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Abstract

The obstructive sleep apnea-hypopnea (OSAH) syndrome is a very common
and generally undiagnosed sleep disorder. It is caused by repeated events of
partial or total obstruction of the upper airway while sleeping. This work
introduces two novel approaches called most dicriminative activation selec-
tion (MDAS) and most discriminative column selection (MDCS) for the de-
tection of apnea-hypopnea events using only pulse oximetry signals. These
approaches use discriminative information of sparse representations of the
signals to detect apnea-hypopnea events. Complete (CD) and overcomplete
(OD) dictionaries, and three different strategies (FULL sparse representa-
tion, MDAS, and MDCS), are considered. Thus, six methods (FULL-OD,
MDAS-OD, MDCS-OD, FULL-CD, MDAS-CD, and MDCS-CD) emerge. It
is shown that MDCS-OD outperforms all the others methods. A receiver
operating characteristic (ROC) curve analysis of this method shows an area
under the curve of 0.937 and diagnostic sensitivity and specificity percentages
of 85.65 and 85.92, respectively. This shows that sparse representations of
pulse oximetry signals is a very valuable tool for estimating apnea-hypopnea
indices. The implementation of the MDCS-OD method could be embedded
into the oximeter so as to be used by primary attention clinical physicians in
the search and detection of patients suspected of suffering from OSAH.
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1. Introduction1

In the year 2014 the American academy of sleep medicine (AASM) re-2

leased the third edition of the international classification of sleep disorders3

[1]. One of the most common sleep disorders is the obstructive sleep apnea-4

hypopnea (OSAH) syndrome, which is caused by repeated events of partial5

(hypopnea) or total (apnea) obstruction of the upper airway while sleeping.6

To establish the degree of severity of the syndrome, the apnea-hypopnea in-7

dex (AHI) is created. The AHI represents the number of apnea-hypopnea8

events per hour of sleep. The OSAH is classified as normal, mild, moderate or9

severe if belongs to the interval [0, 5), [5, 15), [15, 30), or [30,∞), respectively.10

Nowadays, the gold standard test for diagnosing sleep disorders is a11

polysomnography (PSG) in a sleep medical center. However the accessibility12

to this type of study is usually very limited as well as costly in terms of both13

time and money. A complete PSG consists of simultaneous measurement of14

several physiological signals such as electrical activity of the brain along the15

scalp, electrical activity of the heart using electrodes placed on the body’s16

surface, electrical activity produced by skeletal muscles, respiratory effort,17

airflow and blood oxygen saturation (SaO2) signals, among others. Mainly18

due to its ease of acquisition, we are particularly interested in the latter.19

In a typical PSG study, after a normal period of sleep the recorded signals20

are provided to medical experts. Due to its complexity, different alterna-21

tives to PSG have been developed. One of the most popular alternatives to22

PSG is the so called home respiratory polygraphy [2]. Although some studies23

have shown that there is a very high correlation between AHIs generated by24

polygraphy and PSG studies and polygraphy requires no neurophysiological25

signals [3], it still needs several others physiological signals, whose acquisition26

affects the normal sleeping of the persons. It is therefore highly desirable to27

develop a reliable system which makes use of as few as possible physiological28

signals. Since pulse oximetry is a well know, quite cheap and non-invasive29

technique, it has become a very valuable alternative to detect persons sus-30

pected of suffering from OSAH [4]. A recent work has shown that statistical31

analysis and feature extraction methods applied to pulse oximetry signals32

provide satisfactory diagnostic performance in detecting severe OSAH pa-33

tients [5]. Cessation of breathing associated with apnea-hypopnea events are34

always accompanied by a drop in the oxygen saturation level. It is appropri-35
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ate to mention however that this drop level can be very small and impossible36

to detect by a human observer, reason for which advanced signal processing37

techniques such as artificial intelligence methods could provide a very valu-38

able alternative. A decrease in blood oxygen saturation usually produces39

changes in the pulse oximetry record corresponding to intermittent hypox-40

emia. The intermittent hypoxemia, with hypoxemia-reoxygenation cycles,41

very often indicates OSAH syndrome.42

Pulse oximetry, besides providing information about blood oxygen satu-43

ration during sleeping, is used for computing some parameters which quantify44

desaturation levels in the SaO2 signal. The seek of patients suspected of suf-45

fering from OSAH can be addressed by means of two different approaches.46

A global approach consists of obtaining general characteristics of the SaO247

signal, such as its mean, variance and entropy values, among others with the48

only objective of classifying a person as healthy or sick without taking into49

consideration the degree of severity of the illness. In this work a local ap-50

proach, which allows a more thorough analysis of the SaO2 signal, is taken.51

This approach consists of detecting the apnea-hypopnea events from sparse52

representations of segments of SaO2 signals using a neural network classifier.53

The local approach was previously used for estimating three parameters de-54

noted by ODI4, ODI3, and ODI2, which are defined as the number of times55

per hour of sleep that the SaO2 signal decreases below 4%, 3%, and 2% of a56

baseline level, respectively. It is timely to point out, however that although57

the concept of “baseline level” is very intuitive, it is not uniquely defined58

and different criteria and definitions have been adopted by different authors59

[6, 7].60

In the last fifteen years, a wide variety of machine learning algorithms61

were used for detecting several health disorders [8]. Implementations of these62

algorithms were applied to detect particular sleep disorders and different sig-63

nal processing techniques originating new methods based on non-linear sys-64

tems, higher-order statistics, spectral analysis, including independent com-65

ponent analysis (ICA) [9, 10, 11]. Moreover pattern recognition algorithms66

based on artificial neural network (ANN) were successfully applied to assist67

OSAH diagnosis and classification [12]. Nowadays, a powerful method based68

on sparse representations of signals finds the solution corresponding to the69

most compact representation by means of a linear combination of atoms in70

a dictionary [13, 14]. It was found that this approach, when applied to bio-71

logical sensory systems, results in internal representations having properties72

similar to the real ones, in particular similar to those found in the primary73
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auditive or visual cortex of the mammals [15, 16]. Some of the advantages74

of the sparse representations are: super resolution, robustness to noise and75

dimension reduction, among others. The sparse representations of signals76

provide new grounds for treating both the signal modeling and the represen-77

tation problems. The dictionary is learned for the purpose of obtaining the78

best representation of a given set of signals, although the atoms involved in79

such representation are not necessarily the atoms which capture discrimina-80

tive information. It is therefore clear that if the SaO2 signal is to be used81

as the only input for detection of apnea-hypopnea events, advanced signal82

processing algorithms capable of extracting discriminative information from83

sparse representations of signals will be needed.84

In this work we present two novel methods called “most discriminative85

activation selection” (MDAS) and “most discriminative column selection”86

(MDCS) based on sparse representations of SaO2 signals. A preliminary re-87

lated approach of this work has been reported in [17]. The methods MDAS88

and MDCS involve finding an optimal subset of most discriminative atoms89

and the corresponding configuration of a multilayer perceptron (MLP) neural90

network classifier for detecting apnea-hypopnea events from sparse represen-91

tations of segments of SaO2 signals. The apnea-hypopnea events were ap-92

propriately labeled by medical experts, who have been carefully analyzed the93

complete PSG. Our methods allow for a significant reduction in the dimen-94

sion of the inputs to the MLP neural network, preserving the most important95

characteristics of the SaO2 signal.96

This article is organized as follows: in Section 2 the materials and methods97

used for obtaining sparse representations of SaO2 signals are explained. In98

Section 3 the results are described and the discussion is finally included in99

Section 4.100

2. Materials and Methods101

A sparse representation problem can be divided into two separate sub-102

problems: a learning problem and an inference problem. The first one, which103

is quite often more complex, consists of finding an “optimal” dictionary Φ104

to represent a given set of signals {xi}. A dictionary Φ is called complete105

(CD) or overcomplete (OD) depending on the number of basic waveforms be106

equal or greater, respectively than the signal’s space dimension. The second107

problem consists of selecting a set of representation vectors {ai} satisfying108

a given sparsity constraint. The MDAS and MDCS methods involve finding109
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Filtering and
segmentation

OMP algorithm

Learned 
dictionary

MLP
neural network

AHIest

Sparse matrix
of coefficients

Features
matrix 

MDAS
(or MDCS)

(I)

(II)

(III)

Signals from
testing set

Figure 1: A simplified block diagram of the classification process.

a set of discriminative coefficients (feature vector) to be used as inputs of110

a MLP neural network [18]. In order to achieve this objective all possible111

number of inputs (F) and a large number of neurons in its hidden layer (NHL)112

are tested. Finally the optimal configuration is obtained by choosing the F113

and NHL values resulting in the best performance.114

Figure 1 shows a simplified block diagram of the proposed system. In the115

first block (I) the signals are filtered and segmented by making use of wavelet116

filters [19] and segmentation techniques (as described in Subsection 2.1),117

respectively. The processes for obtaining sparse representations of the signals118

are presented by a previously learned dictionary and orthogonal matching119

pursuit (OMP) algorithm. The second block (II) shows the feature extraction120

stage by using the MDAS (or MDCS) method (see details in Subsection 2.4).121

In the last block (III), the estimated AHI (AHIest) value is obtained by post-122

processing a previously trained MLP neural network output which produces123

the apnea-hypopnea event detection (see details in Sections 2.3 and 3).124

We consider two types of dictionaries (complete and overcomplete) and125

three different methods (use of the FULL sparse representation, MDAS and126

MDCS). Thus, six methodologies emerged, which we call FULL-OD, MDAS-127

OD, MDCS-OD, FULL-CD, MDAS-CD, and MDCS-CD. Thus, for instance,128

the FULL-OD method makes use of an overcomplete dictionary ΦOD and the129

whole representation vector ai as input of the MLP neural network classifier,130

while the MDAS-OD method uses the dictionary ΦOD and a selected set of131

features extracted from ai by applying the MDAS method.132
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2.1. Filtering and segmentation133

The set of biomedical signals used in this article was obtained from134

the sleep heart health study (SHHS) dataset [20, 21]. This dataset com-135

prises valuable material about detailed PSGs which were properly obtained136

to explore correlations between sleep disorders and cardiovascular diseases.137

The complete dataset includes 995 studies, each of them containing several138

biomedical signals such as electrical activity of the brain, electrical activity139

of the heart, nasal airflow, SaO2, among others. Annotations of sleep stages,140

arousals and apnea-hypopnea events are also added. For our work, only the141

SaO2 signal and its corresponding apnea-hypopnea labels are considered.142

The SaO2 signals are usually highly degraded by patient movements, base-143

line wander, disconnections and the limited resolution of the pulse oximeter,144

among others factors. When a disconnection occurs, the values during the145

time interval where the sensor signal is invalid are linearly interpolated. A146

wavelet processing technique proposed in [19] is chosen for denoising the sig-147

nals. The signals are also sampled at 1Hz and the denoising process is carried148

out by discarding the approximation coefficients, at level 8, as well as the first149

three detail coefficients of the discrete dyadic wavelet transform with mother150

wavelet Daubechies 2. The application of this process has the effect of a151

band-pass filter where the baseline wander and both the low frequency noise152

and the high frequency noise as well as the quantization noise are eliminated.153

Figure 2 shows a portion of the airflow signal (top) as well as the original raw154

pulse oximetry signal (middle) and the wavelet-filtered pulse oximetry signal155

(bottom). The corresponding labels of apnea-hypopnea events (dash lines)156

are also included. By observing both the airflow and the raw pulse oximetry157

signals, it can be seen that there is generally a causal relation between an158

apnea-hypopnea event and the oxygen desaturation in the pulse oximetry sig-159

nal. However, the time interval between the blockage of nasal airflow and the160

start of the oxygen desaturation is highly variable. Although, as previously161

mentioned an apnea-hypopnea event is not always accompanied with “no-162

ticeable” oxygen desaturations (which are used by medical experts to detect163

and label the apnea-hypopnea events), artificial intelligent algorithms can164

detect slight changes in the pulse oximetry signal. Note that the time dura-165

tion of each desaturation, which is associated to an apnea-hypopnea event, is166

also variable. Figure 2 also shows the effect of the wavelet-filter in avoiding167

“disconnections” in the pulse oximetry signal. In what follows, by the “SaO2168

signal”, we will always mean the denoised one.169

In order to apply the sparse representation technique, an appropriate170
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disconnection disconnection

hypopnea event
apnea event

hypopnea event

Figure 2: A portion of airflow and pulse oximetry signals. Original raw airflow and pulse
oximetry signals (top and middle) and its wavelet-filtered version (bottom). Dashed lines
represent labels of apnea-hypopnea events introduced by the medical expert.

Figure 3: Schematic representation of SaO2 signal segmentation.

segmentation of the signals is required. For this reason, segments of length171

N = 128 (corresponding to 128 seconds) with a 75% overlapping between172

two consecutive segments are taken. In this process, the time intervals where173

a disconnection occurs are not taken into account. The segmentation process174

is depicted in Figure 3. The segments of pulse oximetry signals are simul-175

taneously arranged as column vectors xi ∈ RN and labeled with ones and176

minus ones, where a one is associated to an apnea-hypopnea event, and a177

minus one to the lack of it, respectively. Finally a signal matrix X is built by178

stacking side-by-side the column vectors xi, i.e. the signal matrix is defined179

as X
.
= [x1 x2 x3 · · · xn], where n represents the total number of segments.180

2.2. Sparse representations181

The problem of obtaining the sparse representation of a signal xi in terms182

of a given overcomplete dictionary Φ can be described as follows: Given both183

a matrix Φ ∈ RN×M (with M ≥ N) formed by M columns φj (called atoms184
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of the dictionary) and a signal xi ∈ RN , the sparse representation problem185

can be written as xi = ΦaSR(i); where186

aSR(i) = argmin
ai

||ai||0 subject to Φai = xi, (1)

where the operator || · ||0 denotes the zero-norm.187

The term “basis” is often replaced by “dictionary” because the atom-188

by-atom linear independence is not necessary needed, and many times the189

number of atoms is greater than the dimension of the signals. In that case,190

i.e. M > N , or more generally when the atoms do not form a basis, then191

the representation of a given signal may not be unique and therefore a good192

enough constraint is required to choice only one of them. In our case, sparsity193

(a criterion for selecting a representation using the least number of atoms)194

is used, although many other available criteria can be taken into account.195

By considering the representation given by xi = Φai. It is important to196

point out that although the synthesis of the signals is linear, the opposite197

operation (obtain ai in terms of xi and Φ) can be non-linear.198

In practical applications not just one but a given set of signals is normally199

obtained. In this case the problem of sparse representation of such signals200

becomes very difficult because the build up of the dictionary is part of the201

problem. Naturally the dictionary could be constructed by staking side-by-202

side the whole signals. Although the sparse representation problem will be203

optimal, this kind of solution is highly undesired because of its huge size and204

long redundancy. Thus it is very appropriate to use a method which learn an205

optimal dictionary, in certain sense, from de signals in the given dataset. To206

achieve this objective a statistical approach called noise overcomplete ICA207

(NOCICA) [13, 22, 23] was taken. Equations (2) and (3) describe iterative208

rules for updating both the dictionary Φ and the representation vector a by209

means of this method:210

∆Φ = ηΛε((x− ΦaMAP)aTMAP − ΦH−1), (2)

where η ∈ (0, 1) is the so called “learning coefficient”, Λε is the noise covari-211

ance matrix, aMAP is the maximum-a-posteriori (MAP) estimator of a and H212

is minus the Hessian of the log-posterior evaluated at aMAP, and213

∆a = ΦTΛε(x− Φa)− ρT |a|, (3)

where ρ = (ρ1 ρ2 · · · ρn)T corresponds to a proposed a Laplacian a-priori214

distribution π(aj) ∝ exp(ρj|aj|) and ρj < 0.215
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2.3. MLP neural network216

The MLP is a special type of neural networks which consist of input units217

(input layer), at least one hidden layer and an output layer [18]. Both the hid-218

den an the output layers are composed of computation units (neurons). The219

inputs, sometimes called feature vector, are processed layer-by-layer moving220

forward through the network. The output of a neuron is given by the appli-221

cation of an activation function (linear or non-linear) to the weighted sum of222

the inputs plus a bias term. In general the output of a neuron yj is given by223

Equation (4).224

yj = f(
d∑
i=1

ωjixi + ωj0) = f(
d∑
i=0

ωjixi), (4)

where the activation function (sometimes called transfer function) is denoted225

by f(·), and the weights connecting the i-th input to the j-th neuron for a226

given layer is represented by ωji.227

2.4. Detection of discriminative atoms228

As already explained, the problem of sparse representations of a signal229

consist essentially in approximating such a signal by a linear combination of230

only a few atoms in a given dictionary. In applications whose final objective231

is signal classification we are not much interested in the accuracy of such a232

representation but rather in its discriminative power, that is in its ability to233

distinguish between the different classes. With this in mind, in this work we234

introduce an atom selection process by means of discriminative information.235

Roughly speaking, when an atom has a high activation frequency for one of236

the classes (but not for the others), then this atom is classified as containing237

significant “discriminative” information. The MDAS and MDCS methods238

are explained below.239

The MDAS method: let Φ be a given dictionary, Xtrain and Xval train-240

ing and validation signal matrices, respectively (built as explained in Sub-241

section 2.1), Ttrain and Tval training and validation target vectors, respec-242

tively, and p0 the sparsity level. We describe now the building steps of the243

MDAS method together with the corresponding lines in its implementation244

algorithm (Algorithm 1). First, each representation vector aSR(i) is obtained245

by applying a greedy pursuit algorithm called OMP [24] (line 2). Then a246

coefficient matrix A is assembled by stacking side-by-side the vectors aSR(i)247

(line 3). After that, the atom activation frequencies ηjκ are obtained for each248

one of the atoms φj and each one of the classes κ = 1 and κ = 2 (line249
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5). Here, ηjκ represents the number of times that the atom φj was used to250

represent segments belonging to the class κ and τκ represents the column251

indices corresponding to class κ. The proposed discriminative approach be-252

gins by computing the absolute difference between the activation frequencies,253

i.e. D(j) = |ηj1 − η
j
2| (line 6). Clearly D(j) will be large if the jth-atom is254

much more active in one class than in the other. Otherwise, if the jth-atom255

has similar activation frequencies in both classes then D(j) is close to zero.256

After that the vector D is redefined by rearranging its elements in decreas-257

ing order and saving the corresponding vector of indices Ind (lines 8 and 9).258

Next the MLP neural network is trained by varying the feature vector size259

and the number of neurons located in the hidden layer (lines 10 to 19). The260

features taken as input of the MLP neural network are those corresponding261

to the most discriminative atoms of Φ according to D (FMDAS for training and262

Fval for validation). Once the MLP neural network training stage is finished,263

an optimal configuration of the MLP neural network is obtained (line 20).264

An schematic representation of the coefficient selection process is depicted265

in Figure 4. Figure 5 shows, in decreasing order, the absolute difference of266

activation frequencies of the atoms corresponding to a dictionary which was267

learned using segments of signals belonging to class 1. By observing this fig-268

ure it is reasonable to conclude that a large percentage of the discriminative269

information can be captured by the first 40 or 50 atoms. Figure 6 shows the270

waveforms of some atoms in three different regions of the curve shown in Fig-271

ure 5. In particular the first row in Figure 6 shows the waveforms of the first272

three most discriminative atoms while rows 2 and 3 present the waveforms273

corresponding to atoms in the middle and low discrimination ranges, respec-274

tively. It is very interesting to see that the three first most discriminative275

atoms present waveforms which are clearly associated with desaturations in276

the SaO2 signals.277

The MDCS method: this method (whose implementation is described278

by Algorithm 2) is similar to the previous one except for the stage 2 that we279

describe next. Once the vector D is rearranged, a new sub-dictionary Φnew is280

built (line 4) and consequently the feature vector f i is obtained by applying281

the OMP algorithm (line 5). Finally each feature vector f i is assigned to be282

the input of the MLP neural network (line 7).283

At the training stage most of the computational cost (about 80%) is due284

to dictionary learning. The remaining cost corresponds to the inference of285

the coefficients and the MLP neural network training. At the testing stage286

the computational cost is significantly reduced (at about 30% of the training287
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Algorithm 1 MDAS algorithm

1: procedure Mdas(Φ,Xtrain,Xval,Ttrain,Tval, p0)
stage 1:

2: aSR(i) ← argmin
‖ai‖

‖xi − Φai‖22

subject to ‖ai‖0≤ p0, ∀xi ∈ Xtrain

3: A← [aSR(1) aSR(2) aSR(3) · · · aSR(n)]
4: for j ← 1,M do
5: ηjκ ← ‖A(j, τκ)‖0
6: D(j)← |ηj1 − η

j
2|

7: end for
8: D← [dγ(1) dγ(2) dγ(3) · · · dγ(M)]
9: Ind← [γ(1) γ(2) γ(3) · · · γ(M)]

stage 2:
10: for m← 1,M do
11: Indnew ← [Ind(1) · · · Ind(m)]
12: for h← 1, N do
13: f i ← aSR(i) (Indnew)
14: FMDAS ← [f1 f2 f3 · · · fn]
15: NHL← h
16: net←Train(FMDAS,Ttrain,NHL)
17: PM(n,m)← Valid(net,Fval,Tval)
18: end for
19: end for

stage 3:
20: [Fop,NHLop]← argmax

F,NHL
PM

21: return Fop,NHLop

22: end procedure
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Algorithm 2 MDCS algorithm

1: procedure Mdcs(Φ,Xtrain,Xval,Ttrain,Tval, p0)
stage 1: same as MDAS algorithm
stage 2:

2: for m← 1,M do
3: Indnew ← [Ind(1) · · · Ind(m)]
4: Φnew ← Φ(:, Indnew)
5: f i ← argmin

‖ai‖
‖xi − Φnewai‖22

subject to ‖ai‖0≤ p0
6: for h← 1, N do
7: FMDCS ← [f1 f2 f3 · · · fn]
8: NHL← h
9: net← Train(FMDCS,Ttrain,NHL)

10: PM(n,m)← Test(net,Fval,Tval)
11: end for
12: end for

stage 3: same as MDAS algorithm
13: end procedure

12

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

R
.E

. R
ol

on
, L

. L
ar

ra
te

gu
y,

 L
. D

i P
er

si
a,

 R
. S

pi
es

 &
 H

. L
. R

uf
in

er
; "

D
is

cr
im

in
at

iv
e 

m
et

ho
ds

 b
as

ed
 o

n 
sp

ar
se

 r
ep

re
se

nt
at

io
ns

 o
f 

pu
ls

e 
ox

im
et

ry
 s

ig
na

ls
 f

or
 s

le
ep

 a
pn

ea
–h

yp
op

ne
a 

de
te

ct
io

n"
B

io
m

ed
ic

al
 S

ig
na

l P
ro

ce
ss

in
g 

an
d 

C
on

tr
ol

, V
ol

. 3
3,

 p
p.

 3
58

-3
67

, 2
01

7.



Figure 4: Schematic representation of the coefficient selection process. Here f i is a vector
whose components are the features extracted from aSR(i).

Figure 5: Absolute difference of activation frequency D(·) of the atoms of a dictionary
learned with segments of signals belonging to class 1, in decreasing order of magnitude.

cost). The experiments were run on a PC with a 3.5 GHz, 6 cores AMD288

FX-6300 processor and 8 GB of RAM.289
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Figure 6: Examples of some atoms of a dictionary learned with segments of signals be-
longing to class 1 from three different regions of the curve of absolute difference of activa-
tion frequency (Figure 5): most discriminative atoms (top), medium discriminative atoms
(middle row) and lowest discriminative atoms (bottom row).

3. Results290

As mentioned in Subsection 2.1, the complete dataset contains 995 stud-291

ies, 41 of which were discarded due to incomplete information. Among the292

remaining 954 studies, a subset of 667 (70%) studies were randomly selected293

and fixed in order to learn the dictionary and train the MLP neural net-294

work. The final test was made using the remaining 287 (30%) studies of295

the database. The SaO2 signals were filtered and segmented (see details in296

Subsection 2.1) into vectors of length 128 (this window size corresponds to297

128 seconds of the recording). A matrix Xtrain of size 128× 455515 was built298

as Xtrain
.
= [Xc1

train Xc2
train], where the matrices Xc1

train of size 128× 183163 and299

Xc2
train of size 128× 272352 were constructed considering segments belonging300

to class 1 and class 2, respectively. Another matrix Xtest was constructed301

stacking side-by-side all vectors xi corresponding to each signal from the302

testing set.303

At the dictionary learning stage, two types of dictionaries were learned us-304

ing both the Xc1
train and the Xc2

train signal matrices. First a complete dictionary305

ΦCD of size 128×128 was learned using the matrix Xtrain, without taking into306

consideration any information about the classes. Second, an overcomplete307

dictionary ΦOD of size 128× 256 was assembled by stacking side-by-side the308

atoms of two previously learned 128 × 128 dictionaries Φc1 and Φc2, which309
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were learned by using the matrices Xc1
train and Xc2

train, respectively. At the310

dictionary learning stage the atoms were initially taken by random selection311

from the corresponding signal matrix. The NOCICA method [23] was used312

for the dictionary learning stage.313

The representation coefficients aSR(i) were obtained by applying the OMP314

algorithm [25]. The reason for having chosen this greedy algorithm is be-315

cause it guarantees convergence to the projection of xi into the span of the316

dictionary atoms, in no more than p0 iterations.317

Since our problem involved a big and redundant dataset (big data prob-318

lem), a variation of the back-propagation algorithm, called mini-batch train-319

ing procedure, was used to train the MLP neural network. In order to avoid320

overfitting and estimate the neural network hyper-parameters, a large num-321

ber of trials with different hyper-parameter values were performed. In what322

follows, the final choice of the neural network hyper-parameters are described.323

Batches of 1000 balanced segments were randomly selected from the 455515324

available training segments. To avoid overtraining, the number of steps in325

the scaled conjugate gradient algorithm was set to 4. In addition, to min-326

imize classification bias, the above training scheme was repeated 455 times327

with re-sampling.328

In the proposed algorithms, two parameters need to be empirically de-329

termined: the sparsity level p0 and the threshold of the outputs of the MLP330

neural network. To determine an adequate sparsity level, several trials were331

performed. It was found that a percentage value of 12.5 of the signal’s space332

dimension presented the best trade-off between representativity and discrim-333

inability of the segments. Hence, sparsity level p0 = 16 was chosen. On the334

other hand, to establish an optimal threshold of the MLP neural network335

outputs, different values in the interval [−0.2, 0.2] were tested. A value of336

zero of the MLP neural network outputs was chosen. Hence an output value337

greater than 0 was considered as containing an apnea-hypopnea event, and338

considered to be normal otherwise. Finally the AHIest value was determined339

as the number of detected events divided by the record length of each study340

(in seconds).341

In Table 1, the columns labeled “F” and “NHL” show the number of342

inputs (feature vector size) and the number of neurons in the hidden layer343

of the MLP neural network, respectively. Clearly the application of the344

MDAS (or MDCS) method produces a significant dimension reduction and345

therefore, the computing time required for classification is also significant346

reduced. Thus, for instance, the MDAS-OD method used only 32 features347
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Table 1: MLP neural network’s hyper-parameters. Feature vector size and number of
neurons in the hidden layer.

Dictionary Method F NHL

FULL 256 32

OD MDAS 32 16

MDCS 64 32

FULL 128 32

CD MDAS 64 32

MDCS 64 32

(12.5% of the total) compared with the FULL-OD method, which used 256348

features.349

For analyzing the capability of the proposed classifier in the detection of350

patients suspected of suffering from OSAH, two measures were introduced.351

The sensitivity (SE), defined as the ratio of persons with OSAH for whom352

the trial process is positive, and the specificity (SP), defined as the ratio353

of patients without OSAH for whom the trial process is negative. Also a354

receiver operating characteristics (ROC) [26] analysis allows to obtain the355

following values: true positive (TP), true negative (TN), false positive (FP),356

false negative (FN), cut-off point (cut-off), and area under the curve (AUC).357

The objective of our experiment was to compare the performances of our358

methods with those of other local approaches used for OSAH detection. In359

particular, we compared our methods with those introduced by Chiner et al.360

[6] and Vázquez et al. [7], and with that presented by Schlotthauer et al.361

[10]. Tables 2, 3, and 4 show the AUC values as well as SE, SP, and accuracy362

(ACC) measures for AHI diagnostic threshold values of 10 and 15 for the363

reference.364

Table 2 shows the results obtained with the use of sparse representations365

by means of overcomplete dictionaries. We observed a significant increment366

in the AUC and SE values obtained with the use of the MDCS (MDCS-OD)367

method. It can also be seen that the application of the MDAS (MDAS-OD)368

method does not produce significant changes in the AUC, SE, and SP values.369

Hence, the best performance of the classifier for the case of overcomplete370
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Table 2: Performance measures for OSAH detection using an overcomplete dictionary.

Method AHIthr AUC SE(%) SP(%) ACC(%)

FULL-OD 10 0.896 88.37 75.86 82.12

15 0.923 83.33 87.32 85.33

MDAS-OD 10 0.847 86.05 72.41 79.23

15 0.891 81.02 83.10 82.06

MDCS-OD 10 0.906 81.40 79.31 80.35

15 0.937 85.65 85.92 85.78

dictionaries is obtained with the MDCS (MDCS-OD) method.371

Table 3 shows the results obtained with the use of sparse representations372

by means of complete dictionaries. Although the MDAS method produces373

slight improvements in the AUC, SE, SP, and ACC values as compared with374

the MDAS-OD method, the results are not the best. In fact, it can be seen375

that the application of the MDCS method results in the best AUC, SP, and376

ACC values. A comparison of Tables 2 and 3 allows us to conclude that the377

application of the MDCS method to sparse representations results in the best378

option for OSAH detection.379

Finally Table 4 presents a comparative summary of the best results (MDCS-380

OD method) and of those obtained with the other three previously mentioned381

methods. As observed, our method outperforms all the others. For AHI382

threshold values of both 10 and 15, our method reaches the maximum AUC383

values of 0.906 and 0.937, respectively. Also for an AHI threshold value384

of 15, our method achieves sensitivity and specificity percentages of 85.65%385

and 85.92%, respectively. The optimal operating point was chosen in order386

to maximize both the sensitivity and specificity percentages. Figure 7 shows387

the ROC plots for the four methods presented in Table 4 corresponding to388

AHI threshold values of 10 (Figure 7a) and 15 (Figure 7b). We also tested389

the use of a support vector machine (SVM) classifier with a Gaussian kernel390

function instead of the MLP neural network classifier. No improvements in391

the results were observed.392

Finally, a detailed account of the computational costs for the four methods393
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Table 3: Performance measures for OSAH detection using a complete dictionary.

Method AHIthr AUC SE(%) SP(%) ACC(%)

FULL-CD 10 0.903 78.68 82.76 80.72

15 0.930 85.65 85.92 85.78

MDAS-CD 10 0.870 73.64 82.76 78.20

15 0.906 85.65 85.92 85.78

MDCS-CD 10 0.901 86.82 75.86 81.34

15 0.934 85.19 87.32 86.25

at the testing stage is presented in Table 5. It can be observed that although394

our method needs more than twice of the CPU time required for the other395

three methods, 2.85 seconds for analyzing the data corresponding to study396

of ten hours of duration is insignificant, even more so taking into account397

the improvements in OSAH’s detection reached by our method, as it can be398

observed in Table 4.399

4. Discussion400

OSAH is a highly prevalent syndrome in the general human population.401

From a sample of 602 workers, with ages between 30 and 60, Young et al. [27]402

found that 24% of men and 9% of women had an AHI value above 5. Durán403

et al. [28] also found that aging, being male, snoring and obesity are all fac-404

tors increasing the risk of suffering from OSAH. Given this high prevalence405

of OSAH, primary attention medicine is determinant in the identification of406

patients suffering from it and therefore simple and cheap diagnostic tools are407

highly important. An additional valuable aspect of our work is the fact that408

we were able to establish a relationship between the final feature vectors and409

the apnea-hypopnea events. This relationship can be seen in Figure 8. On410

the upper right of this figure a portion of the wavelet-filtered SaO2 signal411

with the marks of apnea-hypopnea events labeled by the medical expert is412

shown. Immediately below a curve (in green) representing the cumulative413

absolute activation of the sixteen most discriminative coefficients and the la-414
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Table 4: Performance measures for OSAH detection using different methods.

Method AHIthr AUC SE(%) SP(%) ACC(%)

MDCS-OD 10 0.906 81.40 79.31 80.35

15 0.937 85.65 85.92 85.78

Chiner et al. [6] 10 0.810 77.87 76.00 76.93

15 0.795 76.17 78.12 77.15

Vázquez et al. [7] 10 0.870 77.47 84.00 80.74

15 0.909 80.84 87.50 84.17

Schlotthauer et al. [10] 10 0.890 80.63 84.00 82.32

15 0.922 84.11 85.94 85.02

Table 5: Computational cost: average CPU time for each study.

Method Time (seconds)

MDCS-OD 2.85

Chiner et al. [6] 0.81

Vázquez et al. [7] 1.21

Schlotthauer et al. [10] 1.35

bels of apnea-hypopnea events (in red) are presented. The image appearing415

on the lower right part of Figure 8 shows the absolute value of the sixteen416

most discriminative coefficients of our method. A high correlation between417

the tags labeled by the medical experts and the most discriminative coeffi-418

cients can be clearly observed. On the other hand, on the upper left corner of419

Figure 8 a segment of 128 seconds of the wavelet-filtered SaO2 signal with the420

corresponding marks of apnea-hypopnea events is shown, while immediately421

below the three most discriminative atoms (φ1, φ8, and φ13, respectively) in-422

volved in its representation are shown. It can be clearly seen how these three423

most discriminative atoms assemble together to capture the main features of424
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(a) AHIthr = 10. (b) AHIthr = 15.

Figure 7: ROC plots for the methods described in Table 4 for two different AHI threshold
values.

Figure 8: Final feature vectors to apnea-hypopnea events correlation.

the waveform of the filtered SaO2 signal.425

An adequate use of simplified and correctly validated systems would al-426

low, once the cases have been selected, to decentralize the diagnosis of the427

reference units which are usually saturated. This decentralization would fa-428

vor the creation of new smaller diagnostic units equipped with oximeters.429

This decentralization of the diagnostic process will have to be accompanied430

by appropriate training of the personnel as well as of good coordination with431

the reference sleep units for a deeper study of the difficult or doubtful cases432
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[29]. Networks of increasing complexity will have to be created in order to433

allow immediate consultation with a sleep medicine expert and the possibil-434

ity of performing, whenever necessary, a polisomnography for the diagnostic435

and treatment of this real public health problem which is OSAH [29]. The436

design of diagnostic tools and equipment which could be handled by non-437

expert personnel for detecting patients with severe OSAH is a priority, since438

an early identification will allow immediate access to a correct treatment.439

Apnea-hypopnea events during sleeping occur as a consequence of a funct-440

ional-anatomic disturbance of the upper airway producing its collapse. At441

the end of each apnea-hypopnea event, a desaturation of the hemoglobin usu-442

ally occurs. This desaturation originates a characteristic pattern in the pulse443

oximetry record corresponding to intermittent hypoxemia. The intermit-444

tent hypoxemia, with hypoxemia-reoxygenation cycles, promotes oxidative445

stress and angiogenesis, increases the sympathetic activation with increment446

of blood pressure and systemic and vascular inflammation with endothelial447

dysfunction which contributes to multi-organic chronic morbility, metabolic448

dysfunction, cognitive impairment and cancer progression [30].449

Due to the intermittent hypoxemia in the cells (hypoxemia-reoxygenation450

cycles) which induce angiogenesis and tumor growth, a strong correlation451

between neoplastic diseases and OSAH has been described [31]. On the452

other hand, a recent study among male mice suggests that the intermittent453

hypoxia associated with OSAH could induce fertility reduction [32].454

In this work we presented two novel methods which allow for the detection455

of apnea-hypopnea events using only the SaO2 signals. These methods were456

successfully applied to signals coming from the polysomnography records in457

the study database [20, 21]. As it can be observed in Section 3, the appli-458

cation of the FULL, MDAS, and MDCS strategies, both to complete and459

overcomplete dictionaries, resulted in six different methods. Tables 2 and 3460

show the results of each one of the six methods for two different AHI thresh-461

old values (AHIthr = 10 and AHIthr = 15). These threshold values were462

strategically chosen in order to be able to analyze the performance of each463

method, independently of the severity of the OSAH (or the AHI value) that464

one wishes to detect. Although usually an AHI threshold value of 5 is used as465

the lower limit for detecting mild cases of OSAH, in our case, a reliable ROC466

analysis for that threshold value could not be made. The main reason for467

that is the fact our database is highly unbalanced, containing only 16 studies468

with AHI values below 5. Our random selection of studies resulted in only469

three of them being considered for testing purposes. A statistically significant470
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correlation between OSAH’s severity and comorbilities, such as hypertension,471

diabetes, dyslipidemia and metabolic syndrome, has been found in previous472

works. Although this correlation is found in mild OSAH, it increases con-473

sideulrably with the OSAH’s degree, reaching its highest value with severe474

OSAH. Hence if the objective is OSAH treatment and the prevention of the475

associated comorbilities, an AHI threshold value of 15 is clearly pathological476

[33]. There is evidence that close to 93% of women and 82% of men with477

moderate to severe OSAH remain undiagnosed [34]. Since sleep fragmenta-478

tion, intermittent hypoxemia, increased sympathetic tone and hypertension479

are main causes of mortality and morbidity, it is highly desirable to have480

everyone with moderate to severe OSAH appropriately diagnosed. Although481

the gold standard for diagnosing sleep disorders is the complete PSG, this482

diagnosing procedure presents many limitations, such as: limited resources,483

limited number of recording beds, high costs, long waiting lists, and high484

labor requirements, among others. It is for those reasons that there is a485

lot of interest in exploring the possibility of using screening devices together486

with automated algorithms as alternative methods for diagnosing OSAH.487

Mild cases can be analyzed by standard methods. The ideal screening device488

should be cheap and easy to be used with minimal risks to the patient.489

By considering an AHIthr = 15, a detailed analysis of Tables 2 and 3 show490

that, although most methods have good performances, MDCS-OD outper-491

forms all the others. The application of this method results in an area under492

the ROC curve of 0.937 and sensitivity and specificity percentages of 85.65493

and 85.92, respectively. Taking into account that out of the 287 records in494

the testing database, 216 had an AHI value above 15, and the remaining 71495

were below that threshold value, a 85.65% sensitivity indicates that of the496

216 cases with AHI values above 15, 185 were appropriately identified while497

31 were erroneously detected. On the other hand, an 85.92 specificity indi-498

cates that of the 71 cases with AHI values below 15, 61 were appropriately499

identified while only 10 were erroneously detected. It is timely to point out500

here that for the 10 cases that the MDCS-OD method yielded an AHI value501

higher than 15, the registry database indicated an AHI average value of 10.62502

with a standard deviation of 3.88. By analyzing each one of these studies503

in detail, it was observed that most of the respiratory events informed by504

the medical expert were hypopneas and not all of them were related to SaO2505

desaturations. This fact indicates that the medical experts have not taken506

into account the AASM criteria.507

The MDCS-OD method was compared with those proposed by Chiner et508

22

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

R
.E

. R
ol

on
, L

. L
ar

ra
te

gu
y,

 L
. D

i P
er

si
a,

 R
. S

pi
es

 &
 H

. L
. R

uf
in

er
; "

D
is

cr
im

in
at

iv
e 

m
et

ho
ds

 b
as

ed
 o

n 
sp

ar
se

 r
ep

re
se

nt
at

io
ns

 o
f 

pu
ls

e 
ox

im
et

ry
 s

ig
na

ls
 f

or
 s

le
ep

 a
pn

ea
–h

yp
op

ne
a 

de
te

ct
io

n"
B

io
m

ed
ic

al
 S

ig
na

l P
ro

ce
ss

in
g 

an
d 

C
on

tr
ol

, V
ol

. 3
3,

 p
p.

 3
58

-3
67

, 2
01

7.



al. [6], Vázquez et al. [7], and Schlotthauer et al. [10]. These four methods509

were successfully applied to pulse oximetry signals included in the study510

database [20, 21]. Table 4 shows a detailed comparison of the performances511

of such methods. The results clearly show that the MDCS-OD method is512

a very attractive tool to assist physicians in the detection of patients whose513

AHI values are above the objective threshold AHIthr = 15. Thus, the sparse514

representation of pulse oximetry signals is undoubtedly a promising technique515

for the design of new methods for OSAH detection.516

Since there exist applications where a particular value of sensitivity or517

specificity is highly desirable, other operation points in the ROC curves (Fig-518

ure 7) can be chosen. If the primary purpose of the test is “screening”, i.e.519

detection of early disease in large numbers of apparently healthy individuals,520

then a high sensitivity is generally chosen. With this in mind, if a sensitivity521

of 98% is chosen in the ROC curves in Figure 7a, our method achieves a522

specificity of 44.83%, followed by Schlotthauer’s et al. which reaches 28.00%.523

For an operating point of 98% sensitivity in the ROC curves in Figure 7b,524

our method achieves a specificity of 46.48%, followed by Schlotthauer’s et525

al. which reaches 34.37%. On the other hand, if the objective test is “di-526

agnostic”, i.e. to establish the presence (or absence) of disease, then a high527

specificity is usually selected. Thus, if a specificity of 100% is chosen in the528

ROC curves in Figure 7a, our method achieves a sensitivity of 62.79%, fol-529

lowed by Vázquez’s et al. which reaches 46.25%. For an operating point530

of 100% sensitivity in the ROC curves in Figure 7b, our method achieves a531

sensitivity of 71.76%, followed by Vázquez’s et al. which reaches 54.67%.532

There are several technical and physiological limitations associated with533

pulse oximetry which hinder the acquisition of a “good” signal in some cases.534

This is so, for instance in the following cases: weak contact between the probe535

and the finger due to body motions, anemia, use of nail polish, use of artificial536

nails, skin pigmentation, onychomycosis, cold fingers and low perfusion of537

vascular bed [35, 36]. Even so, pulse oximetry has shown its effectiveness in538

clinical practice and therefore an alert and well informed clinical physician539

must be aware of both its proper use and limitations.540

5. Conclusions541

It has been shown that the sparse representations of pulse oximetry sig-542

nals is a tool which allows a very good performance for estimating AHI values543

above 15. The previous results have been shown that there is a high corre-544
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lation between the AHI observed by the medical physician via PSG and the545

AHIest obtained by using sparse representations of pulse oximetry signals.546

This fact constitutes a strong evidence that such a procedure could be help-547

ful in the detection of individuals suspected of suffering from OSAH, which548

require a complete PSG study for their correct diagnosis. The MDCS-OD549

algorithm could be embedded into the oximeter so as to be used by pri-550

mary attention clinical physicians in the search and detection of patients551

with moderate OSAH.552
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[3] E. Garćıa-Dı́az, E. Quintana-Gallego, A. Ruiz, C. Carmona-Bernal,569

A. Sánchez-Armengol, G. Botebol-Benhamou, F. Capote, Respiratory570

polygraphy with actigraphy in the diagnosis of sleep apnea-hypopnea571

syndrome, Chest 131 (2007) 725–732.572

[4] A. Yadollahi, E. Giannouli, Z. Moussavi, Sleep apnea monitoring and573

diagnosis based on pulse oximetry and tracheal sound signals, Medical574

& Biological Engineering & Computing 48 (2010) 1087–1097.575

24

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

R
.E

. R
ol

on
, L

. L
ar

ra
te

gu
y,

 L
. D

i P
er

si
a,

 R
. S

pi
es

 &
 H

. L
. R

uf
in

er
; "

D
is

cr
im

in
at

iv
e 

m
et

ho
ds

 b
as

ed
 o

n 
sp

ar
se

 r
ep

re
se

nt
at

io
ns

 o
f 

pu
ls

e 
ox

im
et

ry
 s

ig
na

ls
 f

or
 s

le
ep

 a
pn

ea
–h

yp
op

ne
a 

de
te

ct
io

n"
B

io
m

ed
ic

al
 S

ig
na

l P
ro

ce
ss

in
g 

an
d 

C
on

tr
ol

, V
ol

. 3
3,

 p
p.

 3
58

-3
67

, 2
01

7.



[5] L.-W. Hang, H.-L. Wang, J.-H. Chen, J.-C. Hsu, H.-H. Lin, W.-S.576

Chung, Y.-F. Chen, Validation of overnight oximetry to diagnose pa-577

tients with moderate to severe obstructive sleep apnea, BMC Pulmonary578

Medicine 15 (2015) 24.579

[6] E. Chiner, J. Signes-Costa, J. M. Arriero, J. Marco, I. Fuentes, A. Ser-580

gado, Nocturnal oximetry for the diagnosis of the sleep apnoea hypop-581

noea syndrome: a method to reduce the number of polysomnographies?,582

Thorax 54 (1999) 968–971.583

[7] J.-C. Vázquez, W. H. Tsai, W. W. Flemons, A. Masuda, R. Brant,584

E. Hajduk, W. A. Whitelaw, J. E. Remmers, Automated analysis of585

digital oximetry in the diagnosis of obstructive sleep apnoea, Thorax 55586

(2000) 302–307.587

[8] D. Alvarez-Estevez, V. Moret-Bonillo, Computer-Assisted Diagnosis of588

the Sleep Apnea-Hypopnea Syndrome: A Review, Sleep Disorders 2015589

(2015).590

[9] L. M. Sepulveda-Cano, E. Gil, P. Laguna, G. Castellanos-Dominguez,591

Selection of nonstationary dynamic features for obstructive sleep ap-592

noea detection in children, EURASIP Journal on Advances in Signal593

Processing 11 (2011) 1–10.594

[10] G. Schlotthauer, L. E. Di Persia, L. D. Larrateguy, D. H. Milone, Screen-595

ing of obstructive sleep apnea with empirical mode decomposition of596

pulse oximetry, Medical Engineering & Physics 36 (2014) 1074–1080.597

[11] A. R. Hassan, Computer-aided obstructive sleep apnea detection using598

normal inverse gaussian parameters and adaptive boosting, Biomedical599

Signal Processing and Control 29 (2016) 22–30.600

[12] H. Karamanli, T. Yalcinoz, M. A. Yalcinoz, T. Yalcinoz, A prediction601

model based on artificial neural networks for the diagnosis of obstructive602

sleep apnea, Sleep and Breathing 20 (2015) 509–514.603

[13] M. S. Lewicki, B. A. Olshausen, Probabilistic framework for the adap-604

tation and comparison of image codes, Journal of the Optical Society605

of America A 16 (1999) 1587.606

25

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

R
.E

. R
ol

on
, L

. L
ar

ra
te

gu
y,

 L
. D

i P
er

si
a,

 R
. S

pi
es

 &
 H

. L
. R

uf
in

er
; "

D
is

cr
im

in
at

iv
e 

m
et

ho
ds

 b
as

ed
 o

n 
sp

ar
se

 r
ep

re
se

nt
at

io
ns

 o
f 

pu
ls

e 
ox

im
et

ry
 s

ig
na

ls
 f

or
 s

le
ep

 a
pn

ea
–h

yp
op

ne
a 

de
te

ct
io

n"
B

io
m

ed
ic

al
 S

ig
na

l P
ro

ce
ss

in
g 

an
d 

C
on

tr
ol

, V
ol

. 3
3,

 p
p.

 3
58

-3
67

, 2
01

7.



[14] M. Aharon, M. Elad, A. Bruckstein, KSVD: An Algorithm for Design-607

ing Overcomplete Dictionaries for Sparse Representation, IEEE Trans-608

actions on Signal Processing 54 (2006) 4311–4322.609

[15] P. König, K. P. Körding, D. J. Klein, Sparse spectrotemporal coding610

of sounds, EURASIP Journal on Advances in Signal Processing (2003)611

659–667.612

[16] C. E. Mart́ınez, J. Goddard, D. H. Milone, H. L. Rufiner, Bioinspired613

sparse spectro-temporal representation of speech for robust classifica-614

tion, Computer Speech and Language 26 (2012) 336–348.615

[17] R. Rolón, L. Di Persia, H. L. Rufiner, R. Spies, Most discriminative616

atom selection for apnea-hypopnea events detection, in: Anales del VI617

Congreso Latinoamericano de Ingenieŕıa Biomédica (CLAIB 2014), pp.618
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vista Mexicana de Anestesioloǵıa 29 (2006) S193–S198.674
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AppendixA. Dictionary updating rule.677

Proof.

∆Φ = ηΛεE[(x− Φa)aT ]

= ηΛεE[(xaT − ΦaaT )]

= ηΛε(xE[aT ]− ΦE[aaT ]).

But678

E[aT ] = aTMAP,

and679

cov(a) = E[(a− aMAP)(aT − aTMAP)]

= E[aaT − aaTMAP − aMAPa
T + aMAPa

T
MAP]

= E[aaT ]− E[aaTMAP]− E[aMAPa
T ] + E[aMAPa

T
MAP]

= E[aaT ]− E[a]aTMAP − aMAPE[aT ] + aMAPa
T
MAP

= E[aaT ]− aMAPa
T
MAP − aMAPa

T
MAP + aMAPa

T
MAP

= E[aaT ]− aMAPa
T
MAP

E[aaT ] = cov(a) + aMAPa
T
MAP.

Hence,680

∆Φ = ηΛε(xa
T
MAP − Φ(cov(a) + aMAPa

T
MAP)

= ηΛε(xa
T
MAP − Φ(H−1 + aMAPa

T
MAP)

= ηΛε(xa
T
MAP − ΦH−1 − ΦaMAPa

T
MAP)

= ηΛε((x− ΦaMAP)aTMAP − ΦH−1).

681
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