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Abstract—The aim of this work is to develop a Global1

Navigation Satellite System (GNSS) and Inertial Measurement2

Unit (IMU) sensor fusion system. To achieve this objective, we3

introduce a Moving Horizon Estimation (MHE) algorithm to esti-4

mate the position, velocity orientation and also the accelerometer5

and gyroscope bias of a simulated unmanned ground vehicle. The6

obtained results are compared with the true values of the system7

and with an Extended Kalman filter (EKF). The use of CasADi8

and Ipopt provide efficient numerical solvers that can obtain9

fast solutions. The quality of MHE estimated values enable us to10

consider MHE as a viable replacement for the popular Kalman11

Filter, even on real time systems.12

Index Terms—State Estimation, Sensor Fusion, Moving Hori-13

zon Estimation, GNSS, IMU.14

I. INTRODUCTION15

Navigation aims to solve the problem of determining the16

position, velocity and orientation of an object in space us-17

ing different sources of information. If we want to control18

efficiently an unmanned vehicle, its position, velocity and19

orientation should be known as accurately as possible. The20

integration of Global Navigation Satellite Systems (GNSS) and21

Inertial Measurement Units (IMU) is the state of the art among22

navigation systems [1], [2]. It involves non-linear measurement23

equations combined with rotation matrices, expressed through24

Euler angles or quaternions, along with the cinematic models25

for the rigid body’s translation and rotation in space. Tradi-26

tionally, the Extended Kalman Filter (EKF) [3]–[5], Unscented27

Kalman Filter (UKF) [6], [7] or the Particle Filter (PF) [8],28

[9] are used to solve the navigation problem.29

Recently, the use of non-linear observers have been pro-30

posed as an alternative to the different types of Kalman filters31

and statistical methods. However, there is still little literature32

on the subject. Grip et al. [10] present an observer for estimat-33

ing position, velocity, attitude, and gyro bias, by using inertial34

measurements of accelerations and angular velocities, mag-35

netometer measurements, and satellite-based measurements of36

position and (optionally) velocity. Vandersteen et al. [2] use a37

Moving Horizon Estimation (MHE) algorithm in real-time to38

estimate the orientation and the sensor calibration parameters39

applied to two space mission scenarios. In the first scenario,40

the attitude is estimated from three-axis magnetometer and41

gyroscope measurements. In the second scenario, a star tracker42

is used to jointly estimate the attitude and gyroscope cali- 43

bration parameters. In order to solve this constrained opti- 44

mization problem in real time, an efficient numerical solution 45

method based on the iterative Gauss–Newton scheme has been 46

implemented and specific measures are taken to speed up 47

the calculations by exploiting the sparsity and band structure 48

of matrices to be inverted. In Poloni et al. [1] a nonlinear 49

numerical observer for accurate position, velocity and attitude 50

estimation including the accelerometer bias and gyro bias 51

estimation is presented. A Moving Horizon Observer (MHO) 52

processes the accelerometer, gyroscope and magnetometer 53

measurements from the IMU and the position and velocity 54

measurements from the GNSS. The MHO is tested off-line 55

in the numerical experiment involving the experimental flight 56

data from a light fixed-wing aircraft. 57

Both EKF and MHE are based on the solution of a least- 58

squares problem. While EKF use recursive updates to obtain 59

the estimates and the error covariance matrix, MHE use a 60

finite horizon window and solve a constrained optimization 61

problem to find the estimates. In this way, the physical limits 62

of the system states and parameters can be modeled through 63

the optimization problem’s constraints. The omission of this 64

information can degrade the estimation algorithm performance 65

[11]. Unfortunately, the Kalman based filters do not explic- 66

itly incorporate restrictions in the estimates (states and/or 67

parameters) and, because of this, several ad-hoc methods have 68

been developed [12]–[17]. These methods lead to sub-optimal 69

solutions at best and can obtain non-realistic solutions under 70

certain conditions, specially when the statistics of the unknown 71

variables are chosen poorly. On the other hand, MHE solves 72

an optimization problem to find the system estimates on each 73

sample step, providing a theoretical framework for theoretic 74

frame for constrained state and parameter estimation. 75

In this work it will be assumed that the reader is familiar 76

with some of the many coordinate frames used for navigation. 77

If needed, the work of Bekir [18] provides an excellent 78

introduction to these topics. In particular, these coordinate 79

frames will be used: 80

1) Body reference frame, referred as Body and by the 81

superindex b. 82

2) Earth-Centered Earth-Fixed, referred as ECEF and by 83

the superindex e. 84
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3) East-North-Up, referred as ENU and by the superindex85

n.86

This work is organized as follows: in Section II the problem87

formulation is presented. Section III describes the aspects of88

the Moving Horizon Estimation algorithm and the Extended89

Kalman Filter implementation. In order to compare the pro-90

posed method, a test simulation example is given in Section91

IV. Finally, in Section V conclusions of this work are stated.92

II. PROBLEM FORMULATION93

The system equations (for a detailed description, see Poloni94

et al. [1] and Bekir [18]) that describe the rigid body dynamics95

in ECEF coordinates are given by:96

ṗe = ve (1)
v̇e = −2S(ωe

ie)v
e + ae + ge(pe) (2)

q̇eb =
1

2
qeb · ω̃b

ib −
1

2
ω̃e
ie · qeb (3)

α̇ = 0 (4)

β̇ = 0 (5)

where pe is the position in ECEF coordinates, ve is the linear97

velocity in ECEF coordinates, ae is the linear acceleration98

in ECEF coordinates and ge is the gravity vector in ECEF99

coordinates. The gravity vector is a function of the position and100

is modeled using the J2 gravity model [19]. The known Earth’s101

angular velocity around the ECEF z-axis is represented by102

vector ωe
ie and ω̃b

ib = [0 ωb]T is the quaternion representation103

of the angular velocities in body frame. The quaternion qeb104

determines the orientation of the rigid body in space and α105

and β are the gyroscope and accelerometer bias, respectively.106

The measurement equations with measurement noise v are107

given by:108

ωb
m = ωb + α+ vω (6)

abm = R(qeb)Tae + β + va (7)

mb
m = R(qeb)Tme + vm (8)
pem = pe + vp (9)
vem = ve + vv (10)

where me is a known vector that contains the values of the109

magnitude of the terrestrial magnetic field given our current110

latitude and longitude1, ωb and ae are the angular velocity111

and linear acceleration vectors in body and ECEF coordinates,112

respectively. The matrix R(qeb) is the rotation matrix associated113

with the current orientation quaternion.114

In order to use GNSS data with Eqs. (1)-(5), we need to115

convert it to ECEF coordinates. This can be done using the116

following equations:117

xe = (Ne + h) cosφ cosλ

ye = (Ne + h) cosφ sinλ

ze = (b2Ne/a
2 + h) sinφ

(11)

1This data is tabulated and can be obtained from https://www.ngdc.noaa.
gov/geomag-web

where 118

Ne =
a2√

a2 cos2 φ+ b2 sin2 φ

is the Earth’s east-west radius of curvature, φ is the latitude 119

in radians, λ is the longitude in radians, h is the altitude 120

in meters, a = 6378137 m and b = 6356752.3142 m are 121

the major and minor axes of the Earth reference ellipsoid, 122

respectively. 123

The set of Eqs. (1)-(5) model the position, velocity and 124

orientation of a vehicle in ECEF coordinates. However, if we 125

wish to travel short distances it is convenient to use ENU 126

coordinates and work in a local reference frame. The steps to 127

convert from ECEF to ENU are the following: 128

1) Determine the latitude, longitude and altitude of the 129

initial reference position (φ0, λ0, h0) and calculate its 130

ECEF coordinates using equation (11) to obtain vector 131

pe0 = [xe0, y
e
0, z

e
0]T . This position will be the origin of 132

the ENU coordinate system. 133

2) Transform the incoming GNSS measurements to ECEF 134

coordinates using equation (11) to obtain pe and com- 135

pute the relative displacements in ENU coordinates 136

using the following: 137

pn = Re
n(φ0, λ0)

T
(pe − pe0) (12)

where Re
n(φ0, λ0) is the ENU to ECEF rotation ma- 138

trix and depends on the initial latitude and longitude 139

(φ0, λ0). 140

The ENU to ECEF rotation matrix is given by two rotations 141

[20]: 142

1) A clockwise rotation over east-axis by an angle 90− φ 143

to align the up-axis with the z-axis. That is R1(−(π/2− 144

φ)). 145

2) A clockwise rotation over the z-axis by an angle 146

90 + λ to align the east-axis with the x-axis. That is 147

R3(−(φ/2 + λ)). 148

Where rotation matrices are defined as follows: 149

R1(θ) =

1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 (13)

R2(θ) =

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 (14)

R3(θ) =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 (15)

in matrix form, we obtain 150xeye
ze

 = R3(−(φ/2 + λ)) R1(−(π/2− φ))

xnyn
zn

 (16)

where we assume that the x-axis points to the East when 151

using ENU coordinates. Taking into account the properties of 152

rotation matrices, the ECEF to ENU transformation is obtained 153

through the transpose of the matrix given by the previous 154
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equation. In this way, equation (16) gives a formula to convert155

coordinates from ENU to ECEF and from ECEF to ENU.156

By using ENU, we establish a local coordinate system157

relative to the reference position pe0. We must replace our158

orientation quaternion from qeb to qnb . Besides, we must be very159

careful and know exactly in which frame of reference each of160

the parameters, constants and sensor measurements are given161

in order to apply the corresponding rotations to them.162

III. IMPLEMENTATION DETAILS163

A. MHE implementation164

The MHE implementation follows the algorithm presented165

in the work of Rao et al. [21], [22]. In our case, the vector of166

differential and algebraic states are defined as167

x = [pn vn qnb α β]T (17)

z = [ωb an]T (18)

and the measurement vector is defined as168

y = [ωb
m abm mb

m pem vem]T (19)

The cost function Ψ that will be minimized with respect to169

x̂k−N |k, ẑk−N |k and ŵk is defined as170

ΨN
k = ||1− ||q̂nb (k −N)||22||2P0

+ ||x̂k−N |k − x̄k−N |k||2P1
+

||ẑk−N |k − z̄k−N |k||2P2
+

k∑
j=k−N

||ŵj|k||2Q + ||v̂j|k||2R

(20)

Given that the quaternion q̂nb must have unit norm, the con-171

straint ||q̂nb ||22 = 1 could be included. However, to avoid the172

computational cost of this restriction, the first term of Ψ, which173

penalizes its violation at k − N , and the following set of174

constraints175 
−1
−1
−1
−1

 ≤ q̂nb ≤


1
1
1
1

 (21)

are added to the problem.176

The horizon length N and the values of the weights P0,177

P1, P2, Q and R were chosen by a trial and error procedure178

as N = 5, P0 = 0.1, P1 = I , P2 = I , Q = 0.001 I and179

R = diag([10, 10, 10, 10, 10, 10, 5, 5, 5, 1, 1, 1, 1, 1, 1]). The180

resulting MHE constrained non-linear optimization problem181

is solved with CasADi [23] and Ipopt [24].182

B. EKF implementation183

The implementation of the Extended Kalman Filter fol-184

lows the standard procedure; however, there are a couple of185

subtleties. Firstly, gyroscope and accelerometer readings are186

treated as control inputs instead of as measurements. To that187

end, ωb and an, which were previously regarded as algebraic188

states, are expressed as functions of the inputs ωb
m and abm and189

subsequently eliminated from the problem formulation. The190

differential states remain the same as in the MHE formulation,191

while the measurement vector is comprised of the remaining 192

data readings, namely, 193

y = [mb
m pem vem]T . (22)

And secondly, the quaternion q̂nb must be renormalized at each 194

time step, given that there is no way to take this constraint into 195

account in the EKF, as was done in the MHE implementation. 196

The covariance matrices Q and R of the EKF are chosen as 197

the inverse of the weighting matrices employed in the MHE 198

formulation, given that a smaller covariance in the former 199

must correspond to a bigger weight, i.e., “trust”, in the latter. 200

Therefore, the covariance matrices are defined as Q = 1000 I 201

and R = diag([0.2, 0.2, 0.2, 1, 1, 1, 1, 1, 1]). 202

IV. EXAMPLE 203

In the following example, we will perform a manoeuvre 204

using Gazebo and ROS to run a simulation of the Husky2
205

unmanned ground vehicle moving to the following set of way- 206

points: w1 = [5; 0; 0]T , w2 = [15; 10; 0]T , w3 = [20; 10; 0]T , 207

w4 = [30; 0; 0]T and w5 = [35; 0; 0]T . As stated before, 208

the vehicle is equipped with GNSS and IMU sensors, which 209

will be used to estimate the position and orientation in ENU 210

coordinates using MHE and EKF. Both of these estimated 211

values will be compared to the true values. 212

Figures 1a, 1c and 1e show the true position pn and its 213

estimates p̂n in ENU coordinates. It can be seen that both 214

the MHE and EKF provide good estimates. Figures 1a and 1c 215

show that both estimators are able to follow the changes on the 216

x and y axis. Since the vehicle is moving on flat terrain, the 217

z coordinate is only affected by noise (see Fig. 1e). Figures 218

1b, 1d and 1f show the difference p̂n−pn. It can be seen that 219

MHE error is slightly smaller on the x and y axis, while EKF 220

filters slightly better the noise on the z axis. 221

The orientation quaternion qn and its estimates q̂n are 222

shown in Figures 2 and 3, where it can be seen a similar 223

behaviour than the one obtained from the position. MHE 224

performs a better estimation of the states that change through 225

time –qn0 and qn3 –, as it can be seen in Figures 2a, 2b, 3c and 226

3d, while EKF is able to do a slightly better job at filtering 227

the noise on qn1 and qn2 , as it can be seen in Figures 2c, 2d, 228

3a and 3b. 229

The results obtained by MHE can be attributed to the fact 230

that: i) MHE uses more measurements to obtain the current 231

estimate; ii) MHE does not assume Gaussian distribution for 232

the process and measurement noises within the estimation 233

horizon, such as the EKF. 234

Finally, Table I shows the mean and the standard deviation 235

of the squared error between the real state and the estimated 236

state over 50 realizations of the same experiment. The average 237

execution time for each sample was 5.293 milliseconds for 238

each MHE iteration and 0.211 milliseconds for each EKF 239

iteration. 240

2https://www.clearpathrobotics.com/husky-unmanned-ground-vehicle-robot/
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Fig. 1. Estimation of the position pn in ENU coordinates.

Mean (×10e−3) Std. Dev. (×10e−3)
MHE EKF MHE EKF

px 0.30643 0.28912 0.36298 0.33779
py 0.18676 0.17014 0.22421 0.20285
pz 0.02815 0.00870 0.03828 0.01201
vx 0.93519 1.70043 1.28402 2.32408
vy 0.92798 1.67139 1.26584 2.26883
vz 1.09800 2.12559 1.50401 2.90566
q0 0.19255 1.08827 0.28763 1.17203
q1 0.22829 0.06821 0.31084 0.09292
q2 0.22064 0.07187 0.30205 0.09909
q3 1.73780 5.35359 2.38613 5.35354

TABLE I
MEAN AND STANDARD DEVIATION OF THE SQUARED ERROR.

V. CONCLUSION 241

In this work we employed MHE to estimate the position, 242

velocity and orientation of an unmanned ground vehicle by 243

fusing data from GNSS and IMU sensors. These estimates are 244

compared with the classic benchmark algorithm, the EKF and 245

the true values. MHE is able to perform better than EKF at 246

a fast rate (around 100 Hz), which indicates that it can easily 247

be used for real time estimation. Since MHE solves a non 248

linear optimization problem on each iteration, the addition of 249

constraints and bounds such as the ones described by Eq. (21), 250

is straight forward. 251

Since the solution of the navigation problem requires a very 252

specific set of knowledge and the use of different coordinate 253
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Fig. 2. Estimation of the orientation quaternion qn in ENU coordinates.

systems often leads to confusion, we also showed all the254

necessary steps to perform position, velocity and orientation255

estimation either in ECEF or ENU coordinates. One of the256

issues that remains open is how to tune both MHE and EKF257

weight matrices in order to provide better results.258

If we want to run these algorithms with real sensors, special259

care must be taken in order to account for different sampling260

rates, especially when typical GNSS receivers sampling rate261

is around 1 Hz to 10 Hz and commercial IMUs sampling rate262

is around 500 Hz.263
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