simplification achieved in the linear
source-filter theory, we may look at Figs.2 and 3. Fig.
2 shows the detailed speech production apparatus, which
includes, apart from the main vocal tract, the nasal cav-
ity, and the cavities of the hypopharynx and the piriform

fossa. This complex structure is modeled by the source-
filter theory into a far simpler structure - a concatenation
of multiple tubes with different cross-sectional areas, as
shown in Fig.3. This drastic simplification allows the vocal
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Figure 1: Figure redrawn from [9]. Three time traces for a vo-

calized vowel ‘ah’ produced by a male speaker. The traces pro-

vide experimental verification of separated flow. The topmost

waveform is that of the speech signal recorded by a microphone

placed 5" from the lips. The two waveforms at the bottom,

A (solid) and B (dashed), represent airflows at two different

positions inside the mouth, measured simultaneously with the

recorded speech. The airflow inside the mouth is measured by

a 0.7mm x 0.0005cm hot wire sensor, at a temperature of 200◦

C, with the wire kept normal to the flow.

< 1 > A represents air flow at a distance of 0.25" from the palate,

and B represents air flow at a distance of 0.75" from the palate.

< 2 > A and B are 180◦ out of phase.

The waveforms show that most of the air flow occurs close to

the palate, as represented by A.

tract to be modeled as a linear filter, comprising of a cas-
cade of resonators only. A further simplification in speech
analysis is obtained by considering this simplified model
as being invariant for short segments of time, considering
that the movements in the human vocal tract system are
limited to such rates. This allows speech to be considered
a quasi-stationary signal, whose short-time segments are
the output of a Linear Time Invariant (LTI) system [1–3].
While these simplifications make analysis easier, it almost
certainly limits the capability of capturing the information
embedded in the dynamics or the fine structure of speech.

From the speech perception point of view, the Mel filter-

bank is used to imitate the characteristics of the human ear.
The MFCCs, which are widely used in speech processing
applications, however, do not incorporate the phase spec-
trum of speech. The inability to accommodate the phase
spectrum of speech in the MFCCs has led to limitations in
the performance of many speech processing applications
[4]. Further, one may argue that while the human ear
does multi-tasking, it also has an unparalleled computer
with mysterious capabilities at its disposal - the brain.
Henceforth, for machines to replicate the performance of
the human cognitive system it may be more beneficial to
construct application-oriented filterbanks, instead of using
the Mel filterbank for all purposes. These limitations of
conventional speech production and perception modeling
and analysis are discussed below.

Figure 2: Figure redrawn from [3]. Acoustic design of the vocal

tract.

Figure 3: Area function of the vocal tract from the glottis to

the lips (above). The simplified model of the vocal tract as

a concatenation of multiple tubes with different cross-sectional

areas.

2.1. Limitations of Fourier Analysis

There are two basic requirements of the data for
Fourier-analysis to make sense [7].

(a) The data must be stationary.
(b) The data must be generated by a linear system.

However, real-world data, like speech, seldom meet
these requirements. As such Fourier analysis requires
many additional harmonics to simulate non-uniformity
(abrupt changes) in the data. It spreads the energy over

a wide frequency range. A simple example is the delta
function, which produces a flat Fourier spectrum.

δ(t) ↔ 1,−∞ < ω < ∞

As such, for non-stationary signals, Fourier analysis pro-
duces a multitude of components which combine perfectly
mathematically but may not represent meaningful char-
acteristics of the signal [7]. Also, even if the data is sta-
tionary, and is constituted of a finite number of sinusoids,
Fourier analysis would make sense only if the data is of infi-
nite duration. Lesser the duration of the data, greater is its
non-uniform (abruptly changing) and non-stationary char-
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Figure 4: (a) Speech ; (b) Spectrogram of (a). Framesize of 25 ms with frameshift of 10 ms is used.

acteristics, and wider the Fourier spectrum. Moreover,
Fourier analysis cannot track the change in the frequency
content of the signal, as all its components are spread over
the entire time scale. As a way of countering this particu-
lar limitation, the Short-Time Fourier Transform (STFT)
has been the utilized, particularly for speech signal pro-
cessing, wherein the Fourier analysis is done for short fixed

segments of the speech signal [1–3]. Given a continuous-
time speech signal, s(t), its continuous-time STFT, is given
by,

S(τ, f) =

∫

∞

−∞

s(t)w(t− τ) e−j2πftdt,

where w(t) represents a symmetric window of finite time-
width, and τ the time-instant at which the window is
placed. Thus, depending on the width of w(t), STFT pro-
vides a fixed time and frequency resolution of the signal.
Fig.4 represents the time varying STFT magnitude spec-
trum in the form of an image, popularly known as the Spec-

trogram, where the STFT spectrum is evaluated at every
10 ms, considering a time window of 25 ms. Clearly, STFT
is not an adaptive signal analysis method [32]. There is
no “correct” window size, and it varies not only with the
task at hand but even within a particular signal.

2.2. Limitations of LP Analysis

The LP analysis has been the cornerstone of speech anal-
ysis based on the source-filter theory. The LP analysis is
used to estimate the vocal tract resonances, or formants,
and the excitation source of the speech signal. However, in
accordance with the source-filter theory, the LP analysis
does not model the antiresonances of the speech produc-
tion system. Also, it does not model the resonances in the
cavities of the hypopharynx and the piriform fossa, which
influence the overall spectrum of speech. As a result, the
LP analysis is prone to inaccurate estimation of the speech
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Figure 5: From top to bottom : A voiced speech signal , its LP

residual, and the ideal excitation signal.

formants, and the excitation signal represented by the LP
residual [11].

The ideally expected output of LP analysis is an
LP filter with accurate estimation of the vocal tract
resonances and the spectral slope of voiced speech, and
an LP residual or error signal, which resembles a train
of impulses separated by the time-varying pitch period
of the speech signal. However, in practicality, the LP
residual turns out to be a noisy signal, with relatively
larger amplitudes in the vicinity of the GCIs, as reflected
in Fig.5. The noisy characteristics of the LP residual may
be attributed to three main factors [11] :

(i) The inaccurate estimation of the coefficients of the
poles, corresponding to the resonances of the vocal tract
system, which makes the LP residual to have non-zero val-
ues at time-instants other than the GCIs.

(ii) The inaccurate estimation of the phase angles of the
formants, which results in significant bipolar swings in the
LP residual, around the GCIs.

(iii) The presence of strong anti-resonances in the
speech production system, which causes the large ampli-
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tudes in the LP residual to occur at time-instants other
than the GCIs.

These differences between the ideal excitation signal and
the LP residual, as observed in Fig.5, reflect the mismatch
between the actual characteristics of the speech production
system, and that modeled by the source-filter theory using
LP analysis.

2.3. Importance of phase in speech perception
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Figure 6: (a) Speech (b) Phase-only reconstruction of speech (c)

Magnitude-only reconstruction of speech. Rectangular window

of 1024 ms duration, with 75% overlap between frames is used.

Table 1: Consonant intelligibility of Phase-only and Magnitude-
only reconstructed speech for different analysis window sizes,
and different window types. Values in the table are quoted from
[15].

Window

Intelligibility (%)

Magnitude - only Phase - only

32 ms 1024 ms 32 ms 1024 ms

Hamming 84.2 14.1 59.8 88.0

Rectangular 78.1 13.2 80.0 89.3

The understanding of phase does not come as intuitively
as that of energy or amplitude. This is probably the rea-
son why the magnitude spectrum is mostly involved in
analysis, whereas the phase spectrum remains neglected.
Even the MFCCs do not incorporate the phase spectrum
of speech. However, the phase spectrum obtained from
the STFT of speech has been found to be particularly
important in speech perception [15–17]. Phase-only re-
constructed speech, i.e., speech signal reconstructed us-
ing only its phase spectrum while keeping the magnitude
spectrum fixed to unity, is found to be highly intelligi-
ble, particularly when rectangular windows are used for
analysis. Compared to this, magnitude-only reconstructed
speech, i.e., speech signal reconstructed using only its mag-
nitude spectrum while keeping the phase spectrum fixed
to zero, is found to be less intelligible. The intelligibil-
ity of magnitude-only reconstructed speech is also limited
to shorter analysis windows. Table 1 lists the consonant
intelligibility averaged over 12 listeners, for 16 consonants

spoken by Australian English speakers in vowel-consonant-

vowel context [15, 16]. The aforementioned observations
are evidenced in the table. Again, the phase-only recon-
structed speech, as shown in Fig.6, is also observed to carry
information about the epochal events or the glottal closure

instants [11, 33–40] in voiced speech [15–17]. This is par-
ticularly evidenced for large analysis windows.

2.4. Inadequacies of the Mel Filterbank and the source-

filter theory

To validate the utility of the MFCCs for characteriz-
ing speaker information vs. speech information, over the
broader speech spectrum (0-8 kHz), the Fisher’s F-ratio

[20], which is a ratio of the inter-speaker variance to the
intra-speaker variance, is computed for utterances of dif-
ferent speakers. For this experiment 60 triangular filters
which are uniformly spaced in the linear frequency scale
are used [20]. Every speech frame, of a given utterance,
is subjected to the filterbank, to obtain 60 subband ener-
gies for the frame. Let xik,j be the subband energy of the

kth frequency band of the jth speech frame belonging to
the ith speaker. The average subband energy of the kth

frequency band for the ith speaker is given by,

uik =
1

N i

Ni

∑

j=1

xik,j , k = 1, ..., 60 , (1)

where N i is the total number of speech frames for all the
utterances belonging to the ith speaker. Then, the aver-
age subband energy of the kth frequency band for all the
speakers is given by,

uk =
1

Ms

M
∑

i=1

uik , (2)

where Ms is the total number of speakers. The F-ratio for
the kth frequency band, is then given by,

F ratiok =
1
Ms

∑Ms

i=1(uik − uk)2

1
MsNi

∑Ms

i=1

∑Ni

j=1(xik,j − uik)2
, k = 1, ..., 60

(3)

As can be seen from equation (3), the numerator of
F ratiok gives the variation of energy in the kth frequency
band for different speakers. The denominator gives the
variation of energy in the kth frequency band for the same
speaker. Thus, a high value of F-ratio for a given frequency
band indicates the presence of high speaker-specific infor-
mation in the band. Contrarily, a low value of F-ratio in-
dicates the presence of speech-specific information in the
band. Fig.7 shows the F-ratio (in dB) computed for differ-
ent sessions of the NTT-VR corpus [41], and for different
types of speech of the CHAINS corpus [42]. As can be seen
from the figure, for the NTT-VR corpus the F-ratio is high
roughly in three regions - below 500 Hz, around 5000 Hz,
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and around 7000 Hz. These are the regions which carry
most of the speaker-specific information. The rest of the
regions, particularly between 1 - 4 kHz, have low F-ratio
values and carry the message information of speech. In
the case of the CHAINS corpus, again, it may be observed
that the F-ratio values starts to increase after their lowest
point (between 3-4 kHz), as the frequency increases. This
is found to be true irrespective of the type of articulation
or speaking style.
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Figure 7: F-ratio for different frequency bands of speech, evalu-

ated on the NTT (redrawn from [20]) and CHAINS databases.

Figure 8: Mel filterbank in the linear frequency scale.

The three frequency bands of the F-ratio curves of
the NTT-VR corpus, carrying speaker-specific informa-
tion, may be attributed to three different aspects of the
speech production system. The high values of F-ratio be-
low 500 Hz signify the fundamental frequency variation
or the variability of the glottal source amongst speakers.
Similarly, the high values of F-ratio around 7 kHz might
be attributed to the vocal tract constrictions in the pro-
duction of unvoiced speech. The high speaker discrimina-
tion information between 4 - 6 kHz, however, is believed
to be contributed by the resonances and antiresonances of
the hypopharynx and the piriform fossa - the structures
which are not included in the source-filter theory [20, 43–
45]. Henceforth, attempts have been made to incorporate
the velocity-to-velocity transfer functions of the hypophar-
ynx and the piriform fossa in the source-filter theory based
speech production model [43–45]. These attempts have re-
vealed that these structures in the lower vocal tract sig-
nificantly change the spectrum of voiced speech above 3.5
kHz, producing stable formants in the higher frequency

spectrum of speech [43–45].

The above experiments suggest that the conventional
Mel filterbank (Fig.8), which progressively deemphasizes
higher frequencies, may not be optimal for speaker recog-
nition purposes. Based on these observations, alternate
avenues for speaker recognition are being explored, partic-
ularly those emphasizing the higher frequency spectrum of
speech [4, 18–20, 46–49]. Some of these experiments use
different filterbanks, as opposed to the conventional Mel
filterbank [18–20], while others use an AM-FM represen-
tation of speech [46, 48, 49], which is discussed later, in
Sec.3, in this paper. Even for speech recognition, the high
resolution of the Mel filterbank at low frequencies might
affect the machine recognition of speech. Also, the peaks
and valleys within 1-4 kHz indicate that the Mel Filter-
bank may not represent the optimal filterbank for speech
recognition.

2.5. Utility of non-conventional analysis and filterbank op-

timization for speech processing

The MFCCs, despite the limitations of the Mel fil-
terbank, are the most widely used features for most
speech processing applications like speech recognition [50],
speaker verification [51], emotion recognition [52–55], lan-
guage recognition [56], etc., and even for non-speech acous-
tic signal processing tasks, such as music information re-
trieval [57]. However, as discussed in the preceding sub-
section, it is quite ambitious to assume that they would
provide the best possible performance for all applications.
This is why many alternatives to the Mel filterbank have
been recently introduced, allowing to improve the perfor-
mance of different tasks. Most of these alternatives con-
sist of modifications to the classical filterbank [58–64]. To
improve the feature extraction process, a common strat-
egy consists of designing filterbanks using data-driven op-
timization procedures [65–68]. In this direction, different
methodologies based on non-stationary data analysis tech-
niques like Evolutionary Algorithms (EAs) [21, 22, 69–71]
and Wavelet Transform (WT) [5, 6, 32, 72–76] have been
utilized in different speech processing applications.

An example of filterbank optimization using EAs for the
extraction of cepstral features may be found in [77]. Fig.9
shows the filterbanks optimized for Hindi stressed speech
corpus [78] and the FAU Aibo Emotion Corpus [79, 80], for
stressed and emotional speech classification respectively.
The features so obtained are called the Evolutionary Spline

Cepstral Coefficients (ESCCs). ESCC-Eh corresponds to
the filterbank optimized for the Hindi corpus, and ESCC-
Ef corresponds to the filterbank optimized for the FAU
Aibo corpus. It can be noticed that the optimized filter-
banks differ significantly from the Mel filterbank (Fig.8).

As a way of overcoming the time and frequency res-
olution limitations of the STFT, the Wavelet Transform

(WT) was introduced [5, 6, 32]. The continuous-time WT
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Figure 9: Figure redrawn from [77]. Filterbanks optimized using

EA for stress and emotion recognition.

of a signal, s(t), is given by,

Ψψ
s (τ, r) =

1
√

|r|

∫

∞

−∞

s(t)ψ∗

(

t− τ

r

)

dt

where ψ(t), called the mother wavelet, represents an os-
cillatory signal of finite time-width. Here, r represents
the scale and τ the time around which the signal is an-
alyzed. Thus, WT allows the visualization of the signal
at different scales, depending on the value of r. Thus,
WT, in essence, may be defined as an adjustable window
STFT. The discrete version of the continuous-time WT,
called the Discrete Wavelet Transform (DWT), is popu-
larly used for analyzing non-stationary digital signals. For
a digital speech signal, s(n), the dyadic DWT is obtained
as

Wψ
s

[

τ, 2j
]

=

N−1
∑

n=0

s(n)ψ∗

τ,2j (n)

time ( 0 − 8 ms )

F
re

q
u

en
cy

 (
 0

 −
 8

 k
H

z 
)

STFT DWT

Figure 10: Comparison between time-frequency resolution of

STFT (left) and 3-level DWT (right), calculated for a 8 ms signal

of sampling frequency 16 kHz.

The comparison between the time-frequency resolutions
of the STFT and the DWT may be visualized in Figure
10. The decomposition of the DWT is further extended by
the Wavelet Packets Transform (WPT), which applies the
filtering process of the binary decomposition tree to both
the low-frequency and high-frequency component of the

signal, at each stage of the decomposition. Then, an over-
complete dictionary is obtained by this process, providing
more flexibility for the analysis of specific frequency bands.
From the decomposition of the WPT, different sub-trees
can be selected in order to extract the desired informa-
tion. The flexibility of the WPT has been exploited in
many speech processing tasks, particularly in the context
of speech and speaker recognition problems [72–74]. The
flexibility provided by the WPT, however, comes along
with the challenging problem of choosing the optimum set
of coefficients among all the possible combinations for a
particular application. Usually, this is tackled by restrict-
ing the search to orthogonal basis [81–84]. For applications
like speech recognition, studies have concluded that redun-
dant representations could provide increased robustness
[22, 75]. One may relate this to the fact that the analysis
performed at the level of the auditory cortex is highly re-
dundant, and therefore non-orthogonal [85]. Another con-
cern in the design of useful wavele-based decomposition
is the choice of an adequate wavelet family and associ-
ated parameters that suit the particularities of the signal
of interest and the problem at hand. Many approaches
are being proposed to address this issue depending on the
application [86–88]. As such, in order to exploit the flexi-
bility provided by the WPT decomposition to extract op-
timal speech features, new and unorthodox methodologies
are being explored [75, 76].

Thus, it may be concluded that there is a definite
scope for non-conventional methods like the WT or the
EA in various speech processing applications. Most of
these methods, in essence, tackle the problem of non-

stationarity. The idea is to find out the frequency bands
which are important for a particular application. However,
while these techniques optimize the features for a partic-
ular application, the optimization is not adaptive to indi-
vidual speech utterances. Further, they do not take into
consideration the inherent non-linearity of the speech pro-
duction system, or try to capture information embedded in
the non-linear characteristics of speech. These techniques
process the speech signal in a “linear” framework [5, 6, 32].
Henceforth, they are bound to exhibit limitations in ana-
lyzing non-linear signals [7]. Henceforth, a representation
of the speech signal is desired which takes into consider-
ation not only its non-stationarity but also its non-linear
dynamics. In this direction, we must head towards the
AM-FM analysis of speech.

3. AM-FM analysis of speech

As an attempt to overcome some of the limitations of
traditional STFT analysis of speech, the sinusoidal repre-
sentation of speech was proposed [23]. This model repre-
sented the glottal excitation source, and hence the speech
signal, as being constituted of a finite number of sinu-
soids, as shown in the block diagram of Fig.11. The fre-
quencies, amplitudes and phase angles of the sinusoids, for
each speech frame, are derived from the peaks of its STFT
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spectrum. As such, this representation tries to reduce the
redundancies of the STFT spectrum but does not really
tackle the problems of non-linearity and non-stationarity.
Its principal demerit, however, is that it requires the eval-
uation of a number of parameters. Also, as the process in-
volves peak picking of the STFT spectrum, it is, in essence,
a miniature version of the STFT representation of speech
[23]. Because of this reason, the sinusoidal representation
of speech is not a complete decomposition, i.e., the compo-
nents derived from it cannot synthesize exactly the same
speech signal from which they have been derived.

Figure 11: Figure redrawn from [23]. Analysis and Synthesis

process of the sinusoidal model of speech.

Even though the sinusoidal model did not address the in-
herent non-linearity of the speech production mechanism,
it aroused the possibility that the representation of the
speech signal by a small finite number of meaningful si-

nusoids could be an effective mechanism for speech anal-
ysis. The next question was how to extract sinusoidal like
waveforms from the speech signal without using linear and
stationary analysis, i.e., the Fourier spectrum. This leads
us to the next development in speech analysis - the AM-
FM representation of speech. The AM-FM representation
aims to represent the speech signal as the sum of a finite
number of narrowband signals, with slowly varying ampli-
tudes and frequencies. Thus, each component of a speech
signal, under this representation, is an AM-FM signal, and
not a sinusoid, with limited degrees of amplitude and fre-
quency modulation. Ideally, one would want such AM-FM
components to be centered around the resonances or the
centers of energy of the speech signal [4, 25, 27, 28]. Thus,
under AM-FM analysis, a continuous-time speech signal,
s(t), may be ideally represented as,

s(t) =

N
∑

k=1

Rk(t) , (4)

Rk(t) = ak(t) cos
[

2π
{

fkt+

∫ t

0

q(τ)dτ
}

+ θ
]

, (5)

where Rk(t) represents an AM-FM signal having a center
frequency corresponding to the speech formant frequency
fk. The amplitude and frequency modulating signals

of Rk(t) are given by ak(t) and q(t) respectively, and
θ is a constant phase. Henceforth, in order to realize
the AM-FM representation, a demodulation technique is
required which could estimate the instantaneous ampli-
tude envelope and frequency of each AM-FM component
of the speech signal. One of the popular techniques
for this purpose is the Hilbert Transform [4–7]. The
Hilbert Transform is a reliable estimator of the frequency
and amplitude envelope functions of a monocomponent

signal, provided certain conditions are met [4–7]. These
conditions are :

(i) : The frequency variation should not be large, i.e.,
the signal should be narrowband.

(ii) : The amplitude variation should not be large.
(iii) : The rate of frequency and amplitude variation

should not be large.

Assuming these conditions are satisfied, the Hilbert
Transform, H[x(t)], of a signal x(t), is derived from its
Fourier Transform as ,

x(t) ↔ X(ω) ,

1

πt
↔ −j sgn(ω) =

{

−j , ω > 0
j , ω < 0

,

H[x(t)] = x(t) ∗ 1

πt
,

H[x(t)] ↔ −j sgn(ω)X(ω) =

{

−jX(ω) , ω > 0
jX(ω) , ω < 0

The instantaneous frequency function, f(t), and ampli-
tude envelope function, a(t), is derived from the analyti-
cal signal, z(t), which is devoid of any negative frequency
Fourier components.

z(t) = x(t) + jH[x(t)] = a(t)ejφ(t) , (6)

z(t) ↔ Z(ω) =

{

2X(ω) , ω > 0
0 , ω < 0

,

a(t) = |z(t)| , (7)

φ(t) = arctan
ℑ{z(t)}
ℜ{z(t)} , f(t) =

1

2π

dφ(t)

dt
(8)

Correspondingly, the Discrete Fourier Transform

(DFT) is utilized for estimating the instantaneous fre-
quency and amplitude envelope of any discrete time signal,
x(n).

3.1. The Teager Energy Operator and the proof of non-

linearity in speech

Even though the Hilbert Transform can track frequency
and amplitude variations, it is based on the Fourier Trans-
form, and hence some of the limitations of Fourier anal-
ysis are also associated with it. This led to the develop-
ment of the Teager Energy Operator (TEO), for tracking
the instantaneous frequencies and amplitude envelopes of
AM-FM signals [4, 24, 26, 27]. The TEO, Ψ[x(n)], of a
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Figure 12: (a) smod(n) (b) Estimated amplitude envelope of smod(n) using DESA-1 (c) Estimated instantaneous frequency of smod(n)

using DESA-1. Dashed line shows average instantaneous frequency. 11-point median filter is used to smooth the estimates ; (d)

sbpf (n) (e) Estimated amplitude envelope of sbpf (n) using DESA-1 (f) Estimated instantaneous frequency of sbpf (n) using DESA-1.

Dashed line shows average instantaneous frequency. 11-point median filter is used to smooth the estimates ; (g) ssyn(n) (h) Estimated

amplitude envelope of ssyn(n) using DESA-1 (i) Estimated instantaneous frequency of ssyn(n) using DESA-1. Dashed line shows

average instantaneous frequency.

discrete-time signal, x(n), is an estimate of the total in-
stantaneous energy of the process generating the signal,
and is given by,

Ψ[x(n)] = x2(n) + x(n− 1)x(n+ 1) (9)

The Discrete-time Energy Separation Algorithms (DE-
SAs), or the Teager-Kaiser algorithms (TKs), are used to
estimate the envelope and frequency functions of discrete-
time AM-FM signals. Out of the many DESAs, the more
popular DESA-1 algorithm is given by,

ω(n) = arccos
{

1 − Ψ[y(n)] + Ψ[y(n+ 1)]

4Ψ[x(n)]

}

, (10)

where y(n) = x(n) − x(n− 1) ,

|a(n)| ≈
√

√

√

√

Ψ[x(n)]

1 −
{

1 − Ψ[y(n)]+Ψ[y(n+1)]
4Ψ[x(n)]

}2 , (11)

where ω(n) and a(n) are the instantaneous digital fre-
quency and envelope functions estimated from x(n). As
with the Hilbert Transform, the same requirements are
equally applicable to the DESAs for tracking AM-FM sig-
nals [27]. However, the DESAs are much simpler and effi-
cient algorithms than the Hilbert Transform and are free
from the limitations of Fourier analysis. The DESAs laid
the foundation for the independent investigation of speech
signals in terms of their constituent AM-FM signals, with-
out the assumptions of the source-filter theory, and the
involvement of Fourier analysis.

To evaluate whether speech is indeed the result of a lin-
ear resonator system, a simple experiment is performed
[26, 27]. An arbitrary voiced speech signal, s(n), with
Fs = 8 kHz, is taken, and its formant frequencies are eval-
uated by a 12-order LP analysis. The signal, s(n), is then
band-pass filtered by a Gabor filter around one of its for-
mant frequencies, fres, to obtain a filtered output sbpf (n).
In our case, the third formant, with fres =1200 Hz, is con-
sidered, and the Gabor filter bandwidth is taken as 400
Hz. Again, a synthetic voiced speech signal, ssyn(n), is
generated by exciting a single resonator vocal tract sys-
tem, vsyn(n) (having resonant frequency fres = 1200 Hz),
with a train of impulses having a frequency of 100 Hz.

ssyn(n) = [−
∞

∑

−∞

δ(n− kN)] ∗ vsyn(n),

Vsyn(z) =
1

(1 − p1z−1)(1 − p⋆1z
−1)

,

p1 = 0.98 × ej2π×1200/Fs ,
Fs
N

= 100 Hz , Fs = 8 kHz

Also, an AM-FM signal, smod(n), is generated with grad-
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ually varying amplitude envelope and frequency.

smod(n) =












a(n) cos{0.2π(n− 100) + π(n− 100)2/4000} ,
n = 0, ..., 200

a(n) cos{0.25π(n− 200) + π(n− 200)2/4000 + π} ,
n = 201, ..., 400

where a(n) = 1 + 0.25 cos(πn/100)

The amplitude envelope and frequency functions of
smod(n), sbpf (n), and ssyn(n), are then estimated using
DESA-1. Fig.12 shows the plots of the estimates. As
ssyn(n) is generated from an LTI system, the frequency
estimate of ssyn(n) is almost constant within an excita-
tion period. Jumps in the frequency function indicate the
impulse locations. Similarly, the amplitude envelope is an
exponentially decaying function within a pitch period, and
jumps occur at excitation instants. In contrast to this, the
amplitude envelope of sbpf (n) is a more like a sinusoid,
even within a glottal cycle. The frequency function also
increases and decreases with time within a pitch period.
These characteristics are similar to the estimates obtained
from the AM-FM signal smod(n). These observations sug-
gest that even within a glottal cycle, the speech signal may
not be considered as the output of an LTI system, but
rather as a combination of AM-FM signals. Such AM-FM
components are mainly contributed by the resonances of
the vocal tract system, and analyzing them individually
might be useful for various speech processing tasks.

3.2. Multiband Demodulation Analysis and the Pyknogram

Figure 13: Multiband Demodulation Analysis. BPF : Band-Pass

Filter , IF : Instantaneous frequency , IA : Instantaneous Am-

plitude Envelope.

Though the objective of AM-FM analysis is to obtain
a representation of the speech signal as a sum of its
resonances, which represent narrowband AM-FM signals,
there are two obstacles in this formulation. Firstly, how to
obtain the formant frequencies without short-time Fourier
and LP analysis ? Secondly, how to ensure that the sum
of the components adds up to be exactly the same speech
signal ? To circumvent the first problem, the framework of
Multiband Demodulation Analysis (MDA) was proposed
[4, 25, 28]. In this framework, the speech signal is passed

through a fixed parallel bank of overlapping band-pass fil-

ters, as shown in Fig.13. This ensures that even if the
formant frequencies vary with time, one of the filters will
pick up the speech resonances at any given instant. How-
ever, as the filters are overlapping, and not disjoint, the
output components may approximate, but will never ex-
actly add up to be the same speech signal. So, just like in
sinusoidal analysis, the synthesis is approximately true, if
a large number of filters with less overlap is used, but not
complete.

As seen in Fig.13, there are two stages in the MDA.
The first stage involves the design of the filters, which
may vary for different speech processing tasks. Three
main questions are to be answered.

(i) : What filter to use, and the number of filters ?
(ii) : The center frequencies of the filters ?
(iii) : The bandwidths of the filters ?

Generally, a Gabor filter, hg(t), is used for filtering,
as it has a low value of time-bandwidth product, and it
does not produce sidelobes [25, 27, 28].

hg(t) = e−α2t2 cos(ωct) ,

Hg(ω) =

√
π

2α

[

e−
(ω−ωc)2

4α2 + e−
(ω+ωc)2

4α2

]

The second stage involves the processing of the time-
domain AM-FM signals, obtained from the band-pass fil-
terbank. The instantaneous amplitude envelope and fre-
quency function of each AM-FM signal is estimated using
the DESA or the Hilbert Transform. They are then uti-
lized to obtain short-time estimates of mean instantaneous
frequency and bandwidth. Two most used formulations
are the mean amplitude weighted instantaneous frequency,
Fw, and the mean amplitude weighted instantaneous band-
width, Bw, given by,

Fw =

∫ t0+T

t0
f(t)a2(t)dt

∫ t0+T

t0
a2(t)dt

, (12)

B2
w =

∫ t0+T

t0
[{ȧ(t)/2π}2 + {f(t) − Fw}2a2(t)]dt

∫ t0+T

t0
a2(t)dt

, (13)

where t0 and T are the start and duration of the analysis
frame, and a(t) and f(t) are the instantaneous amplitude
envelope and frequency respectively of the AM-FM signal
under consideration.

Based on the philosophy and methodology discussed
above, AM-FM analysis have been applied successfully in
different speech processing tasks, particularly in the fields
are speech and speaker recognition [4, 46, 48, 49, 89–91].
The usefulness of AM-FM analysis may be appreciated in
an important time-frequency representation of the speech
signal - the speech pyknogram [28]. Fig.14 shows a typi-
cal pyknogram constructed from a speech signal of Fs =
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Figure 14: (a) Speech ; (b) Pyknogram of (a) using 80 Gabor bandpass filters of 1000 Hz effective RMS bandwidth. Framesize of 25

ms with frameshift of 10 ms is used.

8 kHz. It is formed by MDA of the speech signal using
80 Gabor filters uniformly spaced in the linear frequency
scale. The Gabor filters have an effective RMS bandwidth
of 1000 Hz. For every speech component obtained from
MDA, corresponding to a Gabor filter with center fre-
quency cfk , k = 1, ..., 80, a short time frequency estimate
Fw(tfr, cfk) is obtained at every 10 ms time interval tfr,
using equation (12). The time duration of the analysis
frame is taken as T = 25 ms. This results in the time-
frequency distribution Fw(t, f) called the pyknogram. The
Greek word “pykno” means dense. As can be seen from
Fig.14, the dense clusters of curves in the pyknogram in-
dicate the trajectories of different formants. It is a much
more vivid representation than the spectrogram of Fig.4,
for the same speech file, created using the same time res-
olution and analysis window size. Henceforth, the pykno-
gram is processed to identify regions with dense clusters
for the purpose of tracking formant frequencies and their
bandwidths [28].

The above discussion suggests how AM-FM analysis
could provide useful information for speech processing.
However, it still remains as a fixed analysis, determined by
the design of the filterbank. As such, apart from the useful
components which carry the formants information, a mul-
titude of other components are also generated, as seen in
the pyknogram. The ideal objective of AM-FM analysis,
to represent the speech signal in terms of its time-varying
resonances only, as encapsulated in equation (4), is not
still desired. With the objective of making AM-FM analy-
sis a truly adaptive and compact analysis, we look towards
EMD of speech.

4. Empirical Mode Decomposition

The limitations of conventional short-time processing
of speech, apart from the fixed time-frequency resolution,

lies in the inability to capture the dynamics of the
speech signal [92–95]. As such, the first derivative (∆
or velocity coefficients), and the second derivative (∆∆
or acceleration coefficients) are often utilized on top of
the normal speech processing features, as in the case of
MFCCs [92]. To minimize this limitation, efforts have
also been made to utilize dynamic frame rate and length
based on the time-varying properties of the speech signal
[93–95]. However, none of these solutions which try to
capture the dynamics of the speech signal, just like WT,
cater to the problem of non-linearity of the speech signal.
Though traditional AM-FM analysis, based on the MDA,
can capture the non-linear dynamics of speech, it acts as a
fixed filterbank, producing a lot of redundant components
as well. As such, there have been efforts to break this
fixed filterbank structure, to use alternative methods
than the MDA, to make AM-FM analysis adaptive to
the speech signal [96, 97]. But, more is desired. All the
above efforts, again, are not adaptive to the every speech
signal that is being analyzed. Thus, there is a definite
requirement of a technique for speech processing, which
is more effective than the currently available tools, yet
which is adaptive, and does not complicate the analysis.
The various features that such a technique is required to
possess may be summarized as follows :

• (i) Complete, compact and adaptive decompo-
sition : Fourier analysis gives a complete decomposition,
i.e., the sum of the components add up to be exactly the
same speech signal. But, it is limited in analyzing signals
which are the output of non-linear and non-stationary
processes. On the other hand, AM-FM analysis relies
on a large fixed overlapping bank of filters to extract
signal components. Thus, a non-linear and non-stationary
signal decomposition technique is required, which is data
adaptive, has little complexity, and produces time domain
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components which add up to be the exact same speech
signal. The number of such components needs to be
countably finite.

• (ii) Unique and Meaningful Components : The
information in speech resides in the various resonant
structures that shape and modulate the air flow passing
through the voice production apparatus, and the glottis
that controls the amount of air flowing out through the
apparatus. Thus, the desired decomposition technique
should be able to extract time-domain components of
speech, which carry the formants information, and the
glottal source information of speech. The information
carried by them, ideally, should not overlap. In short,
the components should carry unique and meaningful
information of the speech signal.

• (iii) No short-time processing and parameter
computation : The components should be obtained
from the desired decomposition without any short-time
processing of the speech signal, and without any short-
time computation of parameters, unlike in the case of
sinusoidal analysis.

• (iv) Reliable instantaneous frequency and
amplitude estimate : The components derived from
the desired decomposition should be narrowband, and
have limited fluctuations in amplitude and frequency so
that reliable estimates of instantaneous frequency and
amplitude envelope could be obtained from either the
DESA or the Hilbert Transform.

Thus, a data-adaptive and complete analysis technique
is required which can decompose the speech signal into
a finite number of meaningful time domain components,
without the requirement of the assumptions of short-time
linearity and stationarity, such that reliable instantaneous
amplitude envelope and frequency estimates could be ob-
tained from them. With the aim of achieving these goals,
we look forward towards the technique of Empirical Mode

Decomposition (EMD) [7, 29, 98], for processing speech
signals. EMD is a method that decomposes a signal into
oscillatory or AM-FM components, called Intrinsic Mode

Function (IMFs), in a completely data-driven manner
without the requirement of any a priori basis. Fig.15
shows the flowchart of the EMD process. The pseudocode
for the same is given below :

Pseudocode for EMD : Let s(t) be a continuous-
time speech signal.

•(i) Let r0(t) = s(t). We subject an outer residue,
rk−1(t), to a sifting process to obtain an IMF, hk(t), and
another outer residue, rk(t), from it. In other words,
if k represents the index of the sifting process, then,
the kth sifting process decomposes the (k − 1)th outer
residue, rk−1(t), into the kth IMF, hk(t), and the kth

Figure 15: Flowchart of Empirical Mode Decomposition

outer residue, rk(t).

The sifting process for EMD is given as :
Let h0

k−1(t) = rk−1(t). Repeat the following steps for
each sifting iteration. Let n represent the sifting iteration
index, where n = 1, ..., N .

⋆(a) Given the inner residue signal hn−1
k (t), find the

maxima and minima locations of hn−1
k (t). These locations

are to be used as x-coordinates of the Interpolation Points

(IPs), to be used for cubic spline interpolation.

tmax = {t :
d

dt
hn−1
k−1(t) = 0,

d2

dt2
hn−1
k−1(t) < 0} ,

tmin = {t :
d

dt
hn−1
k−1(t) = 0,

d2

dt2
hn−1
k−1(t) > 0}

⋆(b) Obtain the y-coordinates of the IPs from hn−1
k (t).

ymax = hn−1
k−1(tmax) , ymin = hn−1

k−1(tmin)

⋆(c) Create the maxima envelope emax(t) using cubic
spline interpolation, with the IPs as {tmax , ymax}. Cre-
ate the minima envelope emin(t) using cubic spline inter-
polation, with the IPs as {tmin , ymin}. Deduce the mean
envelope e(t) as,

e(t) =
emax(t) + emin(t)

2
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Figure 16: Simulation of the EMD algorithm using a noisy sinusoidal signal xg(t).
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Figure 17: IMFs obtained from EMD of xg(t). N = 10 and M = ∞ are considered.

⋆(d) hnk−1(t) = hn−1
k−1(t) − e(t). Go to step (a). Stop

when n = N.

•(ii) Set hk(t) = hNk−1(t). Obtain rk(t) = rk−1(t) − hk(t).

•(iii) Go to step (i). Ideally, the decomposition is
to be stopped when the outer residue takes the form of
a trend, i.e., the number of extrema in rk(t) is 2 or less

[7, 29, 98]. Practically, however, the decomposition may
be stopped when a user-defined maximum number (M) of
AM-FM components, i.e., the IMFs, have been extracted,
as shown in Fig.15.

s(t) = rM (t) +

M
∑

k=1

hk(t) (14)

For a digital speech signal, the decomposition may be rep-
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resented as

s(n) = rM (n) +

M
∑

k=1

hk(n) (15)

Equations (14) and (15) represent the decomposition of
the signal in terms of its IMFs and its final residue, which
is a trend-like signal.

To illustrate the mechanism involved, we use a signal
xg(t) = xs(t) + xn(t), where xs(t) = cos(2π ∗500∗ t), and
xn(t) is a zero mean Gaussian white noise signal such that
the Signal to Noise Ratio (SNR) is 0 dB. Fig.16 shows the
working mechanism of EMD on xg(t). In this example,
we consider N = 2 sifting iterations per sifting process.
The first sifting process is completely illustrated, resulting
in the first IMF, h1(t), after N = 2 sifting iterations. A
new outer residue, r1(t) is also thereby obtained. The first
iteration of the sifting process applied on the new outer
residue is also shown.

Fig.17 shows the IMFs obtained from EMD of xg(t),
where N = 10 sifting iterations are used per sifting pro-
cess. The decomposition is allowed to stop naturally by
keeping no maximum limit (M = ∞) on the number of
IMFs. Under this condition, the decomposition stops au-
tomatically when the final residue has insufficient extrema
to construct the maxima and minima envelopes. For the
noisy sinusoid, xg(t), the final residue is obtained after 6
IMFs have been extracted, as shown in the figure. One can
easily observe the similarity between IMF3 and the pure
sinusoid xs(t), and that between IMF1 and the white noise
signal xn(t), which shows the ability of EMD to segregate
the components of a signal.

4.1. The importance of the sifting process

As explained above, the EMD process results in a finite
number of time-domain components, hk(t) , k = 1, ...,M ,
called IMFs, and a final residue signal rM (t), which is the
low-frequency trend of the signal [7, 29, 98]. An IMF is
defined as a signal having the following properties.

(i) The number of extrema and the number of zero-
crossings in an IMF must either be equal or differ at most
by one.

(ii) At any point, the mean value of the envelope
defined by the local maxima, and the envelope defined by
the local minima, is zero.

Thus, the aim of EMD is to obtain oscillatory func-

tions from the signal. The process of sifting is designed
to achieve this purpose. As mentioned earlier, both the
Hilbert Transform and the TEO require the signal to be
narrowband (ideally monocomponent), with limited de-
grees of frequency and amplitude modulation, for accu-
rate demodulation. The above-mentioned properties of an
IMF make it locally narrowband and symmetric, which
enables accurate demodulation of their instantaneous fre-
quency and amplitude envelopes. Having applied EMD on

a synthetic signal, we now apply it to a natural speech sig-
nal. Fig.18 shows the first 5 IMFs obtained from a natural
speech signal, where N = 10 sifting iterations have been
used per sifting process, and the decomposition is curtailed
at M = 9. The second plot of the figure shows the Elec-

troglottograph (EGG) signal [99, 100] corresponding to the
speech signal. The EGG signal represents a measurement
of the movements of the vocal folds during the production
of voiced speech. As can be seen from the figure, there
is a strong similarity between IMF4 and the EGG signal,
which reflects the ability of EMD to extract information
about the glottal source producing the speech signal [101].
This shows the ability of EMD to extract latent informa-
tion from the signal in its IMFs. Again, the entire sifting
process involves no a priori basis function. Further, the
process is carried out on the entire data stream, and no
parameter computations are involved.

4.2. Hilbert Huang Transform as a generalized Fourier

Transform

Having derived the IMFs from the signal, they are repre-
sented in terms of their instantaneous amplitude envelopes
and frequencies using the Hilbert Transform. This entire
process of extracting IMFs from the data, and representing
them in terms of their instantaneous amplitude envelopes
and frequencies, is termed as Hilbert Huang Transform
(HHT) [7, 29, 98, 102]. We have, from equation (14),

s(t) =

M
∑

k=1

hk(t) + rM (t) =

M+1
∑

k=1

hk(t) (16)

Each component, hk(t), derived from the signal, can
then be represented using the Hilbert Transform, using
equations (6)-(8), as,

hk(t)
Hilbert Transform−−−−−−−−−−−−−−−−→ ak(t)ejθk(t) ,

hk(t) = ℜ
{

ak(t)ejθk(t)
}

, fk(t) =
1

2π

d

dt
θk(t) , (17)

where ak(t) and fk(t) represent the instantaneous ampli-
tude envelope and frequency of hk(t). The signal can then
be represented as,

s(t) = ℜ
{

M+1
∑

k=1

ak(t)ej2π
∫

fk(t)dt
}

(18)

The standard Fourier representation of the same signal
is given by,

s(t) =

∫

∞

−∞

S(ω)ejωtdω = 2π

∫

∞

−∞

S(f)ej2πftdf (19)

A comparison of equations (18) and (19) shows that
HHT is a generalized Fourier Transform, without its lim-
itations. HHT represents the signal in terms of a finite
number of components, unlike Fourier Transform. While
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the amplitude envelope and frequency of each component
in Fourier representation is constant for an infinite time
duration, it is time varying in the case of HHT. HHT is
a complete, compact and adaptive Fourier representation
of the signal [7, 29, 98, 102]. This formulation, when pre-
sented in terms of an image, is called the Hilbert Spec-
trum [7, 29, 98, 102]. The Hilbert spectrum can be de-
fined as the time-frequency distribution of the instanta-
neous energy envelope, which is the squared magnitude of
the amplitude envelope. In general, the last few compo-
nents, which are low-frequency trend-like waveforms, are
excluded from the spectrum, as they have high energy and
obscure the image [7, 29, 98, 102]. Fig.19 shows the Hilbert
spectrum for a section of the speech signal used in Fig.18.
As is evident from the spectrum, most of the energy in
the spectrum lies within 60-500 Hz, which is the pitch fre-

quency range, i.e., the frequency range of vibration of the
vocal folds or the glottal source. As such, this spectrum

can be easily post-processed to obtain the instantaneous
pitch frequency [103].

H(f, t) =
{

a2
k(t) | fk(t), t

}

, k = 1, ...,K ≤ M (20)

From the Hilbert spectrum, the marginal Hilbert spec-
trum can be derived as,

h(f) =

∫ T

t=0

H(f, t)dt (21)

The marginal Hilbert spectrum gives the probability
that an oscillation of frequency f could have occurred lo-
cally at some time during the entire duration (T ) of the
signal. Similarly, the instantaneous energy density can
be computed from the Hilbert spectrum, which reflects
the energy fluctuations in the signal with respect to time
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Figure 20: IMF power spectra in the case of fractional Gaussian noise, for Hurst exponent H = { 0.1 , 0.2 , ... , 0.9 }. The estimated

power spectrum densities (in dB) is plotted as a function of the logarithm of the normalized frequency for the first 7 IMFs. The IMF

number is mentioned above the peak of the corresponding power spectrum. For each of the nine H values, the spectral estimates

have been computed on the basis of 5000 independent sample paths of 512 data points.

[7, 29, 98, 102].

IE(t) =

∫

f

H(f, t)df (22)

4.3. The dyadic filterbank nature of EMD
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Figure 21: (a) IMF average number of zero-crossings in the case

of fractional Gaussian noise. For clarity, only those curves cor-

responding to H = 0.1 (bubbles), H = 0.5(squares) and H = 0.9

(stars) have been plotted in the diagram; the remaining cases

lead to regularly intertwined similar curves. The superimposed

solid lines correspond to linear fits within the IMF range k = 2

to 6. (b) Corresponding decrease rate of zero-crossings.

While EMD is an effective decomposition process, it
is an algorithm without a solid mathematical framework.
Even though efforts have been made to provide some math-
ematical representation [104], deducing conclusions about

its behavior is not straightforward. To have a better un-
derstanding of the behavior of the process, studies were
carried out on the decomposition of noise by EMD, by Wu
and Huang, and Flandrin et al., separately [29, 102, 105–
109]. For the experiments, fractional Gaussian noise (fGn)
was used. The autocorrelation function of a fractional
Gaussian noise sequence xH(n) is given by,

rH(m) = E

[

xH(n)xH(n+m)
]

,

rH(m) =
σ2

2

{

|m− 1|2H − 2|m|2H + |m+ 1|2H
}

(23)

As is evident from equation (23), the parameter H, 0 <
H < 1, called the Hurst component, controls the nature of
the signal. For H = 0.5, fGn becomes a white Gaussian
noise sequence. For 0 < H < 0.5, the power spectrum of
fGn is of high-pass nature, whereas 0.5 < H < 1 produces
a fGn sequence of low-pass nature. For the experiments,
5000 realizations of fGn were generated for each of the
9 H values given by H = 0.1, 0.2, ..., 0.8, 0.9. The fGn
sequences were of 512 samples length. Each fGn sequence
was then decomposed by EMD, and the properties of the
first 7 IMFs were then examined.

Fig.20 shows the plots of the power spectra (aver-
aged for 5000 fGn sequences) of the IMFs, for H =
{0.1, 0.2, ..., 0.9}, The plots show that barring the first
IMF, the rest of the IMFs (IMFs 2-7), for all the H val-
ues, have power spectra having band-pass nature. The
frequencies corresponding to the peaks of these band-pass
spectra, approximately decrease by a factor of two as the
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IMF order increases. In other words, starting from the
2nd IMF, EMD acts as a dyadic filterbank on the signal
[29, 102, 105–109]. The 1st IMF exhibits a weak high-pass
spectrum for all the H values. The IMFs being locally
zero mean signals, the number of zero crossings of an IMF
could be used to estimate the dominant frequency that it
represents. Fig.21 shows the plots of the number of zero
crossings of the IMFs vs the IMF number. As can be seen
from the figure, the curves in Fig.21(a) have an approxi-
mate slope of -1, which means that the dominant frequency
reflected in the IMFs decrease by a factor of 2 with respect
to the IMF order. The average decrease rate of the number
of zero-crossings, ρH , for each of the H values, is plotted
in Fig.21(b), which ascertains this observation. Thus, if
zH(k) represents the number of zero-crossings of the kth

IMF, we have,

zH(k′) = ρ
(k′

−k)
H zH(k), k′ > k ≥ 1 , (24)

ρH = 2.01 + 0.2(H − 0.5) + 0.12(H − 0.5)2 , (25)

ρH ≈ 2 (26)

Given that the dominant frequencies of the IMFs de-
crease by a factor of 2 with the IMF order, the power
spectral density of the bandpass IMFs can then be ap-
proximately related to one another as,

Sk′,H(f) = ρ
α(k′

−k)
H Sk,H(ρ

[k′
−k]

H f) , (27)

k′ > k ≥ 2, ρH ≈ 2, α = 2H − 1 (28)

Fig.22 plots the variance of the IMFs vs the IMF num-
ber, for for H = {0.1, 0.5, 0.9}. As can be seen from the
figure, the variances of the IMFs decrease with respect to
the IMF number, at a rate dependent on the H value. For
the case of white noise (H = 0.5), the slope of the curve
is approximately -1, i.e., the IMF energy decreases by a
factor of 2 with increasing IMF order.

VH(k′) = ρ
(α−1)(k′

−k)
H VH(k) ,

ρH ≈ 2, α = 2H − 1, k′ > k ≥ 2 ,

VH(k′) = ρ
2(H−1)(k′

−k)
H VH(k), k′ > k ≥ 2 (29)

The slope (κH) of the log-linearized version of equation
(29) can be used to estimate the Hurst component [106–
108] as,

VH(k′) = Cρ
2(H−1)k′

H , k′ ≥ 3 , (30)

log2 VH(k′) ≈ log2 C + 2(H − 1)k′, k′ ≥ 3 , (31)

log2 VH(k′) ≈ C ′ + κHk
′, k′ ≥ 3 , (32)

Hest = 1 +
κH
2

(33)

The estimated Hurst component values, Hest, obtained by
this process, are shown in Fig.22.
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Figure 22: Estimated IMF log2(variance) in the case of fractional

Gaussian noise, for hurst component H = { 0.1 , 0.5 , 0.9 }.

The values of the empirical (energy-based) variance estimates

are given for all the 9 H values.

4.4. Some aspects of EMD

Apart from the fact that EMD does not have a robust
mathematical framework, there are some aspects of the
decomposition that are to be catered to. One of them is
the sampling rate of the signal. As is evident from the
flowchart of EMD, Fig.15, and the pseudocode, the de-
tection of extrema is crucial to the process. Again, the
instantaneous frequency derived using the Hilbert Trans-
form depends on differentiation with respect to time, as
is evident from equations (8),(17). For these reasons, it is
beneficial for the decomposition if the signal is sampled at
much above the Nyquist rate [7, 29, 98, 110]. Another is-
sue that needs to be catered to are the “end-effects”, which
are large swings that occur at the ends of the IMFs due to
cubic spline fitting. By zero-padding the ends of the signal,
however, such effects could be curtailed to a certain extent
[7, 29, 98]. More details on “end-effects”, and how to cur-
tail it could be found in [111]. In the case of speech, which
has silence regions at the beginning and end of the signal,
the “end-effects” are not too concerning. Apart from this,
the sifting criterion is another aspect that needs attention.
If the number of sifting iterations is low, the decomposed
signals would not be eligible to be IMFs, which would cause
erroneous instantaneous frequency and amplitude envelope
estimates. On the other hand, oversifting would result in
the smoothing of the IMFs, and thus they would become
more like sinusoids and may lose the information they are
supposed to carry. A number of sifting criteria have been
proposed to ascertain that the IMFs adhere to their de-
fined properties [7, 29, 98, 112–114]. All of them need some
parametric tuning, and none of them may be deemed sig-
nificantly better than the other. Amongst them, one of the
more recent and popular criterion is the stopping criterion

proposed in [112]. This criterion is based on minimizing
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the parameter γ(t) =
∣

∣

∣

[emax(t)+emin(t)]/2
[emax(t)−emin(t)]/2

∣

∣

∣
, for ascertain-

ing globally small fluctuations of the mean envelope sig-
nal even for locally large fluctuations of the signal. Two
thresholds θ1 and θ2 are used to control the number of it-
erations, N , in every sifting process. When γ(t) < θ2 for a
fraction α of the duration of the signal, and γ(t) < θ1 for
the remaining fraction of the duration of the signal, the
sifting process is stopped. Default values of the parame-
ters are : α ≈ 0.05, θ1 ≈ 0.05, θ1 = 10θ2. In general, it
has been found that the dyadic filterbank nature of EMD
is well maintained, for fractional Gaussian noise with both
flatband and skewed spectra, if the number of sifting iter-
ations is around 10 [114, 115].

Besides the above mentioned marginal issues, there are
two major aspects of EMD that need to be discussed,
particularly for decomposing speech signals :

(i) Ability to separate frequency components.
(ii) Mode-mixing.

To examine the ability of EMD to separate different fre-
quency components in the signal, a signal, x(t), composed
of a lower frequency sinusoid, xl(t), and a higher frequency
sinusoid, xh(t), is considered [116].

x(t) = xl(t) + xh(t) ,

x(t) = al cos(2πflt+ φl) + ah cos(2πfht+ φh) ,

fl, fh ≪ Fs ,

where Fs is the sampling frequency. To simplify the exper-
iment, and without any loss of generality, x(t) is considered
as,

x(t) = xl(t) + xh(t) ,

x(t) = a cos(2πft+ φ) + cos(2πt) , (34)

f =
fl
fh

∈ ]0, 1[ , a =
al
ah
, φ = φl − φh

The signal x(t) is decomposed by EMD, and then the
following parameter is computed,

c
(N)
1 (a, f, φ) =

||d(N)
1 (a, f, φ) − cos(2πt)||2

||a cos(2πft+ φ)||2
, (35)

where d
(N)
1 (a, f, φ) is the first IMF obtained from the de-

composition of x(t), where N sifting iterations have been
used in the sifting process. In the experiment N = 10
is used, whereas φ is kept constant. The parameter

c
(10)
1 (a, f, φ) is averaged over different values of φ ∼ [0, 2π).

Thus, c
(10)
1 (a, f, φ), represents a function of the frequency

and the amplitude ratios, f and a, respectively, where ||.||2
denotes the Eucledian norm. c

(10)
1 (a, f, φ) gives a mea-

sure of whether EMD could successfully extract the com-
ponents of the signal, x(t), or not [116].

Fig.23 plots the values of c
(10)
1 (a, f, φ) as an image, with

f and a being the independent variables. The whiter re-
gions of Fig.23 indicate that the components have been

properly extracted, whereas the darker shades indicate
the combinations of f and a, where proper decomposi-
tion could not be achieved by EMD. As can be seen from
the figure, for EMD to successfully decompose the signal
into its actual constituents, there is a dependency on both
f and a. There is a hard cut-off, f . 0.67, irrespective
of a, only below which the constituents can be adequately
segregated. Also, even within this limit, the performance
of segregation decreases as the lower frequency component
becomes stronger than the higher frequency component.
Ideally, for proper segregation of the components, a . 1 is
required [116].

This simple experiment of segregating the sinusoidal
constituents of the signal gives us an idea about the dif-
ficulties involved in extracting the true components of a
non-linear and non-stationary signal like speech. To add
to the problem, most of the energy of the speech signal
is present in its voiced regions, which have a high spec-
tral slope of -6 dB/octave [1–3]. This causes the higher
frequency spectrum of speech to be overshadowed by its
lower frequency spectrum. Thus, the characteristics of the
speech spectrum are not in tune with the requirements
of the amplitude ratio, needed for successful segregation
of its components by EMD. Due to this fact, EMD is
limited in extracting meaningful IMFs, which character-
ize the higher frequency content of speech. Henceforth, as
is discussed later, most of the vocal tract resonances or for-

mants of voiced speech are captured by the first IMF alone
[117, 118]. The second IMF captures the first formant only,
and the rest of the IMFs are of a lower frequency and rep-
resent the glottal source information [101, 117, 118].

fr
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 (
f)

amplitude ratio ( log
10

 a )
−2 −1.23 −0.42 0.38 1.19 2
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0.6

0.8

1

Figure 23: 2-D projection of c
(10)
1 (a, f, φ) onto the (a, f) plane of

amplitude and frequency ratios is plotted.

Thus, like any other technique, EMD also has its due
share of limitations. However, the most important phe-
nomenon in the EMD decomposition is the phenomenon
of mode-mixing. Mode-mixing may be defined as the pres-
ence of disparate frequency scales within an IMF, and/or
the presence of the same frequency scale in multiple IMFs
[7, 29, 98, 102, 112, 115]. It is vividly observed in the
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case of non-stationary signals in which oscillations of dis-

parate frequency scales occur intermittently. In reality,
mode-mixing is not unexpected, as EMD is designed to lo-
cally separate a signal into low and high-frequency compo-
nents. However, for many applications, this phenomenon
may hinder the utility of the IMFs, and one may instead
want IMFs which have a narrower frequency spectrum,
as is desired ideally in AM-FM analysis. As an example
of this phenomenon, we may consider the IMFs extracted
from the speech signal in Fig.18. As is seen from the figure,
IMF1, which mostly consists of higher frequency oscilla-
tions, is corrupted in between by lower frequency signals.
Similarly, the primary frequency scales reflected in IMFs
2-4 seem to be distributed amongst them. There are parts
of IMF3 that appear to have the same frequency scale as
that of major parts of IMF4. Similarly, parts of IMF2

seem to carry a low amplitude oscillation, which is mainly
present in IMF3. If such frequency variations are too large
within an IMF, then the instantaneous frequency and am-
plitude envelope obtained from it, will not be reliable, as
discussed earlier.

5. Developments of EMD

Figure 24: Flowchart of Ensemble Empirical Mode Decomposi-

tion.

To reduce the effects of mode-mixing in extracting IMFs
from real physical signals, many modifications have been
proposed to the EMD algorithm [100, 115, 119–124]. How-
ever, the best results have come by the infusion of noise
to the signal. It was observed that by combining the sig-
nal with finite amplitude white noise, before feeding it to
EMD, mode-mixing could be curtailed satisfactorily. This
development was termed Ensemble Empirical Mode De-
composition (EEMD) [115]. The idea of infusing finite
amplitude white noise into the signal serves an important
purpose - the flat spectrum of white noise balances the
skewed spectrum of speech to a certain extent. It lends en-
ergy to the subdued higher frequency spectrum of speech,
which makes the extraction of the higher frequency content

of the speech signal much more feasible for EMD. Simulta-
neously, another effect occurs - the addition of finite ampli-
tude white noise increases the number of extrema present
in the inner residue signal, which when used as interpola-
tion points in a sifting iteration, leads to better estimates
of the maxima and minima envelopes of the signal [115].
Fig.24 shows the flowchart of EEMD. The pseudocode for
it is given below.

Pseudocode for EEMD : Let s(t) be a continuous-
time speech signal.

•(i) Create L noisy copies of the signal s(t) using L
independent realizations of finite amplitude normally
distributed, N(0, 1), white noise.

sl(t) = s(t) + βwl(t), l = 1, ..., L , (36)

where sl(t) is the lth noisy copy of the signal s(t), obtained
by adding the lth white noise sequence, wl(t), of zero
mean and unit variance. The factor β > 0 controls the
variance of noise with respect to the signal, which is
generally taken as 10-40 % of the variance of the signal
[115].

•(ii) Decompose each sl(n) using EMD, to obtain
M IMFs from the signal. Generally, 10 sifting iterations
are used in the sifting process, but may be adjusted for
the task at hand and with respect to the level of added
noise [115].

sl(t) =

M
∑

k=1

hlk(t) + rlM (t), l = 1, ..., L ,

sl(t) =

M+1
∑

k=1

hlk(t), l = 1, ..., L (37)

•(iii) The final components are obtained as the ensemble
average of the components obtained from each noisy copy
of the signal.

hk(t) =
1

L

L
∑

l=1

hlk(t), ∀ k = 1, ...,M + 1 , (38)

ŝ(t) =

M+1
∑

k=1

hk(t) =
1

L

M+1
∑

k=1

L
∑

l=1

hlk(t) (39)

It is expected that as the number of white noise realiza-
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Figure 25: (a) Speech ; (b) EGG ; (c)-(g) are IMFs 1-5 of the speech signal, obtained using EEMD.
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Figure 26: Hilbert Spectrum of the speech signal, used in Fig.25, using EEMD.

tions L is increased, the effect of noise would cancel out.

var[ŝ(t)] = var
[ 1

L

L
∑

l=1

M+1
∑

k=1

hlk(t)
]

,

var[ŝ(t)] = var
[ 1

L

L
∑

l=1

sl(t)
]

,

var[ŝ(t)] = var
[ 1

L

L
∑

l=1

{s(t) + βwl(t)}
]

,

var[ŝ(t)] = var[s(t)] +
1

L
β2 , (40)

var[ŝ(t)] = var[s(t)], L → ∞ , (41)

ŝ(t) = s(t) =

M+1
∑

k=1

hk(t), L → ∞ , (42)

Fig.25 shows the IMFs obtained by EEMD of the same
speech signal, which is decomposed by EMD in Fig.18. 10
white noise realizations have been used in the process, and
the variance of noise has been kept at 20 %. N = 10 and
M = 9 are used in the decomposition. It is evident from
the figures that EEMD produces components with much
lesser mode-mixing than EMD. Also, the IMFs of EEMD
have a much better representation of the higher frequency
spectrum of speech, as is reflected in the Hilbert spec-
trum of Fig.26. To quantify this observation, we calculate
the mean frequency of the IMFs generated by EMD and
EEMD [101]. The mean frequency of IMFk (Fmk ), gives
an indication of the dominant frequency reflected in the
IMF. Mathematically, it gives the central tendency of the
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power spectrum of the IMF, and is given by,

Fmk =

Fs/2
∑

f=0

f × Sk(f)
∑Fs/2
f=0 Sk(f)

, k = 1, ...,M + 1 , (43)

where Sk(f) represents the power spectrum (squared mag-
nitude spectrum) of IMFk, and Fs is the sampling fre-
quency of the speech signal. Fig.27(a) shows how the lower
order IMFs of EEMD have a much higher mean frequency
than that of EMD, thus giving a better representation of
the higher frequency spectrum of the speech signal.
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Figure 27: (a) Mean Frequency of the IMFs - EMD vs EEMD

; (b) Maximum Correlation of the IMFs with the EGG signal -

EMD vs EEMD.

To evaluate how the lower frequency information of
speech is represented by EMD and EEMD, the maximum
correlation of the digital EGG signal, e(n), with respect to
the IMFs, obtained from both EMD and EEMD, is evalu-
ated.

Rek = max
m

{

∑

n

hk(n)e(n+m)
}

, k = 1, ..., 10 , (44)

where Rek represents the maximum correlation of IMFk
with the EGG signal. Fig.27(b) plots the values of Rek
for both EMD and EEMD [101]. As is evident from the
figure, EEMD reflects the glottal source information in
a better way than EMD. Also, the source information is
less distributed amongst the components of EEMD than
that of EMD, a consequence of reduced mode-mixing. In
general, the source information is found to be distributed
almost entirely amongst two consecutive IMFs in the case
of EEMD [101].

Finally, we may look at the distribution of the speech
resonances in the IMFs. Fig.28 shows the magnitude spec-
tra of the LP filters of the first 4 IMFs of a voiced speech
signal of the TIMIT corpus. A 24-order LP analysis is
used on the 16 kHz speech signal. The reference formant
frequencies are obtained from the VTR Formants database
[125]. For better visualization, the spectra are plotted only
upto 4 kHz, within which the first four principal formants
of the speech signal are generally confined. As can be
seen from the figure, the first IMF of EMD carries all the

formants, except the first formant, which is carried by the
second IMF [117, 118]. In the case of EEMD, the formants
structure is more evenly distributed amongst the first 4
IMFs. Thus, a better spectral segregation is achieved in
the case of EEMD, compared to that of EMD. The IMFs
of EEMD, hence, may be considered to be better suited
for AM-FM analysis.

5.1. Improvements in EEMD

While there are many merits of EEMD, there are also
certain limitations to the process. One of them is its effi-
ciency. As is reflected in equations (41) and (42), a large
number of white noise realizations are required to average
out the effect of noise [115]. Again, there is no guaran-
tee that each of the noisy signal copies would produce the
same number of IMFs, which creates problems in averag-
ing the IMFs. One way to circumvent this problem is to
restrict the EMD decomposition to a fixed smaller number
of IMFs (as shown in Fig.15) than that would be obtained
if the decomposition is allowed to continue till a trend with
only two extrema remains. In the recent years, efforts to
effictively cancel out the noise infused with the signal has
led to many EEMD variants [100, 123, 124].

It was observed that using white noise in pairs of
opposite polarities substantially reduces the effect of the
added noise in the IMFs finally derived from EEMD.
This development was termed Complementary Ensemble
Empirical Mode Decomposition (CEEMD). However, the
problem that number of IMFs produced could still be
different for the different EMD processes of an EEMD
or CEEMD decomposition still existed. To circumvent
this problem, an algorithm was designed, which not
only decomposes the signal but also the white noise
realizations. The IMFs obtained from the white noise
realizations, which could be interpreted as correlated
noise signals, are then fused with the residue signal,
at the beginning of each sifting process. The signal
IMFs are obtained progressively after averaging the
results at each stage. This algorithm is termed Complete
Ensemble Empirical Mode Decomposition with Adaptive
Noise (CEEMDAN). However, it was observed that
CEEMDAN sometimes produced some high-frequency
and low-amplitude spurious IMFs, in the decomposition.
To overcome this problem, the Improved Complete
Ensemble Empirical Mode Decomposition with Adaptive
Noise (ICEEMDAN) was developed, which makes some
subtle and effective modifications to the CEEMDAN al-
gorithm. The pseudo code of ICEEMDAN is given below :

Algorithm for ICEEMDAN : Let s(t) be a
continuous-time speech signal. Let Ek[.] be the op-
erator which denotes the operation of extracting the
kth IMF from any signal x(t), using EMD. Then, if
Υ[x(t)] denotes the local mean of the signal, we have,
E1[x(t)] = x(t) − Υ[x(t)]. Let wl(t) denote the lth

realization of zero mean unit variance white noise.
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For k = 1, ...,M , repeat the following steps.
•(i) Let r0(t) = s(t). The (k − 1)th residue, rk−1(t) is
mixed with noise as,

rlk−1(t) = rk−1(t) + βk−1Ek[wl(t)], l = 1, ..., L ,

where βk−1 is used to control the SNR at each stage of
the decomposition.

•(ii) The kth IMF, hk(t), is derived as,

E1[rlk−1(t)] = rlk−1(t) − Υ[rlk−1(t)], l = 1, ..., L ,

rk(t) =
1

L

L
∑

l=1

Υ[rlk−1(t)],

hk(t) = rk−1(t) − rk(t)

•(iii) Go to step (i). Stop when a maximum number of
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IMFs, M , are extracted, i.e., when k = M .

s(t) = rM (t) +

M
∑

k=1

hk(t) =

M+1
∑

k=1

hk(t),

where rM (t) = hM+1(t)

Generally, and in this work, β0 =
ǫ0 std(s(t))/std(E1[wl(t)]). and βk−1 =
ǫ0 std(rk−1(t)), k > 2. In this work, ǫ0 = 0.2. The
number of iterations in a complete sifting process is
determined by the local-global stopping criterion. The
maximum number of iterations per sifting process is not
allowed to exceed 15, i.e., N ≤ 15 [100, 112, 126, 127].

Fig.29 shows the first four IMFs derived from a speech
signal using EEMD, CEEMD, CEEMDAN, and ICEEM-
DAN. It may be observed that, in this example, there is
no significant advantage of any one variant over the other
[101]. In the case of CEEMDAN, a spurious mode is exhib-
ited in IMF2. However, the amplitude of the mode is quite
less, and may or may not effect speech analysis depending
on the procedures applied. Fig.30 shows the reconstruction

error of the 4 algorithms, for the speech signal decomposed
in Fig.29. Given a speech signal, s(n), and its IMFs (in-
cluding the final residue), {hk(n), k = 1, ...,M + 1}, the
reconstruction error, re, is given by,

re = 10 log10 ||s(n) −
∑

k

hk(n)||2 (45)

As Fig.30 shows, the reconstruction errors for the
EEMD variants are lower than that of EEMD. However,
it may be noted that even for EEMD, the reconstruction
error is quite low. However, the processing time, for both
EEMD and its variants remains quite large. Table 2 lists
the time taken to extract 10 IMFs (M = 9) from a speech
signal (Fs = 8 kHz) of around 3.5s duration, by EMD,
EEMD, and the EEMD variants. A fixed number of sift-
ing iterations, N = 10, is considered for all the methods,
for a fair comparison, and the local-global stopping crite-
rion is not used in this case. As is clear from the table,
EEMD and its variants are time costly, and hence EEMD
and its variants currently are limited in use in real-time
applications, despite their obvious merits. Highly efficient
coding, of course, could alleviate this drawback substan-
tially. Regardless, EEMD and its variants are quite useful
in applications which are not real-time. Also, in the case
of applications where limited levels of noise could be tol-
erated, EEMD is just as useful as its variants.

6. Comparison with other speech processing ap-
proaches

As discussed in Secs.2 and 3, conventional AM-FM
analysis and non-stationary signal analysis techniques like
Wavelet Transform have been very effective in speech pro-
cessing applications, and provide an alternative to conven-
tional speech processing analysis. Henceforth, we need to

Table 2: Computational time of EMD, EEMD, CEEMD, CEEM-
DAN, and ICEEMDAN, in decomposing a speech signal of
around 3.5 seconds duration. 10 IMFs are extracted from the
EMD variants, where 10 sifting iterations are used per sifting
process. The algorithms are implemented in the GUI mode of
MATLAB, on a machine having an Intel i5 quad-core processor
of 3.2 GHz clock frequency, and 4 GB RAM.

Method EMD EEMD CEEMD CEEMDAN ICEEMDAN

Time (s) 0.83 15.62 14.94 32.88 30.11

weigh the effectiveness of EMD with respect to such tech-
niques.

As is discussed in Sec.2, the choice of the mother wavelet,
ψ(t), is critical to Wavelet analysis. As an illustration of
this point, we may consider the case of a speech signal de-
composed by 10-level DWT, using the ‘Daubechies-4’ and
‘Biorthogonal-2.4’ wavelets. The first five time-domain de-
tail components, reconstructed by Inverse DWT of the first
five detail coefficients, are shown in Fig.31. It is evident
that changing the mother wavelet changes the decomposi-
tion. Apart from this, the WT does not tackle the prob-
lem of non-linearity of the speech signal [4, 8–10]. It is
essentially an adjustable window STFT and hence is not
applicable for analyzing non-linear systems [7, 29]. This
is where EMD, and hence its proposed variants, scores
over STFT and WT. EMD and its variants are able to ex-
tract the components of the signal, without requiring any
a priori basis. Further, the sifting process is a non-linear
process, and hence EMD is applicable for analyzing signals
produced by non-linear systems [7, 29].

Unlike STFT and WT, AM-FM analysis or rather MDA,
maybe used for dealing with both the non-stationary and
the non-linear characteristics of a speech signal, as dis-
cussed in Sec.3. The basic aim of AM-FM analysis is to
represent the speech signal in terms of AM-FM compo-
nents, which are dominated by its resonant frequencies or
formants, as reflected in equation (4), in Sec.4. But, as the
speech formants are not known a priori, traditional AM-
FM analysis uses a large bank of overlapping band-pass
filters, to obtain AM-FM signals from the signal, which are
used for further analysis [4, 23, 27, 28]. As such, the design
of the filterbank remains an open issue. Fig.31 shows the
first five high-frequency components obtained using a Ga-
bor filterbank of only 20 uniformly spaced filters in the Hz
scale, each having an effective bandwidth of 400 Hz. It is
evident that AM-FM analysis would produce a significant
number of redundant components, which may not be use-
ful for analysis. Fig.31 also presents the first 5 IMFs of the
speech signal, derived using EEMD, for comparison, which
reflects its superiority over DWT and traditional AM-FM
analysis. As the variants of EEMD perform similarly, they
are not shown in the figure.

Fig.32 shows the magnitude spectra of the LP filters
of the first 4 high-frequency components, obtained from
DWT and AM-FM analysis, of the same voiced speech
segment that is used in Fig.28. Irrespective of the type
of mother wavelet used, DWT operates as a fixed dyadic
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Figure 30: The reconstruction error (in dB) of the speech signal

shown in Fig.29, for the methods - EEMD, CEEMD, CEEMDAN

and ICEEMDAN.

filterbank [5, 6, 32]. The components derived clearly show
the overlap of formants information, and also seem to lack
precision in capturing the formants. In the case of AM-FM
analysis, the components are obtained by Gabor filtering
the speech segment, with a 40-filter Gabor filterbank, each
filter having a bandwidth of 400 Hz. The LP magnitude
spectra for only the four highest frequency components,
corresponding to the Gabor filters having center frequen-
cies below 4 kHz, are plotted. As reflected in the figure,
AM-FM analysis is much more precise, but it would re-
quire a lot many components to capture the vocal tract
resonances, and thus many of its components might be
unuseful for speech analysis. Comparison of Figs.28 and
32 shows that out of all the techniques EEMD provides the
best solution to obtaining the ideal goal of AM-FM anal-
ysis of speech - a limited number of components which
encapsulates the vocal tract resonances precisely.

Finally, the time taken by DWT and AM-FM analysis
in decomposing a speech signal is enlisted in Table 3, in
comparison with EMD and MEMD. The same speech sig-
nal for which Table 2 is generated, is used in this case.
10 time-domain components are generated from the DWT
decomposition of the speech signal using Biorthogonal 2.4
wavelet. For AM-FM analysis, a 40-filter overlapping Ga-
bor filterbank is used. As can be observed from the table,
DWT and AM-FM analysis are faster algorithms. EEMD
is extremely time costly. EMD though not the fastest, it
has an acceptable time-cost, which could be improved by
efficient coding.

7. Some Applications of EMD in speech process-
ing

In general, EMD has found usage in two broad areas of
speech processing :

(i) Speech Analysis - Enhancement/Denoising [108,
128–134], Pitch Tracking [103, 135–137], Formant Track-

Table 3: Computational time of EMD, EEMD, DWT and AM-
FM analysis, in decomposing a speech signal of around 3.5 sec-
onds duration. 10 IMFs are extracted from EMD and EEMD,
where 10 sifting iterations are used per sifting process. 10 com-
ponents are also extracted from DWT using Biorthogonal 2.4
wavelet. 40 components are extracted from AM-FM analysis
using a Gabor filterbank, each filter having a bandwidth of 400
Hz. The algorithms are implemented in the GUI mode of MAT-
LAB, on a machine having an Intel i5 quad-core processor of 3.2
GHz clock frequency, and 4 GB RAM.

Method EMD EEMD DWT AM-FM

Time (s) 0.83 15.62 0.42 0.40

ing [118, 138] , Pathological Voice Analysis [139–141], etc.

(ii) Feature Extraction - Noise and audio Classification
[142, 143] , Emotion Classification [144, 145], Speaker
Recognition [146, 147], Voiced/Unvoiced speech classifica-
tion [101, 148–150] etc.

We briefly revisit a few such works here.

EMD-based filtering (EMDF) of low-frequency
noise for speech enhancement [133] :

Table 4: Improvement in segmental SNR (sSNR) and Weighted

Spectral Slope (WSS) measures of the EMDF system over the
IMCRA/OMLSA system.

Input

SNR (dB)

Car Interior

Noise
Babble Noise

Military Vehicle

Noise

sSNR WSS sSNR WSS sSNR WSS

10 3.6 -17.6 0.3 -7.2 2.3 -21.1

8 4.8 -23.1 0.5 -9.5 2.7 -27

6 5.8 -28.7 0.6 -11.7 3.1 -32.9

4 6.9 -34.6 0.7 -14 3.4 -38.4

2 7.8 -39.9 0.8 -16.7 3.8 -43.6

0 8.5 -45.1 0.9 -19.3 4 -48.3

-2 9.2 -49.5 1 -22.1 4.3 -52.5

-4 9.7 -53.4 1 -24.5 4.5 -56.4

-6 10.1 -56.7 1 -26.6 4.6 -59.6

-8 10.5 -60 1 -28.5 4.7 -62.6

-10 10.7 -62.8 1 -30.4 4.7 -65.5

This work uses an EMD based filtering (EMDF) mech-
anism for the purpose of eliminating residual noise from
a speech signal which is already enhanced by some noise
cancellation technique. The EMDF technique, applied as a
post-processing step to an already enhanced speech signal,
is found to significantly improve the performance of the
speech enhancement system, particularly when the speech
signal is corrupted by low-frequency noise. The speech en-
hancement system considered in this work, prior to apply-
ing EMDF, is the popular Optimally Modified Log-Spectral

Amplitude (OMLSA), which uses a noise estimate deter-
mined by techniques like the Improved Minima Controlled

Recursive Averaging (IMCRA). Fig.33 shows the block di-
agram of the overall system.

The EMDF mechanism is based on the observation that
the variance of the IMFs of a clean speech signal, beyond
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Figure 32: Normalized Magnitude spectra of LP filters of the first four high-frequency components of the speech signal used in Fig.28.

The components are obtained from (a) DWT (Biorthogonal 2.4 wavelet) ; (b) DWT (Daubechies 4 wavelet) ; (c) AM-FM analysis,

using a 20 filter linear Gabor filterbank.

the 4th IMF, decreases monotonically, whereas a speech
signal contaminated by low-frequency or residual noise ex-
hibits sporadic fluctuations in the variance of its higher
order IMFs, beyond IMF4. Fig.34 shows the variance of
the first 8 IMFs of a speech signal contaminated by car
noise at SNR = 0 dB. As can be seen from the figure, the
variances of the IMFs deviates from its decreasing trend,
beyond IMF4, and reaches a peak at IMF7.

Let s(n) be a speech signal corrupted by noise. As
shown in Fig.33, the speech signal is enhanced by the
OMLSA/IMCRA system to obtain the enhanced speech
signal, se(n), which is affected by residual noise. The sig-
nal, se(n), is then processed by the EMDF system to ob-

tain the final denoised signal, sD(n), utilizing the following
steps :

(i) Decompose se(n) by EMD. se(n) =
∑M
k=1 hk(n)

(ii) Determine the variance, σ2
k, k = 1, ...,M of each

IMF.

(iii) Detect the IMF orders of the peaks,
{pi | i = 1, 2, ...} in the variance vs. IMF order
curve, for IMF order k > 4.

(iv) Detect the IMF orders of the troughs,
{ti | i = 1, 2, ...} in the variance vs. IMF order
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curve, corresponding to the peaks.

(v) Compute the IMF variance buildup, {bi =
pi − ti | i = 1, 2, ...}.

(vii) Compute the index of the first occurance of the
maximum buildup, ν = max

i
bi, i = 1, 2, ...

(vi) Compute K = pν − tν .

(vi) Partially reconstruct the enhanced speech signal to
obtain sD(n).

sD(n) =

K
∑

k=1

hk(n)

Table 4 shows the improvements in performance of the
EMDF system over the IMCRA/OMLSA system, in terms
of segmental SNR (sSNR) and Weighted Spectral Slope

(WSS) measures. 192 speech utterances (Fs = 16 kHz),
produced by 24 speakers (16 male and 8 female), obtained
from the core test set of the TIMIT corpus [151] are con-
sidered for performance evaluation. The EMDF process is
applied on speech frames of 512 samples, with the frames
having 50 % overlap. Table 4 ascertains the utility of
the EMDF process under different types of noise of var-
ied strength. The positive values of sSNR indicate the
increase in signal strength with respect to the input noise
level, whereas the negative values of WSS indicate a re-
duction in loss of speech information.

Speech emotion recognition using novel HHT-
TEO based features [144] :

In this work, the Hilbert spectrum is explored for
the purpose of emotion classification using the Berlin
Emotional Speech Database [152]. The Hilbert en-
ergy spectrum, H(f, t), is generated from the IMFs
of the speech signal, excluding the final residue. The
spectrum so obtained is divided into 12 overlapping
frequency bands. For each frequency band, for a given
speech frame, the following two parameters are evaluated :

(i) Energy Cepstral Coefficients (ECC) : It is given
by

ECC(fi, tj) =

∫

f∈fi

H(f, t)df , t ∈ tj , i = 1, ..., 12

where fi represents a particular subband, and tj repre-
sents a particular speech frame.

(ii) Frequency weighted Energy Cepstral Coefficients
(EFCC) : It is given by

EFCC(fi, tj) =

∫

f∈fi

f(t) H(f, t)df , t ∈ tj , i = 1, ..., 12

where fi represents a particular subband, and tj represents
a particular speech frame.

Figure 33: EMDF based speech enhancement system.
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Figure 34: Variances of the IMFs of a clean speech signal con-

taminated with car interior noise at 0 dB SNR.

Thus, each speech frame produces 12 ECC and EFCC
parameters. The natural logarithm of each of these 12 pa-
rameters is then taken, followed by Discrete Cosine Trans-
form (DCT), to obtain the final 12-dimensional ECC and
EFCC features per speech frame.

These parameters, in a standalone fashion, and in com-
bination with the MFCCs, are then tested on the Berlin
Emotional Speech Database. For the experiments, frames
of 25ms with 50% overlap are used. The first 12 coeffi-
cients, generated from a 20-filter Mel filterbank, are used
as the MFCCs. Continuous HMM using 5 states, with
each state being represented by a 5 mixture GMM, is used
to model the emotions. It is observed that while the ECC
and EFCC features cannot outperform the MFCCs, they
carry complementary information for the emotion recog-
nition task, and significantly enhances the system perfor-
mance when used in conjunction with the MFCCs. Some
of the results are reported in Table 5, which confirms this
observation.

8. Conclusions and Future Work

This paper emphasizes the analysis and processing of
speech from a non-linear and non-stationary point of view,
as opposed to the traditional short-time linear and station-
ary analysis of speech. Various evidences of the inherent
non-linearity of speech and the limitations of conventional
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Table 5: Emotion Recognition performance (%) for MFCCs, MFCCs+ECC and MFCCs+EFCC features. A : Anger , B : Boredom ,
D : Disgust , F : Fear , H : Happiness , N : Neutral , S : Sadness. Values in the table are quoted from [144].

Features MFCCs MFCCs + ECC MFCCs + EFCC

Emotion A B D F H N S A B D F H N S A B D F H N S

A 70 0 0 0 30 0 0 80 0 0 0 15 0 0 75 0 0 0 5 0 0

B 0 90 10 10 0 30 5 0 80 10 0 0 15 5 0 100 15 0 0 5 5

D 5 0 90 0 10 5 5 5 0 90 10 5 5 5 0 0 75 5 5 0 10

F 5 0 0 70 10 0 5 5 0 0 75 5 5 0 15 0 0 75 5 5 0

H 15 0 0 0 50 0 0 10 0 0 0 75 0 0 10 0 0 0 85 0 0

N 5 0 0 15 0 65 0 0 20 0 10 0 75 0 0 0 10 15 0 90 0

S 0 10 0 5 0 0 85 0 0 0 5 0 0 85 0 0 0 5 0 0 85

Average 74.29 80.0 83.57

speech processing mechanisms are discussed. This pro-
vides the motivation for AM-FM representation of speech,
which models speech as being constituted of a finite num-
ber of AM-FM signals, centered around the vocal tract
resonances. The process of EMD is then illustrated, which
covers up some of the loopholes of conventional approaches
of AM-FM analysis. The properties of EMD are discussed.
The disadvantages of EMD and their mitigation by noise
assisted EMD analysis are discussed. Finally, a few appli-
cations of EMD in speech processing are revisited.

Before concluding this article, we would like to briefly
discuss some important points regarding the utility of
EMD in speech processing. The obvious aim of EMD
should be to eradicate short-time processing of speech
to the maximum extent possible, and capture informa-
tion hidden in the non-linear dynamics of the speech sig-
nal. For this purpose, efforts are required to customize
EMD for speech processing applications. To be precise,
if EMD could be customized to produce meaningful IMFs
of speech, which are similar to that of EEMD, but at a
much lesser time cost, it would become much more attrac-
tive to the speech community. Even though some efforts
[122] have been made in this direction, the lack of a math-
ematical framework is an obstacle, and more work needs
to be done in this regard. Nevertheless, even with the cur-
rent state of affairs, enough work could be explored using
EMD. One such exploration could be to detect the epochs
or glottal closure instants (GCIs) of voiced speech [11, 33–
40]. Despite the many disadvantages of the LP residual,
most techniques for detecting GCIs are dependent on it,
or some representation of the glottal source similar to it.
However, to overcome the noisy characteristics of the LP
residual, these methods strive to obtain a sinusoidal signal
from it [33–35, 37, 39, 40]. The objective is to find some
point in the near sinusoidal signal which can be correlated
with the GCIs. In the case of EMD, we have already found
that some of the sinusoid-like IMFs carry the periodicity
of the glottal source [101]. Thus, an investigation needs to
be carried out to see if they could be utilized to estimate

GCIs. Apart from this, the scope for EMD in applica-
tion to speech processing is wide open. As the method
develops, becomes more adaptive and time-efficient, its
usefulness as a speech processing tool will gather more
recognition.
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