
A Path-Planning Algorithm Based
on Receding Horizon Techniques

Marina Murillo
sinc(i), UNL-CONICET

Santa Fe, Argentina
mmurillo@sinc.unl.edu.ar

Guido Sánchez
sinc(i), UNL-CONICET

Santa Fe, Argentina
gsanchez@sinc.unl.edu.ar

Lucas Genzelis
sinc(i), UNL-CONICET

Santa Fe, Argentina
lgenzelis@sinc.unl.edu.ar

Leonardo Giovanini
sinc(i), UNL-CONICET

Santa Fe, Argentina
lgiovanini@sinc.unl.edu.ar

Abstract—In this article we present a path-planning algorithm
that can be used to generate optimal and feasible paths for
any kind of unmanned vehicle (UV). The proposed algorithm
is based on the use of a simplified particle vehicle (PV) model,
which includes the basic dynamics and constraints of the UV,
and an iterated non-linear model predictive control (NMPC)
technique that computes the optimal velocity vector (magnitude
and orientation angles) that allows the PV to move towards
desired targets. The computed paths are guaranteed to be feasible
for any UV because: i) the PV is configured with similar
characteristics (dynamics and physical constraints) as the UV,
and ii) the feasibility of the optimization problem is guaranteed
by the use of the iterated NMPC algorithm. As demonstration
of the capabilities of the proposed path-planning algorithm, we
explore the computation of a feasible path while following it
with a Husky unmanned ground vehicle (UGV) using Gazebo
simulator.

Index Terms—Feasible optimal path, Model predictive control,
Path-planning

I. INTRODUCTION

One of the areas that has grown surprisingly fast in the
last decade is the one involving autonomous Unmanned Ve-
hicles (UVs), both aerial (Unmanned Aerial Vehicles - UAVs)
and terrestrial (Unmanned Ground Vehicles - UGVs). Their
reduced size and geometry allow them to carry out dangerous
missions at lower costs than their manned counterparts without
compromising human lives. They are mostly used in missions
such as search and rescue, power line inspections, precision
agriculture, imagery and data collection, security applications,
mine detection and neutralization, operations in hazardous
environments, among others [1]–[6]. In general, most of such
missions require that the UVs move in uncertain scenarios
avoiding different types of obstacles. To do so, they must
have the ability to autonomously determine and track a feasible
collision-free path.

The path-planning problem is one of the most important
issues of an autonomous vehicle. It deals with searching a
feasible path between the present location and the desired
target while taking into consideration the geometry of the
vehicle and its surroundings, its kinematic constraints and
other factors that may affect the feasible path. Different
methodologies are used to find feasible paths (see [7] for
an overview). Some recent path-planning algorithms can be
found in [8]–[10]. In [8] Saska et al. introduce a technique
that integrates a spline-planning mechanism with a receding

horizon control algorithm. This approach makes it possible to
achieve a good performance in multi-robot systems. In [9] an
offline path-planning algorithm for UAVs in complex terrain
is presented. The authors propose an algorithm which can be
divided into two steps: firstly a probabilistic method is applied
for local obstacle avoidance and secondly a heuristic search
algorithm is used to plan a global trajectory. In [10] Zhang et
al. present a guidance principle for the path-following control
of underactuated ships. They propose to split the path into
regular straight lines and smooth arcs, using a virtual guidance
ship to obtain the control input references that the real ship
should have in order to follow the computed path. As it can
be seen, there are many methods to obtain feasible paths for
UVs; however, most of them do not consider the dynamics of
the UV that should follow the path.

In their recent review article [11], Yang et al. have surveyed
different path-planning algorithms. The authors discuss the
fundamentals of the most successful robot 3D path-planning
algorithms that have been developed in recent years. They
mainly analyze algorithms that can be implemented in aerial
robots, ground robots and underwater robots. They classify
the different algorithms into five categories: i) sampling based
algorithms, ii) node based algorithms, iii) mathematical model
based algorithms (which include optimal control and reced-
ing horizon strategies), iv) bioinspired algorithms, and v)
multifusion based algorithms. From these, only mathematical
model based algorithms are able to incorporate in a simple
way both the environment (kinematic constraints) and the
vehicle dynamics in the path-planning process. Recently, in
[12] Hehn and D’Andrea introduced a trajectory generation
algorithm that can compute flight trajectories for quadcopters.
The proposed algorithm computes three separate translational
trajectories (one for each degree of freedom) and guarantees
the individual feasibility of these trajectories by deriving
decoupled constraints through approximations. The authors
do consider the quadcopter dynamics when they compute the
flight trajectories but their proposed technique is not a general
one (it can not be used with ground vehicles, for example).
Even though the feasibility is guaranteed for each separate
trajectory, the resulting vehicle trajectory might not be neces-
sarily feasible (e.g., when perturbations are present). In [13]
the authors present three conventional holonomic trajectory
generation algorithms (flatness, polynomial and symmetric) for

si
nc

(i
)

R
es

ea
rc

h
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s

an
d

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

M
. M

ur
ill

o,
 G

. S
an

ch
ez

, L
. G

en
ze

lis
 &

 L
. G

io
va

ni
ni

; "
A

 P
at

h-
Pl

an
ni

ng
 a

lg
or

ith
m

 b
as

ed
 o

n
re

ce
di

ng
 h

or
iz

on
 te

ch
ni

qu
es

."
IX

 J
or

na
da

s
A

rg
en

tin
as

 d
e

R
ob

ót
ic

a
(J

A
R

).
, 2

01
7.

ground vehicles subject to constraints on their steering angle.
In order to satisfy this constraint, they propose to lengthen
the distance from the initial position to the final position until
the constraint is satisfied. This process might be tedious and
it may not be applicable in dynamic environments. Besides, it
can only be used with ground vehicles and it can only handle
steering constraints violations.

A suitable path-planning algorithm should be practicable
and tailored to various UVs when executed in dynamical
environments. Therefore, a challenging idea for path-planning
is to develop an algorithm capable of handling dynamical
environments and UVs that have different characteristics with
regard to kinematic properties and maneuverability. In this
article a unified framework to design a path-planning algorithm
is presented. The proposed strategy can be summarized in Fig.
1. Using a simplified particle vehicle (PV) model, which is

Particle Vehicle UV

Path-Planning

Guidance

^^

Fig. 1. Scheme of the path-planning & guidance system

configured to have similar characteristics (states and inputs
constraints) to the UV, the path-planning module computes
the velocity vector v∗k (magnitude v∗k and angles θ∗k and ψ∗k)
in order to find the shortest feasible path towards the nearest
waypoint wi. The vector v∗k is in fact the velocity vector that
the UV should have in order to achieve wi. Thus, using this
velocity vector the guidance module is able to compute the
inputs (actuator positions and motors speeds) that the UV
should have so as to move towards wi. In this article, we
mainly focus on the design of the path-planning module. We
propose to design this module using the iterated robust NMPC
technique presented in [14] as it uses a successive linearization
method which allows us to use analytic tools to evaluate
stability, robustness and convergence issues. Besides, it allows
us to use quadratic program (QP) solvers and to easily take
into account dynamic and physical constraints of the UV at
the path-planning stage in order to obtain feasible paths.

The main contribution of this paper are: i) the proposal of a
general algorithm for path-planning that can be used with any
kind of UV, ii) the inclusion of the dynamics and constraints
of the UV in the path-planning problem, iii) the guarantee of
feasibility of the computed optimal path and iv) the inclusion
of static obstacles into the path planning problem.

The organization of this article is as follows: in section
II the 2D and 3D PV models are presented. In section III,
the path-planning problem is introduced. In section IV a
path-generation and path-following experimental example is
outlined. Finally, in section V conclusions are presented.

II. NON-LINEAR PARTICLE VEHICLE MODEL

In this work we propose to use a PV model to obtain feasible
and optimal paths for UVs. This section is devoted to obtain
such a model for both the 2D and 3D cases. First, we provide a
more general approach about systems representation and then
we specify it for the case of 2D and 3D PV models.

The general representation of the dynamics of an arbitrary
non-linear system is given by

ẋ(t) = f(x(t),u(t),d(t)), (1)

where x(t) ∈ X ⊆ <n, u(t) ∈ U ⊆ <m and d(t) ∈ D ⊆ <v
are the model state, input and disturbance vectors, respectively;
X , U and D are the state, input and disturbance constraint sets;
f(·) is a continuous and twice differentiable vector function
that depends on the system being modeled1.

To obtain the PV models, we use the 2D and 3D schemes
shown in Fig. 2. Using these schemes, we propose to use the

(a) 2D (b) 3D

Fig. 2. Schemes of the proposed PV models

following state vector to model the 2D PV

x = [x, y, v]T , (2)

where x and y denote the PV position coordinates and v is
the modulus of the PV velocity vector. We define the control
input vector as

u = [ψ, T]T , (3)

where ψ and T denote the yaw angle and the thrust force,
respectively. Consequently, the 2D dynamics of the proposed
PV model can be obtained as

ẋ = f(x,u,d) =

 v cosψ + dx
v sinψ + dy
−τv + κT

 , (4)

where dx and dy are the xy components of d, the damping
constant τ determines the rate of change of the PV velocity
and κ is a constant proportional to the thrust force T .

To model the 3D PV we just have to include the altitude
dependence. Using the scheme presented in Fig. 2b, the state
vector is chosen as

x = [x, y, z, v]T , (5)

1To simplify the notation, from now on we will omit the time dependence,
i.e. ẋ(t) = ẋ, x(t) = x, u(t) = u and d(t) = d

si
nc

(i
)

R
es

ea
rc

h
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s

an
d

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

M
. M

ur
ill

o,
 G

. S
an

ch
ez

, L
. G

en
ze

lis
 &

 L
. G

io
va

ni
ni

; "
A

 P
at

h-
Pl

an
ni

ng
 a

lg
or

ith
m

 b
as

ed
 o

n
re

ce
di

ng
 h

or
iz

on
 te

ch
ni

qu
es

."
IX

 J
or

na
da

s
A

rg
en

tin
as

 d
e

R
ob

ót
ic

a
(J

A
R

).
, 2

01
7.

where x, y and z denote the PV position coordinates and v
is the modulus of the PV velocity vector. The control input
vector is then defined as

u = [θ, ψ, T]T , (6)

where θ, ψ and T denote, respectively, the pitch angle, the
yaw angle and the thrust force. Then, the 3D dynamics of
the PV model can be described by the following first order
differential equation system:

ẋ = f(x,u,d) =

v cos θ cosψ + dx
v cos θ sinψ + dy
v sin θ + dz
−τv + κT

 , (7)

where dx, dy and dz are the xyz components of d. As it can
be seen, if the pitch angle θ is zero, then (7) is reduced to
(4). One important thing we would like to mention about the
proposed PV models is that in the last equation of (4) and
(7) the basic dynamics of the UV is included. This is very
advantageous as physical systems do not have the ability to
make instant changes in their dynamics. So, by including this
last equation in the PV models we ensure that if this model
is used in the path-planning module, then the path will be
computed reflecting the UV basic dynamics, and consequently
guaranteeing the feasibility of the path. Generally, the UV
dynamics is not taken into account in path-planning algorithms
because they use impulsional models [10], [15], which can
lead to unfeasible paths for a UV.

III. THE PATH-PLANNING PROBLEM

Given a target position or waypoint wi the path-planning
problem consists in finding a path that connects the initial
state vector x(t0) and each consecutive waypoint wi

2, where
the subscript i = 1, 2, · · · ,M indicates the waypoint number.
In this article we propose to find the path that is not only the
shortest one but also a feasible one, i.e. the shortest path that
also takes into account the dynamics and physical constraints
of the UV that should follow the path. To find the shortest path
we only have to measure the distance between the current posi-
tion of the PV and the desired waypoint, and then minimize it.
But as we also want the path to be feasible, we have to include
the dynamics and constraints in the minimization problem.
This may be done, for example, using a receding horizon
technique, since the distance can be embedded in the cost
function and the dynamics and constraints in the constrained
minimization. Here, we propose to use the NMPC technique
presented in [14] to control the velocity vector (modulus and
direction) of the PV model. By controlling this vector the
position of the PV is actually determined, thus defining the
desired path towards the waypoint. The main advantage of
using this technique (unlike the one used in [10], for example)
is that, as the dynamics and constraints of the UV that should

2For the 2D case wi is defined as wi = [wix , wiy , wiv]
T and for the

3D case wi = [wix , wiy , wiz , wiv]
T . wix , wiy and wiz denote the xyz

coordinates of waypoint wi and wiv defines the speed that the PV should
have when wi is reached.

follow the path can be taken into account in the minimization
problem, then the resulting path is guaranteed to be feasible.

In Fig. 3 a scheme of the proposed methodology is shown.
Under the assumption that the control inputs of the PV have a
limited rate of change, this figure shows how the path towards
the waypoints3 w1 and w2 is obtained. As shown in Fig. 3a,
the PV is configured with an initial condition x(t0), u(t0) and
the path should pass first through the waypoint w1 and then
through the waypoint w2. To obtain this path, two sub-paths
are considered: one joining the initial configuration with w1

and the other joining w1 with w2. To obtain these sub-paths
we propose to use the algorithm [14] to minimize the euclidean
distance (dist(x(tj),wi)) between the current position of the
PV and the desired waypoint. Once w1 has been reached, the
desired target is changed from w1 to w2 and the minimization
of the distance between the current position of the PV and w2

is performed. As a result, the PV starts moving again and its
velocity vector is recalculated in order to move the PV towards
w2 (see Figs. 3b and 3c). The path we were looking for turns
out to be the path that the PV has described in order to go
from the starting configuration to the desired one (see Fig. 3d).

As it was mentioned before, we propose to modify the
direction and modulus of the velocity vector of the PV using
the control technique described in [14]. To use this control
technique, first we need to transform the non-linear model (1)
into an equivalent discrete linear time-varying (LTV) one of
the form

x̃k+1|k = Ak|kx̃k|k + Buk|k ũk|k + Bdk|k d̃k|k, (8)

where
x̃k|k = xk|k − xrk|k, ũk|k = uk|k − urk|k and

d̃k|k = dk|k − drk|k.
(9)

xrk|k, urk|k and drk|k
4 define the linearization state, input and

disturbance trajectories, and Ak|k, Buk|k and Bdk|k are the
discrete matrices of the linearized version of (1). Subscripts
(·)k+i|k denote information at time k + i which is predicted
using the information available at time k. 5. Receding horizon
techniques use a cost function of the form

J (k) =

N−1∑
j=0

Lj(xk+j|k,uk+j|k) + LN (xk+N |k), (10)

where Lj(·, ·) is the stage cost and LN (·, ·) stands for the
terminal cost. Generally, in receding horizon algorithms both
the stage cost and the terminal cost are adopted as follows:

Lj(xk+j|k,uk+j|k) = ‖xk+j|k −wi‖2Qk|k
+ ‖∆uk+j|k‖2Rk|k

(11)
and

LN (xk+N |k) = ‖xk+N |k −wi‖2Pk|k
, (12)

3Note that if there are more than two waypoints, the procedure to compute
the path is similar as the one presented here.

4dr
k+j|k, j = 0, · · · , N − 1 is a given or estimated perturbation.

5When it clearly refers to current time k, the time dependency at which
the information is available will be omitted, i.e. (·)k+i|k = (·)k+i

si
nc

(i
)

R
es

ea
rc

h
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s

an
d

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

M
. M

ur
ill

o,
 G

. S
an

ch
ez

, L
. G

en
ze

lis
 &

 L
. G

io
va

ni
ni

; "
A

 P
at

h-
Pl

an
ni

ng
 a

lg
or

ith
m

 b
as

ed
 o

n
re

ce
di

ng
 h

or
iz

on
 te

ch
ni

qu
es

."
IX

 J
or

na
da

s
A

rg
en

tin
as

 d
e

R
ob

ót
ic

a
(J

A
R

).
, 2

01
7.

(a) Condition for t = tk (b) Condition for t = tk+a

(c) Condition for t = tN

Computed Path

(d) Full computed path

Fig. 3. Computing a path between x(t0) and w2 passing through w1

where Qk|k,Rk|k,Pk|k are positive definite matrices; Pk|k is
the terminal weight matrix that is chosen so as to satisfy the
Lyapunov equation. ‖(·)‖2α stands for the α-weighted 2-norm
and ∆uk+j|k = uk+j|k − uk+j−1|k. Then, in terms of the
LTV system (8) and according to [14], we propose to solve
the following optimization problem:

min
Ũk∈U

J (k)

st.

x̃k+j|k = Ak|kx̃k|k + Bk|kũk|k,
x̃k|k = xk|k − xrk|k,

ũk|k = uk|k − urk|k,

d̃k|k = dk|k − drk|k,

J (k) ≤ J0(k).

(13)

where
Ũk

6 = [ũk|k, ũk+1|k, · · · ũk+N−1|k]T (14)

is the control input sequence and J0(k) denotes the
cost function evaluated for the initial solution U0

k =
[u∗k|k−1,u

∗
k+1|k−1, · · · ,u

∗
k+N−2|k−1, 0]T at iteration k. The

last inequality in (13) defines the contractive constraint that
guarantees the convergence of the iterative solution and defines
an upper bound for J (k) (for a detailed explanation about this
contractive constraint, please refer to [14]).

Remark 1. The convergence and stability issues for time-
varying objective functions are guaranteed by the incorpora-
tion of the constraint J (k) ≤ J0(k) [14].

6Hereinafter we use bold capital fonts to denote complete sequences
computed for k, k + 1, · · · , k +N − 1.

The proposed path-planning algorithm can be described as
follows: first, the non-linear system is transformed into a LTV
system by means of successive linearizations along pre-defined
state-space trajectories. Then, the distance between the current
position of the PV and the desired waypoint is measured.
The proposed constrained minimization problem is solved and
the optimal control input sequence (orientation angles and
thrust force) is then obtained. The minimization process is
repeated until the control input sequence converges. Finally,
the computed optimal inputs are applied to the PV and the
path-planning process is reinitialized. In Fig. 4, the proposed
path-planning algorithm is summarized.

IV. EXPERIMENTAL RESULTS

In this section we explore the problem of computing a
feasible path while following it with a Lego® Mindstorms®
NXT7 UGV configured as a skid steer vehicle as it is shown
in Fig. 5.

Using the PV model (4) we solve the optimization problem
(13) to find a 2D feasible and optimal path. To perform
this example we assumed that there are no disturbances
(dk|k = 0) and that the PV has the initial state vector
x0 = [0, 0, 0]T and the initial input vector is u0 = [0, 0]T .
The PV model is discretized using a sampling rate Ts = 0.1 (s)
and the horizon N was set to N = 12. The state and input
weight matrices are chosen as Qk|k = diag([10, 10, 10]) and
Rk|k = diag([0.1, 1.0]), respectively. The PV constraints are
configured as follows: 0 ≤ T ≤ 2 (N), −5 ≤ ∆ψ ≤ 5 (deg/s),

7https://www.lego.com/en-us/mindstorms

si
nc

(i
)

R
es

ea
rc

h
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s

an
d

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

M
. M

ur
ill

o,
 G

. S
an

ch
ez

, L
. G

en
ze

lis
 &

 L
. G

io
va

ni
ni

; "
A

 P
at

h-
Pl

an
ni

ng
 a

lg
or

ith
m

 b
as

ed
 o

n
re

ce
di

ng
 h

or
iz

on
 te

ch
ni

qu
es

."
IX

 J
or

na
da

s
A

rg
en

tin
as

 d
e

R
ob

ót
ic

a
(J

A
R

).
, 2

01
7.

https://www.lego.com/en-us/mindstorms

Require: The initial condition xk|k, the iteration index q = 0
and the PV models (4) or (7).

1: Obtain the LTV system [Ak|k,Bk|k] and the matrices
Qqk|k, Rqk|k and P qk|k.

2: Compute the optimal control input sequence Ũ∗,qk solving
(13)

3: Update U∗,qk|k ← Ur,q
k|k + Ũ∗,qk|k

4: if
∥∥∥U∗,qk −U∗,q−1k

∥∥∥
∞
≤ ε then

5: U∗k ← U∗,qk
6: k ← k + 1
7: q ← 0
8: else
9: q ← q + 1

10: Update Uq
k = U∗,q−1k

11: Go back to line 2
12: end if
13: Apply uk|k = u∗k|k to the system
14: Go back to line 1

Fig. 4. The Path-planning algorithm

Fig. 5. Lego® Mindstorms ® NXT configuration

−0.1 ≤ ∆T ≤ 0.1 (N/s) and 0 ≤ v ≤ 1 (m/s). ψ, x and y
are unconstrained. Both constants of the PV model are set as
τ = 2 (1/s) and κ = 2 (1/kg). As we are interested in having
the computed path pass sufficiently close to the waypoints, but
not exactly through them, we define a circular area centered at
each waypoint. If the path passes through this area, then we
consider that the corresponding waypoint has been reached.
For all waypoints we set this area to a disk with a radius of
r = 0.05 (m). We assume that the computed path should pass

sufficiently close to the following waypoint8:

w1 = [0, 1.5, 0]T . (15)

We also consider the presence of a circular obstacle which is
located at co = [0, 0.75]T (m) with radius ro = 0.15 (m). In
order to take into account this obstacle in the path-planning
stage we simply include the following constraint in problem
(13):

(xk|k − cox)2 + (yk|k − coy)2 ≥ r2o (16)

where cox and coy denote the x and y components of vector
co.

To solve the Lego® Mindstorms® NXT UGV guidance
problem, we use the NMPC technique configured with a
horizon N = 5 and the following mathematical model

ẋ = f(x,u) =

 vl cosψl
vl sinψl
ωl

 , (17)

where x = [xl, yl, ψl]
T is the state vector, xl and yl denote

the Lego® position and ψl denotes its yaw angle. The control
input vector u = [vl, ωl]

T includes the linear and angular
velocities vl and ωl, respectively. It should be noticed that
the model (17) used to control the Lego® Mindstorms®
NXT robot is different from the plant, which is a much more
complex model.

The estimation of the states was performed using only
odometry and the Moving Horizon Estimation (MHE) tech-
nique presented in [16], with a horizon N = 5. Both, the
NMPC and the MHE algorithms were executed in a Raspberry
Pi 3 board9. The reference optimal path was computed offline
and it was sent to the Raspberry Pi 3 using a TCP socket.

Assuming that both the PV and the Lego® UGV have the
same initial position and orientation angle, the result of the
Lego® path-following maneuver is shown in Fig. 6. As it can
be seen, the Lego® UGV is able to follow the computed path
quite well. This is mainly due to the fact that the path-planning
algorithm generates a trajectory that is feasible and takes into
account the dynamic constraints of the Lego® UGV. The
errors appearing between the reference path and the Lego®
position are due to the fact that we estimate states using
odometry, i.e. we only use motor encoders (whose resolution is
1 (deg)) to estimate the states of the Lego® UGV, and because
we do not consider the backlash of the gear train of the motors.

V. CONCLUSIONS

In this article we have presented a path-planning algorithm
that can be used to guide any kind of unmanned vehicle
towards desired targets. The proposed algorithm handles the
problem of finding the optimal path towards desired way-
points, while taking into account the kinematics, the dynamics

8As the experimental example is performed for the 2D case, the components
of the following waypoint denote, respectively, x-coordinate, y-coordinate and
speed.

9https://www.raspberrypi.org/

si
nc

(i
)

R
es

ea
rc

h
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s

an
d

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

M
. M

ur
ill

o,
 G

. S
an

ch
ez

, L
. G

en
ze

lis
 &

 L
. G

io
va

ni
ni

; "
A

 P
at

h-
Pl

an
ni

ng
 a

lg
or

ith
m

 b
as

ed
 o

n
re

ce
di

ng
 h

or
iz

on
 te

ch
ni

qu
es

."
IX

 J
or

na
da

s
A

rg
en

tin
as

 d
e

R
ob

ót
ic

a
(J

A
R

).
, 2

01
7.

https://www.raspberrypi.org/

1.0 0.5 0.0 0.5 1.0
Position x (m)

0.0

0.5

1.0

1.5

P
o
si

ti
o
n
 y

 (
m

)

x0

w1

r Lego position
Computed path

Fig. 6. Path-following with a Lego® Mindstorms® NXT robot

and constraints of the vehicle. We used a simplified particle
vehicle model and the iterated non-linear model predictive
control technique to control the velocity vector of this particle
vehicle model. By controlling this vector we have actually
determined the path that the particle vehicle model should
take in order to reach the targets. Because we have used
the iterated NMPC algorithm [14], optimality, stability and
feasibility can be guaranteed. The performance and capabilities
of the proposed path-planning algorithm were demonstrated
through a path-generation and path-following experimental
example. The path-following capabilities were explored using
a Lego® Mindstorms® NXT UGV which is able to follow the
computed feasible path. Considering that the estimation of the
states of the Lego® was performed using only odometry, we
consider that the experimental results obtained are satisfactory.
As future work, we propose to add more sensors (like GPS and
Inertial Measurement Units (IMUs)) to the system and to fuse
data given by these sensors in order obtain more precision.

ACKNOWLEDGMENT

The authors wish to thank the Universidad Nacional de
Litoral (with CAI+D Jóven 500 201501 00050 LI and CAI+D
504 201501 00098 LI), the Agencia Nacional de Promoción
Cientı́fica y Tecnológica (with PICT 2016-0651) and the
Consejo Nacional de Investigaciones Cientı́ficas y Técnicas
(CONICET) from Argentina, for their support.

REFERENCES

[1] P. Doherty and P. Rudol, “A uav search and rescue scenario with human
body detection and geolocalization,” Lecture Notes in Computer Science,
pp. 1–13, 2007.

[2] G. E. Dewi Jones & Ian Golightly, Jonathan Roberts & Kane
Usher, “Power line inspection-a UAV concept,” in IEE Forum on
Autonomous Systems, no. November, 2005, pp. 2–7. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=1574593

[3] C. Zhang and J. Kovacs, “The application of small unmanned aerial
systems for precision agriculture: a review,” 2012. [Online]. Available:
http://link.springer.com/article/10.1007/s11119-012-9274-5

[4] S. M. Adams, M. L. Levitan, and C. J. Friedland, High Resolution
Imagery Collection Utilizing Unmanned Aerial Vehicles (UAVs) for Post-
Disaster Studies. American Society of Civil Engineers, 2013, ch. 67,
pp. 777–793.

[5] A. Bouhraoua, N. Merah, M. AlDajani, and M. ElShafei, “Design
and implementation of an unmanned ground vehicle for security ap-
plications,” in 7th International Symposium on Mechatronics and its
Applications (ISMA), April 2010, pp. 1–6.

[6] M. YAĞIMLI and H. S. Varol, “Mine detecting gps-based unmanned
ground vehicle,” in 4th International Conference on Recent Advances in
Space Technologies, 2009, pp. 303–306.

[7] S. M. LaValle, Planning algorithms. Cambridge university press, 2006.
[8] M. Saska, V. Spurný, and V. Vonásek, “Predictive control and stabiliza-

tion of nonholonomic formations with integrated spline-path planning,”
Robotics and Autonomous Systems, 2015.

[9] Q. Xue, P. Cheng, and N. Cheng, “Offline path planning and online
replanning of uavs in complex terrain,” in Proceedings of 2014 IEEE
Chinese Guidance, Navigation and Control Conference, 2014, pp. 2287–
2292.

[10] G. Zhang and X. Zhang, “A novel DVS guidance principle and robust
adaptive path-following control for underactuated ships using low fre-
quency gain-learning,” ISA Transactions, vol. 56, pp. 75 – 85, 2015.

[11] L. Yang, J. Qi, D. Song, J. Xiao, J. Han, and Y. Xia, “Survey of robot 3d
path planning algorithms,” Journal of Control Science and Engineering,
vol. 2016, 2016.

[12] M. Hehn and R. D’Andrea, “Real-time trajectory generation for quadro-
copters,” IEEE Transactions on Robotics, vol. 31, no. 4, pp. 877–892,
2015.

[13] V. T. Minh and J. Pumwa, “Feasible path planning for autonomous
vehicles,” Mathematical Problems in Engineering, vol. 2014, 2014.

[14] M. Murillo, G. Sánchez, and L. Giovanini, “Iterated non-linear model
predictive control based on tubes and contractive constraints,” ISA
Transactions, vol. 62, pp. 120 – 128, 2016.

[15] F. Gavilan, R. Vazquez, and E. F. Camacho, “An iterative model
predictive control algorithm for uav guidance,” IEEE Transactions on
Aerospace and Electronic Systems, vol. 51, no. 3, pp. 2406–2419, 2015.

[16] G. Sánchez, M. Murillo, and L. Giovanini, “Adaptive arrival cost
update for improving moving horizon estimation performance,” ISA
transactions, vol. 68, pp. 54–62, 2017.

si
nc

(i
)

R
es

ea
rc

h
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s

an
d

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

M
. M

ur
ill

o,
 G

. S
an

ch
ez

, L
. G

en
ze

lis
 &

 L
. G

io
va

ni
ni

; "
A

 P
at

h-
Pl

an
ni

ng
 a

lg
or

ith
m

 b
as

ed
 o

n
re

ce
di

ng
 h

or
iz

on
 te

ch
ni

qu
es

."
IX

 J
or

na
da

s
A

rg
en

tin
as

 d
e

R
ob

ót
ic

a
(J

A
R

).
, 2

01
7.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1574593
http://link.springer.com/article/10.1007/s11119-012-9274-5

	Introduction
	Non-linear Particle Vehicle Model
	The Path-Planning Problem
	Experimental Results
	Conclusions
	References

