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Abstract

Three analytical methodologies for the generatiothiod-order liquid chromatography-
excitation-emission fluorescence matrix (LC-EEM)adare presented. Instrumental
requirements were evaluated considering equipn@anptexity, costs and accessibility.
A descriptive analysis of the generated data wa @ong trilinearity concept and
chemometric resolution. For trilinear decompositiBARallel FACtor Analysis
(PARAFAC) model was utilized. Hence, possible effd¢bat are caused in the
resolution due to loss of trilinearity are detail&tien, several data pre-processing and
processing alternatives are proposed in orderdoessfully overcome the drawbacks
that can be present in the chemometric resolufidditionally, a literature analytical
method for the determination of three analytesésg@nted to showcase the potential of
the methodology to generate third-order LC-EEM dta quantitative aims. For data
modelling, Augmented PARAFACAPARAFAC) and Multivariate Curve Resolution-
Alternating Least Squares (MCR-ALS) were used. Bdgorithms demonstrated to be
able to bear non-quadrilinear data in a multi-setiysis.

Keywords:Third-order data; multi-way analysis; liquid chraimgraphy; excitation-

emission fluorescence matrix; trilinear decompositi
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1. Introduction

Over the last years, a remarkable growth in thebmrmof chemometric applications
in the analytical chemistry field has been notiCEue potential demonstrated for the
combination of both disciplines has been accompbioyea tireless interest in the
investigation of the advantages and benefits otidimensional data analysis. In this
matter, recently published works have proved thatihncrement in the number of
instrumental modes represents a positive impattdranalytical properties of the
methods, which is traduced into an improvemenhéanalytical figures of merit,
essentially, in the sensitivity and selectivityaimulti-component system [1, 2].

For multivariate calibration, first- and second-@rdata have been extensively
evaluated and countless analytical applicationsferde variety of multi-component
systems have been reported. In this context, methasged on liquid chromatography
(LC) with spectral detection coupled to second-poi#a modelling have proved to be
an efficient and useful strategy for the analy$isamplex samples in presence of
several components [3]. One of the most remarkadhefits of second-order
calibration methods is that tedious and long samppeprocessing steps are not strictly
necessary due to the fact that second-order mongdadin accomplish the so-called
“second-order advantage” [4].

At present, there is an important number of ongaivgstigations of
multidimensional data analysis aiming to prove @ddal analytic advantages [5-8].
Thus, even though it is still in the beginning tsfprogress, high-order data analysis for
analytical applications constitutes a field wohoe explored [9]. Although no
agreement about its existence has been reachedyaheacientific community yet,
some authors propose that additional advantagegditzesecond-order advantage can
be achieved in high-order multivariate calibrati@hose additional advantages are
characterized as the enhancement in sensitivitysalattivity, the possibility of
relieving problems of collinearity and the feastlgibf decomposing the data array for
each sample individually, independent of other damfi0].

Although multidimensional instrumental signals easy to be obtained with the
available modern instrumentation, and several cmeetac algorithms have been
successfully developed to solve multi-way data [@ois, the way in which the data are
generated may have a significant effect on the stat@ture and, in consequence, the
final results. Hence, developing a method basechoitidimensional data processing

implies, among the development of the method itselfin-depth study of the properties
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and the characteristics of the obtained data ieraim select both appropriate pre-
processing strategies and the most suitable adhgosifor the chemometric resolution.
For this reason, it becomes crucial recognizingdmance the type of data by means of
its mathematical properties and establishing thieecbprocedure for the analysis in
order to achieve unequivocal results.

In univariate calibration, a very important conctptonsider is the linearitye., the
linear relationship between a dependent variabdeaamindependent one. This concept
is the basis of the validity of Beer-Lambert's lauere the independent and dependent
variables are the concentration and the measugedlsrespectively [11, 12]. In this
way, the first topic that must be considered fghhorder data analysis is the
multilinearity of the data. In third-order data &rsas, in particular, it is important to
know if the data array fulfils the concept of wmarity, which must be evaluated in
terms of the individual three-dimensional arraydaingle sample.

Trilinearity can be seen as an extension from treept of linearity, where the
linear relationship is given between a two indemedariables and a dependent one.
Then, trilinearity takes place when the three insiental modes are independent of
each other; therefore, if mutually dependent phesr@rnn more than two modes occur,
the third-order array is a non-trilinear data [2].1n sum, trilinearity is a concept that
can be seen as an extension of the Beer-Lambawi'sAs an example, it can be
considered the second-order data generated by atwgraphy coupled to spectral
detectiong.g, three-way array built with several LC-DAD runst different samples
with the same composition. Here, a trilinear sueetvould indicate that the pure
spectrum and the pure retention profile of an @eakymain invariant in the different
experiments or run€onsidering that the experiments are performed usaiae
experimental conditions, the spectrum of a puregmmumd does not changepwever,
lack of run-to-run reproducibility due to differeascin peak shape and position of the
pure retention profiles are usually observed. Imseguence, lack of trilinearity occurs
and the data must be considered as non-trilinear.

Furthermore, for four-way data generated from a&data for multiple
experiments, both trilinearity and quadrilineagtncepts for individual data cubes and
multi-set data, respectively, ought to be evaluaiethis case, quadrilinearity can be
seen as an extension of trilinear concept wherérthar relationship is given between
three independent variables and a dependent ogasithe individual data fulfils a

trilinear model and no lack of quadrilinearity ocgin the four-way array, the data are

4
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classified as quadrilinear. On the contrary, artsubdivision can be done considering
the number of quadrilinearity-breaking modes [T4]en, it is possible to distinguish 4
types of non-quadrilinear data, whose are schesaibtigresented in the classification
tree, which has been introduced®lvieri and Escandar(Fig. 1).

**|nsert Fig. 1**

The correct selection of the mathematical modelagdrithm is influenced, in one
sense, by the characteristics and the propertidteeaenerated data. In the literature,
there are a vast number of available algorithmsdha be utilized for data processing.
Algorithms based on Alternating Least Squares (Ad®)the most employed for
second- and third-order data resolution, eithed&scriptive or predictive analysis,
being PARallel FACtor Analysis (PARAFAC) [15] anduMivariate Curve Resolution
(MCR) [16] the most representative ones. Besidgsrithms mainly used for
quantitative purposes are based on Partial Leasir8g (PLS) [17, 18] resolution, and
the second order advantage is achieved by applicatia Residual Bi-Linearization
procedure (RBL) [19]. Unfolded and multi-way PLSupted to RBL procedure (U-
PLS/RBL and N-PLS/RBL) are examples of the latt@nally, there is a family related
with the Alternating Trilinear Decomposition (ATLRJgorithm, which was firstly
developed byVu et al.in 1998 [20]. ATLD is an iterative algorithm wigimilar
characteristics to PARAFAC. It is commonly usedvbyue of the advantages of being
insensitive to excessive component number, fastergence and fully exploiting the
second-order advantage.

In this review, a comparative study of three défarthird-order liquid
chromatography-excitation-emission fluorescenceaimfiC-EEM) data generation
approaches was carried out. Moreover, three methasksd on identical
chromatographic conditions but coupled to diffeflumrescence excitation and
emission detection systems for the quantitativéyarsof antibiotics in aqueous
matrices are here discussed.

2. Analytical procedures

The methodology generally used to generate thidétotC-EEM data consists on a
chromatographic procedure coupled to excitationssion data matrix detection. At
present, to the best of our knowledge, only twatstyies to generate third-order LC-
EEM data have been reported. One of these appre@&hased on the collection of

discrete fractions at the end of the chromatog@ptocedure with the subsequent
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excitation-emission data matrix registering of eaclected fraction [21-23]. In the
second procedure, multiple aliquots of a given darape injected into the
chromatograph and the retention time-emission specatrix of each injection is
recorded using different excitation wavelength &} In both cases, the three
instrumental modes are retention time, excitatiosh @nission wavelengths.

Besides the aforementioned approaches, anothetonggnerate third-order LC-
EEM data is described in the present review, whdeest-scanning spectrofluorimeter
with a flow-cell connected at the end of the LCtiasent is utilized.

It is worthwhile mentioning that even though thestfitwo strategies above-
mentioned have been thoroughly described elseWB#&f26], they were developed for
different analytical purposes. Therefore, to makeppropriate comparison and reach
reliable conclusions, it becomes necessary usirgnatytical system with similar
particularities, which permits the evaluation of thstrumental characteristics and the
generated data properties avoiding as much apdgsible the effects that can be
caused by the inherent features of the systenmidrrégard, all the cases evaluated in
the present review were carried out by using tineesgeneral chromatographic
procedurei.e., same LC instrument under identical separatiomitimms (column and
mobile phase composition), but changing the detectiethodology. Then, solutions
containing the same analytes were evaluated by tsenthree analytical procedures.
(For a better understanding, some specific progeedf the procedures will be
depicted). It must be clarified that samples caritgy different number of analytes were
used for each methodology due to the complexityhefgenerated data, which is further
demonstrated.

2.1. Methodology | —Collection of fractions

The first methodology describeli() was firstly proposed bBro for a qualitative
study [23] and it has been recently reportedilmaraz et al [21] for quantitative
purposes. It consists on an instrumental analysigstem that includes an automated
custom-made device connected at the end of thenatiograph, allowing the collection
of several discrete fractions in 96-well platespsé are commonly used for ELISA
test. Upon completing the chromatographic proceduacecollecting all the fractions in
the 96-well plate, the plate is placed into a spdictorimeter that is equipped with a
plate reader. Thus, the excitation-emission matraze separately measured, obtaining

one matrix for each collected fraction [21].



M. Montemurro, G. Siano, M. R. Alcardz & H. C. Goicoecheg; "Third order chromatographic-excitation—emission fluorescence data: Advances, challenges and prospectsin analytical applications”

sinc(i) Research Ingtitute for Signals, Systems and Computational Intelligence (sinc.unl.edu.ar)
TrAC Trendsin Analytical Chemistry - 2017, Vol. 93, pp. 119-133, 2017.

159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191

Here, for the analysis of a ternary solution, comitg ofloxacin (OFL),
ciprofloxacin (CPF) and danofloxacin (DNF), 17 dete fractions were sampled from
the LC instrument. Each EEM was then measuredamahge of 260-340 nm and 380-
500 nm for excitation and emission spectra, reppaygt Fig. 2 summarizes the data
generation usiniyll methodology.
**Insert Fig. 2**

2.2. Methodology Il — Multiple chromatographic runs

Two different applications using the methodologgMill) for third-order LC-EEM
data generation have been further reported. Inrgérikis methodology consists in the
injection of several aliquots of a given sampl® iatchromatograph. For each aliquot,
the retention time-emission spectra data matneggstered using different excitation
wavelength.

Using this methodology, the analysis of green pigisié olive oil samples was
performed by injecting 8 aliquots of a given san{@#], and 6 injections were utilized
for the pesticides evaluation in fruits [26]. Iretbresent review, and with the aim of
making a fair comparative analysis, binary solugicontaining OFL and CPF were
employed. Then, 10 aliquots per sample were injeatel the emission spectra were
registered in the range of 380-500 nm at each tietetime, using excitation
wavelengths ranging from 260 nm to 305 nm. In Bighe data generation usiigl
methodology is shown.

**Insert Fig. 3**

2.3. Methodology Il — On-line excitation-emission me#$

Methodology 11l MIll) comprises the measurement of several consecutive
excitation-emission matrices by using a chromatalgispectrofluorimeter hyphenated
system. Thus, neither flow interruption nor coliectof fractions is required. For the
fluorescence matrix registering, a fast-scannireggpfluorimeter with a flow cell
connected at the end of the LC instrument is uBedides, in order to avoid time lags
that may occur from triggering inaccuracies, a auldr enabling the synchronization
between instruments becomes necessary. It is iapdd highlight the fact that this
approach, to the best of our knowledge, has not bewloyed for LC-based

applications yet.
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With the purpose of comparing methodologies, sohgicontaining CPF were
analysed. Considering the fact that the spectrafiueter allows registering a complete
excitation-emission matrix in a reasonably shoneti an acceptable number of matrices
(15) per sample were acquired, covering the exaitaind emission range of 260-

300 nm and 390-490 nm, respectively. The data géparusingMiil methodology is
represented in Fig. 4.
**Insert Fig. 4**

3. Descriptive evaluation: requirements, properties and data modelling
3.1. Instrumental requirements

In order to evaluate different strategies for nalitiensional data generation and to
analyse the properties of the data obtained, fhstrumental arrangements based on
chromatographic separation coupled to excitatiorsgion fluorescence matrix
detection are proposed. In this section, a comparatudy between the three
instrumental approaches is presented, evaluatinigpegnt complexity and the number
of the required instruments for each arrangemem.time of analysis consumed per

sample was also considered in this study.

3.1.1. Methodology |

To perform an analysis utilizingll, a conventional LC instrument and a
spectrofluorimeter equipped with a well plate reaate required. Additionally, an
automated device for the collection of individuadtions in 96-well plates is
demanded. For chromatographic separation, therfevmust be properly selected in
order to ensure the appropriate collection of thetfons, leading to an accurate volume
distribution in the wells of the well plates. Fietmore, the time demanded for each
fraction must represent a volume that guarantetrsthe chromatographic resolution
previously achieved and the proper matrix readmtpe spectrofluorimeter.

The first disadvantage that can be clearly notfoed/l is the use of a device for the
collection of fractions in a multi-well plate. Hower, even though it would represent an
instrumental restriction, an automatized custom-eradelice can be easily built in the
laboratory, as it has been reported in previouksv{itl, 22].

The time consumed for the total analysis of a tgrsalution was approx. 42 min,
including both the chromatographic procedure (2)raimd the recording of 17

fluorescence matrices (40 min). As can be seem;dhsiderably long time demanded

8
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for each sample makd4l an inappropriate alternative for the study of ahkt analytes
or volatile solutions. Even though it would be pbksto reduce the time of the analysis
by using a fast-scanning spectrofluorimeter forrttadrix recording step, although the
complexity and the cost of the equipment will bereamented. On the other hand,
despite it is time-consuminy]l requires small amount of sample and solventstiagul

in a method included within the framework of thegm chemistry [27].

3.1.2. Methodology Il

Only a LC instrument is required to perform an gsial withMII. Since several
aliquots for a given sample are consecutively tg@@nd the retention time-emission
spectra matrices using different excitation wavglerare registered, an auto-sampler
and a fast-scanning fluorescence detector (FSF@utes for the LC instrument are
thus needed. In this manner, despite only oneumsdnt is required to obtain third-
order LC-EEM data, the modules needed are not lysu@sent in a conventional LC
instrument.

In this work, the time spent for the evaluatiorad@PF and OFL solution was
approx. 40 min, remarking the fact that the chramgephic run for each aliquot took
only 2 min. ThereforeMll is highly time-consuming and can only be improiredpite
of a detriment in the excitation spectra quality, loss of spectral resolution and/or
reduction of the spectral range. Thus, samMlad/ll results unsuitable for the
evaluation of unstable samples or volatile soligiddn the other hand, the multiple
injections that are necessary for a given sampieatie important amounts of sample
and solvents, makiniglll an expensive alternative and a method that daesoméorm

to the principles of green chemistry [27].

3.1.3. Methodology llI

The new methodology here evaluatdtil() comprises a combination of two
analytical instruments in tandem, where a quaaw-tell is connected at the end of a
LC instrument and placed into a spectrofluorimetdrich must be able to accomplish
real-time measurements at multiple wavelengtrghduld be noticed that fluorescence
matrices are taken in a finite time, which in chedagraphy means that the analyte
concentration at the beginning of the matrix regisg is different than at the end, as it
happens, in a lower degree, for second-order LCEF&ta generation [2]. In

consequence, the emission and excitation spe@rdegrendent on the chromatographic

9
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retention time. In this regard, in order to collactomplete fluorescence matrix in the
shortest time possible as well as to diminish ffeceof dependence modes
phenomenon, a fast-scanning spectrofluorimetdragtincipal requirement of this
methodology. Additionally, a conventional LC instrant is used for the
chromatographic procedure, where sophisticatecttieeor auto-sampler module are
not strictly necessary.

The first point to stress is that the time of thik analysis is defined by the
performed chromatographic method due to the factlttorescence matrices are
registered in parallel with the chromatographiccedure. Here, the evaluation of a
solution containing one analyte was carried ol min, obtaining a total of 15
complete fluorescence matrices. For these reabtiiisis presented as an alternative
that allows obtaining third-order LC-EEM data inexy short time, without requiring
large amount of samples and reagents, as it hapgéndl, which is one of the

principles of green chemistry [27].

3.2. Data properties

In this section, a qualitative analysis of the daitained with the three
methodologies was carried out with the aim of eatahg whether the data for a single
sample are trilinear or not. Moreover, differentadarocessing strategies that can be

applied to cope with the data obtained are depicted

3.2.1. Methodology |

First, it must be considered that the collectedtioms do represent the
corresponding retention time of each analyte instimaple. Hence, to be able to rebuild
the temporal profile, both the waiting time in eaefll and the initial collection time
should be known.

A particularity ofMI is the fact that the excitation-emission matrieggstered for
each well are independent of each other, which swdat the emission and excitation
spectra only depend on the analyte propertiestarsiirounding medium, and the
intensities are given by the abundance of the smaBo, considering a single substance
and a chromatographic system operating in isocnatide, the composition of the
surrounding medium remains unchanged from the bagyto the end of the analysis
and, in consequence, the emission and excitatiectispof the analyte will be identical

in all the wells where it is present, but differimgits intensity as consequence of the

10
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chromatographic dispersion. In this manner, antchtpinto account that the excitation-
emission matrices (in absence of inner filter)iatensically bilinear, the third-order
LC-EEM data obtained witMI are trilinear due to the fact that the three dabaes
(excitation wavelengths, emission wavelengths atehtion times) are independent of
each other. Fig. 5.A shows the LC-EEM data obtafbea ternary sample usinl.

On the other hand, an important issue to considerulti-way data is the number of
data points obtained in each instrumental mod#ifncase, the third-order array
comprises 17 x 17 x 25 data points for times, akoi and emission wavelengths,
respectively. Although it can be considered asreayavith balanced number of data
points, only 17 discrete fractions were collectexhf the LC instrument, which leads to
a low resolution in the retention time mode. Howetiene resolution could be
improved minimizing the collection waiting times wsing multi-well plates with a

higher number of reduced volume wells.

3.2.2. Methodology Il

The most important aspect needing to be address@dlff is that the excitation
spectra are result of the multiple aliquots injddi®w a given sample. Hence, the
covered spectral region and the spectral resolatierdirectly dependent on the number
of analysed aliquots. Thus, excitation spectraoatained from the time-emission
wavelength data matrices, meaning that it is péssibbuild a two-dimensional
retention time-excitation wavelength matrix witle tthromatographic profiles
registered at the same emission wavelength (FB). Blowever, this is only possible if
the retention times among runs are reproducibleratise, a lack of run-to-run
reproducibility would lead to misinterpretationstbé excitation spectra. Besides, a lack
of run-to-run reproducibility brings a loss of iméarity in third-order data, phenomenon
that derives from the fact that the times and etioih wavelength modes are mutually
dependent. This fact can be analogously picturedtheee-way array built with LC-
DAD second-order data corresponding to differemdas, where sample-to-sample
peak shifting are observed [28]. In sum, third-ordi&a generated witkll are trilinear
only if perfect reproducibility in peak times amonms are observed for a given
sample, but also if the shape of the peaks remauasiant.

Finally, regarding the number of data points inne@strumental mode, for the
present application example, only 10 wavelength®wegistered in the excitation

wavelength mode, while 150 and 45 times and emmss@velengths, respectively, were

11
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recorded in the other modes. Thus, it is clearbmghthe low resolution in the

excitation wavelength mode, which could be a disativge for the analysis of multi-
analyte systems with either highly overlapped faszence signals or strong differences
between wavelengths of maximum fluorescence inengioreover, it must be
considered that an enhancement of the excitatieatspm quality requires an increment
of the number of injections and, in consequencenerement of the solvent and sample

consumption as well as time of analysis.

3.2.3. Methodology llI

The most noticeable advantageMitl is that the EEM are recorded simultaneously
with the LC procedure, entailing a drastically retlon of the total time of analysis. On
the other hand, the first drawback to overcoméas, tsince the fluorescence matrices
are registered in a finite time, both the emissind the excitation wavelength modes
are dependent on the chromatographic retentionrioge. However, due to the fact
that emission wavelengths are scanned in a coasilyeshort time (less than 1 s), the
consequent effect of the dependence between emissigelength and retention time
modes is negligible. That is not the case for ttwtation wavelength mode where the
time required for a total spectrum scan may takéherorder of seconds. Therefore, the
third-order data obtained wittilll does not fulfil the concept of trilinearity.

In the light of the preceding, at least three styags can be proposed to overcome the
lack of trilinearity: 1) instrumental improvemeiy using a spectrofluorimeter enabling
faster fluorescence measurements; 2) pre-procegsicgdure: by applying
mathematical procedures to transform the dataaritdinear data array; 3) data
processing: by using chemometric algorithms thadtenon-trilinear data.
Unfortunately, none of these three approachesuatr@te current options, since highly
sophisticated equipment are not easily availabkenoutine laboratory and new
chemometric algorithms have not been developedry&tg. 5.C, LC-EEM data
obtained for a pure analyte usiktll are depicted.

Regarding the number of data points in the instntaianodes, for this application, a
total of 15 complete fluorescence matrices per $ampre obtained. Moreover,
compared wittMI, smaller excitation and emission spectral ranggsyell as lower
spectral resolution, were used in order to redheditne required for the registering of
a complete fluorescence matrix. As a result, alghcan array with balanced number of

data points is obtained for each sample (15 x 2B)xboth retention time mode and

12
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excitation and emission wavelength modes show &selution considering a
chromatographic procedure and complete excitatioissgon matrices. Nevertheless,
retention time resolution can be enhanced in gpitedetriment in the spectral
resolution, even if the latter can also be improlgdising a spectrofluorimeter that
would permit faster spectra scanning.

** Insert Fig. 5**

3.3. Data analysis

This section aims to chemometrically demonstrageptioperties described data
propertiessection above. For this purpose, PARAFAC was engal®as chemometric
tool for the data modelling. PARAFAC is a trilinedgcomposition algorithm (TLD)
that, from the analytical chemistry standpointia®bn the validity of Beer-Lambert’s
law of the investigated spectroscopic system. Tgmuhposition of the data is made
into trilinear components and it is achieved thtoagiernating least-square procedure
[15, 29]. This algorithm was selected becausendy wilinear data can be decomposed
properly; 2) the retrieved profiles bear physicalgognizable information; and 3)
resolutions are often unique [30]. Hence, knowimgdvance the real characteristics of
the systemi.e., excitation and emission spectra and chromatograptention time of
pure analytes, it would be possible to achievalddi conclusions about the
chemometric resolution. Although pre-processingpdures to cope with non-trilinear
data are here described, the chemometric modellasggaccomplished with non-pre-
processed data in order to evaluate the effecte@results when lack of trilinearity, if
present, is underestimated.

PARAFAC profiles retrieved from the decompositidrttee third-order LC-EEM
data obtained with the three methodologies aresegtn Fig. 6. For the modelling,
initial estimates obtained by random initializatwware used and only non-negativity
constraint was applied (in the three modes) dusptgnization. The number of
components was determined by core consistency dssigranalysis (CORCONDIA)
[31].

** Insert Fig. 6**

3.3.1. Methodology |
For all the samples, the number of components waigh agrees with the number

of spectroscopically active compounds in the sam@®mparison analysis revealed
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excellent agreement of the PARAFAC spectral prsfiletrieved with the real spectra of
the pure analytes. Additionally, peak times of eachlyte obtained from PARAFAC
retention time profile were correlated with DAD-U¥ference chromatogram. This
analysis showed a high degree of similarity betweans, although slight differences
were observed due to time lags among detectioemsgstOn the basis of these results,
it is possible to conclude that the third-orderadatray obtained witMI fulfil the
trilinearity model. Fig. 6.A shows PARAFAC resutttrieved from the decomposition
of third-order LC-EEM data obtained wiltl.

For multi-set analysis, the third-order data armalysined for each sample are
usually arranged into a four-way data array. Thhus,quadrilinearity of four-way
objects should be evaluated. In the presented leseof quadrilinearity was shown
due to lack of reproducibility in retention timesdathe small differences between times
of the collection of the fractions among sampldsese facts lead to a non-quadrilinear
data of type 1, according to the classificatioe tlescribed b@livieri and Escandar
[14] (see Fig.1). Therefore, PARAFAC would not he aippropriate algorithm for the
resolution. Instead, algorithms such U-PLS/RTL, MBES andAPARAFAC can be
conveniently applied to unfolded bilinear data ixatr augmented trilinear three-

dimensional data arrays [21, 22].

3.3.2. Methodology Il

In chromatography, the ideal situation is when #&nereproducibility in peak times
among runs is observed and also when the shape pkiks remains invariant. In a
real situation, these effects are not always actishedl, thus, the trilinearity of the
third-order data array is not fulfilled. A way teercome this drawback is utilizing
mathematical procedures to turn the data into&d@r before performing data
processing. In this regard, there are methodgilgaally correct the chromatograms by
correcting the chromatographic peaks into the gamséion and shape. Some of these
methods, such as interval-correlation-shiftingdshift) [32], are capable of aligning
peaks but not modifying peak shapes, whereas noptasticated methods, g,
Correlation Optimized Warping (COW) [33], are abteh to shift and stretch/compress
peaks until best correlation between data is aelieMowever, the available procedures
at present cannot cope with the situation if loeghkpshifts or severe shape distortions
occur. Additionally, the complexity of the systemder study increases under high-

overlapping condition or in presence of unexpectadpounds [34, 35]. Recently, an
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alternative data processing based on a combinafisacond order resolution
algorithms coupled to a peak alignment procedure praposed to tackle retention time
shift problems in second-order data [36]. Even ¢iothis strategy was planned for
second-order data resolution, it seems to be @ckdternative that can be applied for
the resolution of non-trilinear three-dimensionatadarray with lack of retention time
reproducibility.

For MIl data set (obtained herein for binary samples)ntimber of components was
ranging between 2 and 4. The difference betweenuh#ers of components obtained
(2-4) and the number the spectroscopically actoragounds in the sample (2) lies in
the effects generated by the lack of run-to-rumaegpcibility, i.e., peak shifting. In Fig.
6.B, 3 components can be distinguished with maf&atlres in the retention time and
the excitation wavelength modes. However, 2 of3ipeofiles obtained for the emission
wavelength mode show strong similarities. Additibnaexcitation spectral profiles
determined by PARAFAC do not match the spectrhefaure analytes. These
unreliable solutions indicate a significant losgrdinearity, which should be considered
in advance for a successful resolution.

For quantitative analysis, N-PLS/RTL [24], U-PLSIRZ4, 26] and MCR-ALS [26]
algorithms have been utilized for chemometric nesoh obtaining better results than
those obtained by PARAFAC [24, 26]. In those repdite authors have reached the
conclusion that, for multi-set analysis, the betésults are achieved due to the fact that
the first-mentioned algorithms can tolerate timeiis among samples, whereas
PARAFAC cannot cope with non-quadrilinearity dateagt in means of loss of sample-
to-sample reproducibility [24, 26]. Then, the authoonsider the data as non-
quadrilinearity data of type 1. Also, it is intefieg to note that, even though the same
phenomenon occurs, lack of run-to-run reprodudipéifect (for one sample) has not
been evaluated, then, the extent artefacts thahtoeluced in the results due to the loss
of trilinearity of the individual three-dimensiondta objects have not been considered
[14]. These observations lead to the conclusiohdhta set obtained wittdll are
included within the type 4 non-quadrilinearity damstead of type 1, as they were
considered. However, satisfactory results wereeaglti when U-PLS/RTL or MCR-
ALS were used due to the low degree of non-triling@uadrilinearity of the data array
and the internal structure flexibility of the utiéid algorithms.

3.3.3. Methodology llI
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As it was stated above ftflll data, there is a strong retention time mode-
dependence with both spectral wavelength modeduliiing the concept of
trilinearity. This phenomenon is demonstrated,rin@ple, when the number of
components is calculated, indicating that more thanmponent is necessary to explain
the variance of the modelling when a pure anal/@nalysed. In Fig. 6.C, it can be seen
that, for a unique substance, 2 different temporafiles and 2 excitation spectral
profiles were obtained, while 2 identical emissspectral profiles were retrieved. This
fact asserts the assumption that excitation modegasgly dependent on the retention
of the analyte, while the retention-dependencéefamission mode seems to be
inconsequential. Additionally, for multi-set anabgime shifting between samples
leads to differences in the peak positions as aglh the features of the excitation
profiles, showing a severe loss of quadrilineatitgre, following the classification tree
for four-way data for a set of samples [14], andstdering the lack of trilinearity of the
three-dimensional array for an individual samgie, generated data, likéll, are
included in the category of non-quadrilinear ddttype 4.

It is remarkable the high complexity of the thirdder LC-EEM data generated with
this methodology as consequence of the strong dieper of the instrumental modes.
Unfortunately, no chemometric algorithms allowingraper resolution of this kind of
data have been developed yet, and no pre-procasaisgto turn the data into trilinear
have been further evaluated. Besides, it is notiwydhat same phenomenon occurs
when fluorescence matrices are measured as furmfti@action time. However, works
published at the present do not report major inearent in the chemometric resolution
mainly due to the low rates of the studied reastioncombination of the use of a fast-
scanning spectrofluorimeter [37-42].

Accordingly, the development of new chemometriodathms and the search of
novel alternatives to cope with this kind of dagpresent an important and worthwhile
challenge for chemometricians, as well as an exmegitstep forward for chemometrics

in the analytical chemistry field.

4. Analytical application

On the basis of the above-mentioned observatibnanibe assumed that
methodology | is the most feasible and efficiertstyy for the generation of third-
order LC-EEM data up to the present. Thus, withgbal of illustrating the capability

of theMlI-based analytical method for quantitative detertmng, a recently published
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work reporting an analytical method for the deteramion of 3 f-QUI in drinking water

is here analysed [21, 23PARAFAC and MCR-ALS have been chosen as
chemometric data modelling algorithms and evalmatibalgorithm performance has
been accomplished. Additionally, second- and tbirdier data modelling was compared

in terms of figures of merit and predictive abiljfy, 2].

4.1. MCR-ALS modelling
MCR-ALS is a widespread and versatile soft-modglliechnique that focuses on the
mathematical resolution of the pure component $sgolea data matrix [43, 44]. MCR-
ALS enables decomposition of data matrices thateatiescribed by a bilinear model,
even when no prior information is available [45$. basic premise lies in the validity of
Beer-Lambert’s law of the investigated spectroscepstem, thus, profiles obtained for
the pure components after resolution gain chemmeaning and they can be directly
interpreted as abundance profile and spectra [46].

Bilinear model follow the expression that is shawiiq. 1, whereX is a two-way
data matrix aneC andS are the abundance distribution and spectra, résphg of the
N components involved in the system. Additionally Eamatrix comprising the
residual variations of the data is obtained [43,48];

X=CST+E Eg. 1

Multi-set data analysis, obtained from multiple esxments related to each other, can
be accomplished through the extension of the matkyle, multi-set data are
simultaneously analysed applying MCR-ALS to augraedmtata matrices [45, 47]. In
this regard, MCR-ALS analysis is significantly inoped and better description of the

system can be done.

4.1.1. Data structure
For third-order data modelling, MCR-ALS resoluti@mowed in Fig. 7, is usually
performed in the extended version using unfoldettioes as follows [21, 22, 25, 26,
48, 49]:
Each EEM matrixX; (K x L) corresponding to the collected fractions are
unfolded generating row vectaxg, { of dimension (i LK). Then, the
unfolded matrices, or row vectoss,,  are appended obtaining a bilinear
matrix Xynt (J X LK) for each sample, withfractions (retention timesiK
emission wavelengths amdexcitation wavelengths. Therefore, all the obtdine
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Xunf Matrices are then combined to a column-wise datgy Xaug0f Size [( + 1)
J x LK], in which| is the number of calibration samples and 1 repitssbe
unknown, test or validation sample. In this reg#né,augmented two-
dimensional array conforms to the bilinear modeglliaquirements, since
augmentation is done along the quadrilinearity-kirepmode|.e., column
wise.

« Non-negativity, unimodality and correspondence leettvcommon species in
different data matrices are the most used conssrapplied to the retention time
mode during ALS optimization, whereas only non-riegjg constraint is
generally implemented in the spectral mode.

- After chemometric modelling, the profiles corresgimg to retention times
(Caug and fluorescence specti®) for theN individual analytes are obtained, as
well as a matriaygthat comprises the residuals of the modelling. @& leand,
the information related to the contribution of tiealytes is gathered fro@yygq
as the area under the sub-profiles in each ofgh®gkes, which is used for
quantitative purposes. On the other h&dpmprises the unfolded fluorescence
matrices of the individual analytes that can evaihbe refolded to restore the
two-dimensional fluorescence matrices. Hence, idda excitation and
emission profiles of thBl components in the samples are obtained, whose are

then utilized for the identification of the resofveomponents.

** Insert Fig. 7**

4.2. APARAFAC modelling

APARAFAC algorithm has been developed for the amalykthird-order data that
do not fulfil a quadrilinear model, for example,gresence of retention times that
change from sample to sample [2BRARAFAC model implies the construction of a
trilinear augmented three-way array, where augntientés done along the
quadrilinearity-breaking mode. In principle, thephgation of APARAFAC would only
involve an initialization step and no constraintsud be necessary due to the
uniqueness property of the decomposition of angdr three-way data array [14, 22],
analogous to the PARAFAC model for the modellingrdhree-way data array.
However, aiming to obtain profiles with chemicaiyerpretable information, same

MCR-ALS constraints are usually implemented.
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565 APARAFAC algorithm is based in three-way PARAFAC raltidg and inspired by
566 the augmentation philosophy applied in MCR-ALS gs@l [25]. In this manner,

567 APARAFAC can be interpreted as an algorithm compadsettie marriage of

568 PARAFAC and MCR-ALS that collects the essentiakipatarities of each individual
569 model,i.e., the ability to overcome the lack of quadrilinéaby virtue of its augmented
570  structure, but maintaining the original three-disienal structure of the data [22, 25].
571 Then, besides the ability to handle non-quadrilirzda, the most remarkable

572 advantage of this modelling is that, since theinabdata structure is maintained, the
573 statistical efficiency of decomposing a multiwayagris higher in comparison with
574  unfolding into arrays of lower dimensions, as itagquired for the MCR-ALS analysis
575  of four-way data.

576 APARAFAC model can be represented by Eg. 2, wheterdposition of the

577 augmented three-way arrygretrieves three loading matricés,,q B andC,

578 corresponding to retention times and excitation emdssion spectral profiles

579  respectively, for th& number of responsive components, as well @ggmatrix that

580 comprises the model residuals;

Xaug = Aaug(BOO) + Eqyg Eq. 2
581 “@©” indicates the Khatri—-Rao or column-wise Kronecgesduct [25]
582
583 4.2.1. Data structure
584 The algorithmAPARAFAC is implemented by building an augmente@é¢hway
585 array as follows [22, 25] (Fig. 8):
586 - For each sample, a three-way data obyecs constructed with a size aof & K
587 x L), whereld, K andL are, in this case, the collected fractions (réd@ntimes),
588 emission wavelengths and excitation wavelengtispeetively. Then, an
589 augmented three-way arrXy,qis built by appending all the individual three-
590 way arrays, generating d [t 1)J x K x L] object, in whichl is the number of
591 calibration samples and 1 represents the unkna@shpt validation sample. In
592 this regard, it is worth noticing that the augmeritaee-way object fulfils the
593 trilinear modelling requirements, since augmentaisoperformed in the
594 direction of the quadrilinearity-breaking mode.
595 « For ALS optimization, same constraints as thoséiegh;n MCR-ALS are
596 implemented.
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At the end of the chemometric decomposition, rédartime @), excitation
spectral B) and emission spectral] profiles are acquired. Here, different to
MCR-ALS, individual spectral profiles are obtained,, excitation and

emission profiles are retrieved separately andata pgost-processing is needed.
However, similar to MCR-ALS, for quantitative pug®s, the area under the
sub-profiles comprised iA is related to the individual contribution of the
analytes in each sample.

** Insert Fig. 8**

Fig. 9.A displays the results obtained from MCR-AleSolution of a sample
containing 3 analytes, as well as the individuaitation and emission profiles
retrieved from the refolded fluorescence matrite$:ig. 9.B, results retrieved from
APARAFAC modelling for a sample containing 3 anayaee shown.

**|nsert Fig. 9**

4.3. Quantitative analysis and figures of merit

In order to compare the performance of the applilemometric models for third-
order data modelling, in terms of predictive abihind figures of merit, a recovery
study in several validation and spiked drinkingevatamples reported by authors
elsewhere [21, 22] was analysed. Table 1 and 2 surpenthe prediction results
corresponding to the application of MCR-ALS alW@dARAFAC for validation and
spiked drinking water, respectively, in presencentdrferences. As can be seen, a
satisfactory coincidence between predictions vateesesponding to both models is
demonstrated, and acceptable REP % values araetir both models.

**Insert Table 1**
**Insert Table 2**

Eventually, figures of merit were estimated fortbotodels and a comparative
analysis was performed. Additionally, second-omedelling was evaluated applying
PARAFAC and MCR-ALS, and figures of merit were caargd with those calculated
for third-order modelling. It is important to highiht that, even though the estimations
of figures of merit for an analytic method basedWBR-ALS model were obtained
from well-stablished mathematic expressions [1lliatipns for a method based on
APARAFAC model have not been developed yet. Thugxéension of derived

expression from four-way calibration with PARAFAGsbeen utilized, despite
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630 possible over estimations are introduced [5]. leaosd-order modelling, only OFL was
631 considered as target analyte and the other comonene considered as unexpected
632 compounds.
633 To estimate the sensitivities in MCR-ALS and PARAT-for three-way and four-
634  way calibration, the following mathematical expreas were used:

SENmcr = Sp[J(€TC)7] /2 Eq. 3
635 wheres, is the slope of the MCR-ALS pseudo-univariate plas the number of data
636  points in each submatrix in the augmented modeCaisch matrix containing the
637  profiles for all sample components in the non-auggee direction [1, 50]; and

_17-1/2
SENPARAFAC,3—way = Sn {[(BCTHIPB,UI’IXBCal) * (C;FalPC,unchal)] 1} Eq 4

SENpaRARAG+-way = Sn {[(BLiPr.unBear) * (ChiPeuncCea) * (DluPounDea)] '} EC-5
638 wheres, is the slope of the PARAFAC pseudo-univariate g4, C., andDcy collect
639 the loading matrices for the calibrated analytes,the element-wise ar®k unx Pc unx
640  andPp unxare projection matrices given byBunBunx » |-CunCunx. @andl-DynDun »
641 respectively, being) the identity matriceB,nx, Cunx @andDynx collect the loading
642 matrices for the unexpected samples constituendistree superscript + indicates the

643 generalized inverse operation.

644 For the estimation of the limit of detection (LO&)d limit of quantitation (LOQ),
645 eg. 6 and eq. 7, respectively were utilized.
_ Sdtest _ Sdtest Eq. 6
LOD = 2 X ty05.0 SEN — 3.3 SEN
_ Sdtest Eq_ 7
LOQ =10 SEN

646  where § 05, IS the one-tait value assuming a large number of calibration sasahdx
647 value of 0.05, andyesirepresents the standard deviation of the estimaedignal
648 when its true value is zero [5, 50].

649 In Table 3, figures of merit obtained for third-erdlata modelling using both

650 models are shown. Figures of merit computed fooseécand third-order data

651 modelling using MCR-ALS and PARAFAC are depictedable 4.

652 **Insert Table 3**
653 **Insert Table 4**
654 It is noticeable that there is an important impraeat in the SEN, LOD and LOQ

655 values obtained for third-order data modelling WABARAFAC is used, in
656 comparison to MCR-ALS, while a drastic reduction.&fD and LOQ values is shown
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when the order or dimension of the data increddesever, figures of merit obtained
for second- and third-order data using MCR-ALS niloag did not show significant
differences. On the other hand, the strong diffeeesbserved in LOD and LOQ values
when second-order data modelling is performed usiGR-ALS and PARAFAC lies,
in principle, in the loss of trilinearity caused thye lack of sample-to-sample
reproducibility, which can be overcome with MCR-Ab8t not with PARAFAC.

The main basis of the aforementioned observatietangs in the assumption that
third-order data modelled withPARAFAC shows several advantages over MCR-ALS,
stressing the possibility of processing the datigsinriginal three-dimensional structure,
instead of unfolding the data to arrays of loweneinsions, and the feasibility to
overcome the lack of quadrilinearity, leading tor@aprovement in the figures of merit
and prediction capability of the analytical methadditionally, APARAFAC exploits
the second-order advantage even in presence obfaample-to-sample
reproducibility, similar to MCR-ALS. In consequené®ARAFAC is presented as an
appropriate alternative for third-order LC-EEM dataalysis achieving acceptable
results in the analysis of multi-component sampigsesence of uncalibrated

components.

5. Conclusion

In the present review, three analytical method@sdor the generation of third-order
LC-EEM data are reviewed. Methodology |, basedrendollection of discrete fractions
at the end of the chromatographic procedure, reguaw complexity equipment,
needing a device that enables the collection atifvas in multi-well plates. The time of
analysis is limited by the detection procedure #tattly depends on the instrumental
parameters and the characteristics of the usediment. Generated data have shown
perfect trilinearity as consequence of the indepand between instrumental modes and
the particular bilinearity/trilinearity properties the EEM. The results obtained from
trilinear decomposition were highly satisfactoritaning time and spectra profiles
with strong similarities with the experimental chmatogram and the pure excitation and
emission spectra, respectively.

Methodology I, although only one instrument isuggd, demands a chromatograph
equipped with an auto-sampler and fast-scanniragékcence detector. Besides, due to
the fact a high number of injections is needecetizh sample, the analysis is time-

consuming, and it can only be improved in spita detriment of the spectral
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691 information. Moreover, the high consumption of relsig and sample, as consequence
692  of the multi-injections, involves a high environn@nmpact as well as an important
693 increment in the total costs. On the other hanghnding data properties, it has been
694  shown that slight differences in the retention sraenong runs leads to modifications in
695 the excitation spectra features. This fact indeatélirect dependence between time and
696 excitation wavelength mode, which means a losslofdarity in the third-order LC-

697 EEM data. Even though lack of trilinearity in therd-order data is a drawback to

698 overcome to obtain reliable results, in the literaf it has not been evaluated the effects
699 introduced in the results due to lack of trilingarivhereas they report loss of

700 quadrilinearity as a consequence of the same phemajre., lack of run-to-run

701  reproducibility [24, 26]. Finally, different alteatives to turn data into trilinear were

702  here reported, including peak alignment algorithms.

703 The third methodology studied is presented as apreposal for third-order LC-

704 EEM data generation. It seems to be advantageaitodhe short time of the analysis,
705 the low consumption of solvents and sample andotvecomplexity of the required

706 equipment. However, the generated data show aaregtcomplexity by virtue of the
707  strong dependence between instrumental modesnipsmia severe loss of trilinearity.
708  Unfortunately, no chemometric procedures able solwe this kind of data have been
709 developed yet. Also, no pre-processing procedinasasould permit to turn data into
710 trilinear have been found. Thus, the developmemiesf chemometric algorithms to

711  cope with this kind of data is a worthwhile chatierfor chemometricians and

712  analytical chemists.

713 In sum, on the basis of the above-mentioned ob8ens it can be assumed that

714  methodology | is the most feasible and efficientrent strategy for the generation of
715  third-order LC-EEM data up to the present, whichdmees promissory for further

716  implementations.

717 Methodology | was then used for the determinatibseweral analytes in drinking
718 water samples. It has been demonstrated that it-eatilanalysis, four-way arrays show
719 loss of quadrilinearity due to differences in te&ention times of the analytes among
720 samples. HoweveAPARAFAC and MCR-ALS models proved to be able torlvesn-
721 quadrilinear data, and satisfactory results wehéeaed. Further, it was demonstrated
722  that the so-called “third-order advantage” is sesbdly achieved when third-order data

723 are analysed, representing an improvement of s@tsand selectivity as well as the

23



M. Montemurro, G. Siano, M. R. Alcardz & H. C. Goicoecheg; "Third order chromatographic-excitation—emission fluorescence data: Advances, challenges and prospectsin analytical applications”

sinc(i) Research Ingtitute for Signals, Systems and Computational Intelligence (sinc.unl.edu.ar)
TrAC Trendsin Analytical Chemistry - 2017, Vol. 93, pp. 119-133, 2017.

724
725
726
727
728
729
730
731
732
733
734
735
736
737

738
739
740

741
742

743
744

745
746

747
748

749
750
751
752

753
754
755

756
757
758
759

760
761

possibility to resolve a complex problem with ague data array, without needing
additional information.

At last, it becomes crucial to remark the imporan€doing an in-depth analysis of
the system under study considering all the possithges, from chemical to

mathematical standpoints in order to obtain thetmamble and satisfactory results.
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Fig. 1. Classification tree for four-way data for a set amples, according to whether the
individual three-dimensional arrays data are ®#in or not, and to the number of
quadrilinearity-breaking modes. Reprinted with pisgion of the authors of Ref [2]. Copyright
2014 Elsevier.

Fig. 2. Generalprocedure for the third-order data generation bpgusl methodology for a

sample containing 3 compounds.

Fig. 3. Generalprocedure for the third-order data generation bpguMlil methodology for a

sample containing 2 compounds.

Fig. 4. Generalprocedure for the third-order data generation bggustill methodology for a

sample containing a pure analyte.

Fig. 5. (A) Data generated using methodologixcitation-emission matrices, showed from the
excitation mode, registered for all the collecteatfions for a sample containing OFL (blue),
CPF (green) and DNF (redB) Data generated using methodology Il. Solid gragdiare the
chromatograms corresponding to an emission waviéen50 nm obtained from the retention
time-emission wavelength matrices registered & miht excitation wavelength (260-305 nm e.
5nm). C) Data generated using methodology Ill. Consecutixeitation-emission matrices,

showed from the excitation mode, registered farage containing CPF.

Fig. 6. A. Retention time X), excitation spectra2] and emission spectr8)(profiles obtained
from PARAFAC resolution of the data generated fbe tcorresponding sample using
methodology I A), Il (B) and Il (C). Dashed blue lines, solid green lines and dastedaed
lines are OFL, CPF and DNF, respectively. Dottedloye lines represent an unknown
component obtained as a result of lack of trilitgabDotted green lines i@ correspond to CPF
profile, which is a consequence of the dependemterden time and excitation wavelength

modes.

Fig. 7. Schematic representation of MCR-ALS model to tlirder LC-EEM data processing.

Fig. 8. Schematic representation of Augmented PARAFAC mtal¢hird-order LC-EEM data

processing.

28



M. Montemurro, G. Siano, M. R. Alcardz & H. C. Goicoecheg; "Third order chromatographic-excitation—emission fluorescence data: Advances, challenges and prospectsin analytical applications”

sinc(i) Research Ingtitute for Signals, Systems and Computational Intelligence (sinc.unl.edu.ar)
TrAC Trendsin Analytical Chemistry - 2017, Vol. 93, pp. 119-133, 2017.

916

917 Fig. 9. MCR-ALS (A) andAPARAFAC (B) profiles obtained from the analysis of third-arde
918 data obtained for a sample containing OFL (dashed)bCPF (solid green) and DNF (dash-
919  dotted red). TemporalA(1 andB.1) as well as excitationA(3 andB.2) and emission spectral
920 (A.4 andB.3) profiles are depicted. Unfolded fluorescence roes$r obtained from MCR-ALS
921  resolution are shown iA.2
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g Table 1. Recovery study for 3 FQ in validation samples udf@R-ALS andAPARAFAC modelling. Reprinted with permission of #ugthors of Ref.

g [20].Copyright 2015 Springér.

g OFL CPF DNF

B Sample _ Predicted _ Predicted _ Predicted

5 Nominal Nominal Nominal

g MCR-ALS APARAFAC MCR-ALS APARAFAC MCR-ALS APARAFAC
EE MO1 20.0 21.1 20.1 90.0 99.3 92.5 25.0 27.1 23.2
g % MO02 20.0 19.3 19.7 150.0 131.0 121.7 15.0 16.4 15.9
38
EE MO03 60.0 51.1 52.1 30.0 44.9 58.5 5.0 5.3 5.1
25
o] - M04 100.0 101.0 99.7 90.0 95.8 90.9 5.0 8.6 8.9
= O -
2E8 MO5 60.0 68.1 70.1 150.0 144.8 147.0 25.0 28.4 28.8
s3F9
.g ggg‘ MO06 100.0 98.9 99.1 150.0 132.7 136.9 15.0 17.8 18.2
%_% f MOQ7 100.0 104.1 101.0 30.0 21.0 22.0 5.0 7.4 7.6
o o
2 8 g M08 20.0 31.0 31.7 30.0 58.0 51.7 2.0 4.0 4.0
T -
§, oés % M09 60.0 45.3 55.2 30.0 19.8 25.6 8.0 9.6 9.4
a8
g? g M10 60.0 55.1 72.3 60.0 54.2 44.3 2.0 5.3 2.6
S5 5
256 REP % " 14.5 13.8 19.0 215 19.9 19.1
288
58% -
g g g Rexpc 102.7 107.4 105.8 107.4 146.0 131.5
8=
g g é 3 Concentrations are given in ng ML
x e = 5% Cnom—Cpred)?
g = E b REP %: relative error of prediction given in perzgge and calculated 8P % = 100 x M for 1= 10;
= c R

R.,,. average experimental recoveries given in pergenta
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Table 2. Recovery study for 3 FQ in spiked drinking wat@mples using MCR-ALS ardPARAFAC modelling. Reprinted with permission of tethors
of Ref. [20].Copyright 2015 Springér.

Sample® OFL CPF DNF
Taken Found Taken Found Taken Found
MCR-ALS APARAFAC MCR-ALS APARAFAC MCR-ALS APARAFAC
Mw_01 20.0 30.6 17.4 30.0 26.3 25.0 35 3.2 2.9
Mw_02 60.0 81.2 63.8 90.0 78.6 91.2 5.5 7.5 7.6
Mt_01 60.0 61.9 65.3 90.0 86.6 89.5 2.2 2.7 2.6
Mt_02 40.0 32.2 26.2 60.0 60.5 62.9 9.0 12.8 12.4
Mm_01 20.0 125 19.1 30.0 19.7 17.0 2.2 1.9 1.9
Mm_02 40.0 411 49.9 60.0 91.1 81.3 9.0 9.5 9.2
R.,,C 106 98 98 97 116 113
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3 Concentrations are given in ng flLEach mean value is the average of three repéicate
® Mw: well water from Colastiné City (Santa Fe, Angjaa); Mt: tap water form Santa Fe City (SantaAtgentina); Mm: commercial mineral water;

R.xp, average experimental recoveries given in pergenta
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Table 3. Figures of merit obtained for third-order data rmibde, applying MCR-ALS and
APARAFAC chemometric models. Reprinted with pernussaf the authors of Ref. [20].
Copyright 2015 Springer.

OFL CPF DNF
Figure

_ MCR- MCR MCR-
of merit APARAFAC APARAFAC APARAFAC

ALS -ALS ALS
SEN 10.4 21.0 2.7 20.0 22.9 83.0
SEL 0.68 0.65 0.21 0.29 0.88 0.30
LOD 0.25 0.20 0.99 0.15 0.12 0.02
LOQ 0.75 0.60 2.97 0.47 0.36 0.08

M. Montemurro, G. Siano, M. R. Alcardz & H. C. Goicoecheg; "Third order chromatographic-excitation—emission fluorescence data: Advances, challenges and prospectsin analytical applications”

sinc(i) Research Ingtitute for Signals, Systems and Computational Intelligence (sinc.unl.edu.ar)
TrAC Trendsin Analytical Chemistry - 2017, Vol. 93, pp. 119-133, 2017.

a

SEN: sensitivity; SEL: selectivity; LOD: limit afetection and LOQ: limit of quantitation calculagetording to Ref [1] and
Ref [5] for MCR-ALS andAPARAFAC, respectively. LOD and LOQ are given inmi™.
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Table 4. Figures of merit obtained for OFL using secondi trird-order data modelling,
applying MCR-ALS and PARAFA@APARAFAC chemometric models. Reprinted with
permission of the authors of Ref. [20]. Copyrighl2 Springer?

) _ MCR-ALS PARAFAC/APARAFAC?®
Figure of merit
Second-or der Third-order Second-or der Third-order
SEN 5.2 10.4 7.6 21.0
SEL 0.23 0.68 0.25 0.65
LOD 0.4 0.25 6.9 0.20
LOQ 1.1 0.75 21.0 0.60

M. Montemurro, G. Siano, M. R. Alcardz & H. C. Goicoecheg; "Third order chromatographic-excitation—emission fluorescence data: Advances, challenges and prospectsin analytical applications”

sinc(i) Research Ingtitute for Signals, Systems and Computational Intelligence (sinc.unl.edu.ar)
TrAC Trendsin Analytical Chemistry - 2017, Vol. 93, pp. 119-133, 2017.

P SEN: sensitivity; SEL: selectivity; LOD: limit afetection and LOQ: limit of quantitation calculateztording to Ref [1] and

Ref [5] for MCR-ALS andAPARAFAC, respectively. LOD and LOQ are given inmi™;
&  For second-order data modelling, PARAFAC was aglplwhile for third-order data modellidPARAFAC was used.
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2. Third-order data
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Highlights

» Third order chromatographic-excitation-emission fluorescence data are reviewed.
» Different instrumental setups for third-order data generation are compared.

» Datadtructure and chemometric modelling depends on the instrumental setup.

» Datapre-processing and processing alternatives are proposed.

» Analytical applications of four-way calibration are presented showing results.



