
Anisotropic BV-L2 regularization of linear inverse

ill-posed problems.

Francisco J. Ibarrola ∗ Gisela L. Mazzieri †,‡ Ruben D. Spies �, †, §

Karina G. Temperini †, ¶

Abstract

During the last two decades several generalizations of the traditional Tikhonov-Phillips

regularization method for solving inverse ill-posed problems have been proposed. Many

of these variants consist essentially of modifications on the penalizing term, which force

certain features in the obtained regularized solution ([11], [17]). If it is known that the

regularity of the exact solution is inhomogeneous it is often desirable the use of mixed,

spatially adaptive methods ([7], [12]). These methods are also highly suitable when the

preservation of edges is an important issue, since they allow for the inclusion of anisotropic

penalizers for border detection ([19]).

In this work we propose the use of a penalizer resulting from the convex spatially-

adaptive combination of a classic L2 penalizer and an anisotropic bounded variation semi-

norm. Results on existence and uniqueness of minimizers of the corresponding Tikhonov-

Phillips functional are presented. Results on the stability of those minimizers with respect

to perturbations in the data, in the regularization parameter and in the operator are also

established. Applications to image restoration problems are shown.
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1 INTRODUCTION

A linear inverse problem can be formulated as: find u ∈ X such that

Tu = v, (1)

where T is a bounded linear operator with non-closed range between two infinite dimensional

normed spaces X and Y (usually X and Y are function spaces) and v is the data, which might

be exactly or approximately known (with a certain error). Under these hypotheses it is well

known that problem (1) is ill-posed, the Moore-Penrose pseudo-inverse of T is unbounded and

therefore small errors in the data v may result in arbitrarily large errors in the approximations

of u ([18]). Because of this, problem (1) must be “regularized” before any attempt to solve it

is made. Regularizing problem (1) essentially means replacing it by a family of “well-posed”

problems whose solutions converge (in an appropriate sense) to a solution of the original prob-

lem. Undoubtedly, the most usual way of regularizing a linear ill-posed problem is by means

of the Tikhonov-Phillips method, which can be formulated as an unconstrained minimization

problem. In fact, given a penalizer W with domain D ⊂ X , the Tikhonov-Phillips regularized

solution of (1) is the global minimizer over D of the functional

Fα,W (u) = ‖Tu− v‖2 + αW (u), (2)

where α > 0 is a constant called regularization parameter. The original method was proposed

independently by Phillips and Tikhonov in 1962 and 1963 ([14], [20]) using W (u) = ‖u‖2
X
.

Other penalizers can also be used to regularize the problem and in the last few decades, consid-

erable research has been devoted in this direction. For instance, an interesting problem is the

study of penalizers which are particularly appropriate for preserving certain known or assumed

properties of the exact solution. Sufficient conditions on a general penalizerW guaranteeing ex-

istence, uniqueness and stability of the minimizers of (2) under different types of perturbations

can be found in [6], [9], [11], [16], [17].

In this article we will consider functionals W of mixed L2-BV type in which the idea of

“anisotropic” penalization will be incorporated. Mixed penalizers were previously studied by

a few authors (see [5], [11], [12]). Anisotropy ideas were used in [8], [13] and [19] for edge

enhancement in problems of image deblurring and image denoising, whereas in [4] for image

inpainting.

2 PRELIMINARIES

In what follows Ω ⊂ R
2 will be a bounded open convex set with Lipschitz boundary, M(Ω)

shall denote the set of all real valued measurable functions defined on Ω and M̂(Ω) the subset
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of M(Ω) formed by those functions with values in [0, 1].

Definition 2.1. Given θ ∈ M̂(Ω), a measurable matrix field A : Ω → R
2×2 and p ∈ [1,∞) we

define the functional JΩ
θ,A,p

(u) with values on the extended reals by

JΩ

θ,A,p
(u)

.
= sup

~ν∈VΩ
θ,A,p

∫

Ω

−u div(θA~ν) dx, u ∈ L1(Ω), (3)

where VΩ
θ,A,p

.
= {~ν : Ω → R

2 such that θA~ν ∈ C1
0
(Ω) and |~ν(x)|p∗ ≤ 1 ∀ x ∈ Ω} and p∗ is the

conjugate dual of p. Here, for any p ∈ [1,∞], | · |p denotes the p-norm in R
2.

Remark 2.2. It can be easily shown that for any u ∈ L1(Ω) and any Ω∗ ⊂ Ω there holds

JΩ∗

θ,A,p
(u) ≤ JΩ

θ,A,p
(u) and VΩ

θ,A,p
⊂ VΩ∗

θ,A,p
.

Definition 2.3. The functional JΩ
0
(BV-seminorm) with values on the extended reals is defined

as

JΩ

0
(u) = sup

~ν∈VΩ

∫

Ω

−u div ~ν dx, u ∈ L1(Ω) (4)

with VΩ .
= {~ν : Ω → R

2 such that ~ν ∈ C1
0(Ω) and |~ν(x)|2 ≤ 1 ∀ x ∈ Ω}.

Remark 2.4. In the case θ(x) ≡ 1, A(x) ≡ I (the identity matrix) and p = 2 one clearly has

VΩ
θ,A,p

= VΩ and JΩ
θ,A,p

= JΩ
0
. For convenience we shall suppress the superscript Ω and unless

otherwise specified Jθ,A,p,Vθ,A,p and V shall denote JΩ
θ,A,p

, VΩ
θ,A,p

and VΩ, respectively.

When θ, u and A are smooth, the functional Jθ,A,p takes a particular form.

Proposition 2.5. Let Jθ,A,p be as in (3). If θ, u ∈ W 1,1(Ω), A ∈ W 1,1(Ω;R2×2) is symmetric

and p ∈ [1, 2], then Jθ,A,p(u) = ‖θ |A∇u|
p
‖L1(Ω).

Proof. Assume that θ, u ∈ C1(Ω) and A ∈ C1(Ω;R2×2) (by standard density arguments, the

result can be proved for general θ, u ∈ W 1,1(Ω) and A ∈ W 1,1(Ω;R2×2) ).

Let ~n denote the outward unit normal to ∂Ω and q the conjugate dual of p. Then for all

~ν ∈ Vθ,A,p it follows that
∫

Ω

−u div(θA~ν) dx =

∫

Ω

∇u · θA~ν dx−
∫

∂Ω

(uθA~ν · ~n) dS

=

∫

Ω

∇u · θA~ν dx (since θA~ν|∂Ω = 0)

=

∫

Ω

θA∇u · ~ν dx (since A is symmetric)

≤
∫

Ω

|θA∇u|
p
|~ν|

q
dx (by Hölder’s inequality)

≤
∫

Ω

|θA∇u|
p
dx (since |~ν(x)|

q
≤ 1 ∀ x ∈ Ω).
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Taking supremum over ~ν ∈ Vθ,A,p it follows that Jθ,A,p(u) ≤ ‖θ |A∇u|
p
‖L1(Ω). For the opposite

inequality, let A∇u(x) .= (w1(x), w2(x))
T and define

~ν∗(x)
.
=




|A∇u(x)|1−p

p

(
sgn(w1(x)) |w1(x)|p−1 , sgn(w2(x)) |w2(x)|p−1)T , if A∇u(x) 6= 0,

0, if A∇u(x) = 0.

Then one has that |~ν∗(x)|q ≤ 1 ∀ x ∈ Ω and
∫

Ω

A∇u · θ~ν∗ dx =

∫

Ω

|θA∇u|
p
dx. (5)

Now, given any ε > 0 there exists a function ϕ ∈ C∞

0
(Ω;R2) such that by convolving ~ν∗ with

ϕ we obtain a function ~νε ∈ C1
0(Ω;R

2) such that |~νε(x)|q ≤ 1 ∀ x ∈ Ω (and therefore ~νε ∈ Vθ,A,p

since u and θ are in C1(Ω) and A ∈ C1(Ω;R2×2)) for which

∣∣∣∣
∫

Ω

A∇u · θ(~ν∗ − ~νε) dx

∣∣∣∣ ≤ ε. From

this and (5) it follows that

∫

Ω

−u div(θA~νε) dx ≥ ‖θ |A∇u|
p
‖L1(Ω) − ε. Since ε is arbitrary,

taking supremum over ~ν ∈ Vθ,A,p we conclude that

Jθ,A,p(u) ≥ ‖θ |A∇u|
p
‖L1(Ω).

Hence Jθ,A,p(u) = ‖θ |A∇u|
p
‖L1(Ω), as we wanted to prove.

In this article we will consider penalizers of the form

Wθ,A,p(u) = α1

∫

Ω

|
√
1− θ(x) u(x)|2 dx+ α2 sup

~ν∈Vθ,A,p

∫

Ω

−u div(θA~ν) dx,

= α1

∫

Ω

|
√
1− θ(x) u(x)|2 dx+ α2 Jθ,A,p(u), (6)

where α1, α2 are positive constants. In view of Proposition 2.5 if θ, u ∈ W 1,1(Ω) and A ∈
W 1,1(Ω;R2×2) is symmetric then Wθ,A,p(u) as defined in (6) takes the form

Wθ,A,p(u)(u) = α1

∫

Ω

|
√
1− θ(x) u(x)|2 dx+ α2 ‖θ|A∇u|p‖L1(Ω);

Note that the case θ(x) ≡ 0 corresponds to the penalizer associated to the classical Tikhonov-

Phillips method, while θ(x) ≡ 1 corresponds to a pure anisotropic p-BV method, with the

classical bounded variation method corresponding to p = 2 and A(x) ≡ I. The matrix field A

is introduced with the objective of allowing anisotropic penalization. There are several ways of

constructing this so-called “anisotropy matrix field”, either from structural prior information or

from the available data (see [4], [8]). The construction of this matrix field is a very important

matter on which we shall not get any deeper here. The general case can then be thought of as

a convex combination of a classical L2 and an anisotropic p-BV penalizers. The particular case

A(x) ≡ I was studied in [12].
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3 MAIN RESULTS

In this section we state our main results about existence, uniqueness and stability of minimizers

of generalized Tikhonov-Phillips functionals with penalizers involving spatially varying combi-

nations of the L2-norm and the functional Jθ,A,p under different hypotheses on the function θ

and the anisotropy matrix A.

Definition 3.1. Let p ∈ [1, 2], Q ⊂ Ω, θ ∈ M̂(Q) with 1
θ
∈ L∞(Q), A : Q→ R

2×2 a measurable

matrix field. We shall say that θ and A satisfy the weight-anisotropy (WA) condition in Q if

‖θ(x)A(x)‖
L(R2,p

∗
)
≥ 1

‖θ−1‖L∞(Q)

, ∀ x ∈ Q. (7)

Here, for a 2 × 2 matrix B, ‖B‖
L(R2,p

∗
)
denotes the norm of B as an operator on R

2 with the

p∗-norm.

In order to be able to use certain known coercivity properties of the functional JΩ
0

(see

[1]) an inequality of the type Jθ,A,p(u) ≥ C JΩ
0
(u) for some constant C is highly desired. The

following theorem provides sufficient conditions on θ and A assuring that such an inequality

holds.

Theorem 3.2. Let p ∈ [1, 2] and θ ∈ M̂(Ω) with 1
θ
∈ L∞(Ω), A : Ω → R

2×2 a measurable

matrix field such that they satisfy the WA condition in Ω and let Jθ,A,p, J
Ω
0
be the functionals

defined in (3) and (4), respectively. Then JΩ
0 (u) ≤ ‖1

θ
‖L∞(Ω) Jθ,A,p(u) for all u ∈ L1(Ω).

Proof. Let u ∈ L1(Ω). Then for all ~ν ∈ V
∫

Ω

−u div~ν dx = ‖θ−1‖L∞(Ω)

∫

Ω

−u div
(

θAA−1~ν

‖θ−1‖L∞(Ω)θ

)
dx

≤ ‖θ−1‖L∞(Ω) sup
~ω∈Vθ,A,p

∫

Ω

−u div (θ A~ω) dx

= ‖θ−1‖L∞(Ω) J θ,A,p(u),

where the inequality is a consequence of A−1~ν
‖θ−1‖L∞(Ω) θ

∈ Vθ,A,p (which follows immediately from

the fact that θ and A satisfy the WA condition in Ω and ~ν ∈ V). Then, taking supremum for

~ν ∈ V we conclude that JΩ
0 (u) ≤ ‖θ−1‖L∞(Ω) Jθ,A,p(u).

The following lemma will be of fundamental importance for proving several of the upcoming

results.

Lemma 3.3. Let p ∈ [1, 2], θ ∈ M̂(Ω) and A : Ω → R
2×2 be a measurable matrix field. Then

the functional Jθ,A,p defined by (3) is convex and weakly lower semicontinuous with respect to

the Lq(Ω) topology for every q ∈ [1,∞).
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Proof. The convexity of Jθ,A,p is trivial. To prove the weak lower semicontinuity, let q ∈ [1,∞),

{un} ⊂ Lq(Ω) and u ∈ Lq(Ω) be such that un
w−Lq

→ u. We want to show that Jθ,A,p(u) ≤
lim inf
n→∞

Jθ,A,p(un). Let ~ν∗ ∈ Vθ,A,p and q
∗ be the conjugate dual of q. Since θA~ν∗ ∈ C1

0 (Ω) it follows

that div(θA~ν∗) ∈ L∞(Ω) ⊂ Lq∗(Ω). Then

∫

Ω

−u div(θA~ν∗) dx = lim
n→∞

∫

Ω

−un div(θA~ν∗) dx ≤

lim inf
n→∞

sup
~ν∈Vθ,A,p

∫

Ω

−un div(θA~ν) dx = lim inf
n→∞

Jθ,A,p(un), where the first equality follows from the

weak convergence of un to u in Lq(Ω). Taking supremum over all ~ν∗ ∈ Vθ,A,p it follows that

Jθ,A,p(u) ≤ lim inf
n→∞

Jθ,A,p(un).

We are now ready to present several results on existence, uniqueness and stability of mini-

mizers of generalized Tikhonov-Phillips functionals with penalizers involving spatially varying

combinations of the L2-norm and of the functional Jθ,A,p, under different hypotheses on the

function θ and the anisotropy matrix A.

Theorem 3.4. Let X = L2(Ω), Y a reflexive Banach space, T ∈ L(X ,Y), v ∈ Y, α1, α2

positive constants, p ∈ [1, 2], θ ∈ M̂(Ω) such that 1
1−θ

∈ L1(Ω) and 1
θ
∈ L∞(Ω), A : Ω → R

2×2

a measurable matrix field such that θ and A satisfy the WA condition in Ω (see Definition 3.1).

Then the functional

Fθ,A,p(u)
.
= ‖Tu− v‖2Y + α1‖

√
1− θ u‖2

L2(Ω)
+ α2 Jθ,A,p(u)

= ‖Tu− v‖2Y +Wθ,A,p(u), u ∈ X , (8)

(where Jθ,A,p and Wθ,A,p are defined in (3) and (6) respectively) has a unique global minimizer

û ∈ BV (Ω).

Proof. We will prove that Wθ,A,p is weakly lower semicontinuous and that Wθ,A,p-bounded sets

are relatively weakly compact in X . It can be easily verified that these two conditions imply

the validity of Assumptions 3.11 and 3.22 in [17] and therefore Proposition 4.1 in [17] holds

(for the linear case). To prove the weak lower semicontinuity of Wθ,A,p let {un} ⊂ X such that

un
w→ u. Since

√
1− θ ∈ L∞(Ω) one has

√
1− θ un

w−→
√
1− θ u. The condition 1

1−θ
∈ L1(Ω)

implies that the functional ‖
√
1− θ · ‖L2(Ω) defines a norm in L2(Ω) and therefore it is weakly

lower semicontinuous. From this and the weak lower semicontinuity of Jθ,A,p in L
2(Ω) = X (see

Lemma 3.3) we conclude that the functional Wθ,A,p is in fact weakly lower semicontinuous on

X .

To prove the relative weak compactness of Wθ,A,p-bounded sets, let {un} ⊂ X be such that

Wθ,A,p(un) ≤ c1 < ∞ ∀n. We want to show that there exists a subsequence {unj
} ⊂ {un}

and u ∈ X such that unj

w→ u. Since {Wθ,A,p(un)} is uniformly bounded, there exists K < ∞
such that ‖

√
1− θ un‖L2(Ω) ≤ K ∀n. From this, the hypotheses 1

1−θ
∈ L1(Ω), 1

θ
∈ L∞(Ω) and

6
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Theorem 3.2, it follows easily that {un} is BV (Ω)-bounded. The existence of a global minimizer

of functional (8) belonging to BV (Ω) then follows from the fact that BV (Ω)-bounded sets are

relatively compact in L2(Ω) ([2], [3]). Finally, note that the condition 1
1−θ

∈ L1(Ω) implies the

strict convexity of ‖
√
1− θ u‖2

L2(Ω)
and, in light of Lemma 3.3, since the other two terms on the

RHS of (8) are convex, the uniqueness of the global minimizer of Fθ,A,p follows.

Remark 3.5. Note that if θ(x) ≡ 0, then Wθ,A,p(u) = α1‖u‖2L2(Ω) and Fθ,A,p as defined in (8)

is the classical zero-order Tikhonov-Phillips functional, while for θ(x) ≡ 1 a pure anisotropic

p−BV penalizer is obtained. Although the hypotheses of Theorem 3.4 clearly exclude both of

these cases, the existence of a global minimizer for the first one is well known while for the

second one, existence is guaranteed by the next theorem.

Theorem 3.6. Let X = L1(Ω), Y be a normed space, T ∈ L(X ,Y), v ∈ Y, α a positive

constant, p ∈ [1, 2], A : Ω → R
2×2 a measurable matrix field such that ‖A(x)‖

L(R2,p
∗
)
≥ 1 ∀ x ∈ Ω

and Tχ
Ω
6= 0. Then the functional

FA,p(u)
.
= ‖Tu− v‖2Y + α sup

~ν∈VA,p

∫

Ω

−u div(A~ν) dx, u ∈ X , (9)

where VA,p

.
= {~ν : Ω → R

2 such that A~ν ∈ C1
0
(Ω) and |~ν(x)|p∗ ≤ 1 ∀ x ∈ Ω}, has a global

minimizer. Moreover, if T is injective then the global minimizer is unique.

Proof. By virtue of Theorem 3.1 in [1] it is sufficient to prove that the functional given in (9) is

weakly lower semicontinuous and BV-coercive. The weak lower semicontinuity of FA,p follows

from Lemma 3.3, the boundedness of T and the weak lower semicontinuity of the norm in Y .

For the BV-coercitivity note that the Theorem 3.2 implies that

F (u)
.
= ‖Tu− v‖2Y + αJΩ

0 (u) ≤ FA,p(u). (10)

Now, since Tχ
Ω
6= 0, by Lemma 4.1 in [1] the functional F (·) is BV-coercive. From this and

inequality (10) it follows that FA,p(·) is also BV-coercive as we wanted to prove.

Finally note that if T is injective then FA,p(·) is strictly convex and therefore its global

minimizer is unique.

It is timely to note that in Theorem 3.4 the function θ cannot assume the extreme values 0

or 1 on a set of positive measure. In some cases a pure anisotropic BV regularization in some

regions and a pure L2 regularization in others may be desired, and therefore such a constraint

on the function θ will turn out to be inappropriate. In the next three theorems we introduce

different conditions which allow the function θ to take the extreme values on sets of positive

measure.
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Theorem 3.7. Let Ω ⊂ R
2 be a bounded open convex set with Lipschitz boundary, X = L2(Ω),

Y a reflexive Banach space, T ∈ L(X ,Y), v ∈ Y, α1, α2 positive constants, p ∈ [1, 2], θ ∈ M̂(Ω)

and Ω0

.
= {x ∈ Ω such that θ(x) = 0}. If 1

θ
∈ L∞(Ω c

0),
1

1−θ
∈ L1(Ω) and A : Ω → R

2×2 a

measurable matrix field such that θ and A satisfy the WA condition in Ω c

0
. Then the functional

Fθ,A,p defined by equation (8) has a unique global minimizer û ∈ L2(Ω) ∩ BV (Ω c

0).

Proof. Under the hypotheses of the theorem, the functional Fθ,A,p in (8) can be written as

Fθ,A,p = ‖Tu− v‖2Y +Wθ,A,p(u), where now Wθ,A,p takes the form

Wθ,A,p(u)
.
= α1‖u‖2L2(Ω 0)

+ α1‖
√
1− θ u‖2

L2(Ω c
0)
+ α2 sup

~ν∈Vθ,A,p

∫

Ω c
0

−u|Ω c
0
div(θA~ν) dx. (11)

Just like in Theorem 3.4, for the existence of a minimizer it suffices to prove that Wθ,A,p is

weakly lower semicontinuous and that Wθ,A,p-bounded sets are relatively weakly compact in X .

The weak lower semicontinuity of Wθ,A,p follows from identical steps to the ones in Theorem

3.4. On the other hand, the relative weak compactness on Wθ,A,p-bounded sets can be obtained

following similar steps as for the proof of Theorem 2.9 in [12], with the obvious modifications

to take into account the anisotropy matrix field A. Finally, uniqueness is a consequence of the

fact that the hypothesis 1
1−θ

∈ L1(Ω) implies the strict convexity of Fθ,A,p.

Note that in the previous theorem, the condition 1
1−θ

∈ L1(Ω) implies θ 6= 1 a.e. in Ω. The

next theorem includes the case in which θ can be equal to one on a set of positive measure.

Theorem 3.8. Let Ω ⊂ R
2 be a bounded open convex set with Lipschitz boundary, X = L2(Ω),

Y a reflexive Banach space, T ∈ L(X ,Y), v ∈ Y, α1, α2 positive constants, p ∈ [1, 2]. Also let

Ω1

.
= {x ∈ Ω such that θ(x) = 1}, A : Ω → R

2×2 be a measurable matrix field, θ ∈ M̂(Ω) and

suppose 1
1−θ

∈ L1(Ω c

1). Furthermore, assume that there exists M ⊂ Ω (M a convex region with

Lipschitz continuous boundary) such that 1
θ
∈ L∞(M), Tχ

M
6= 0 and θ and A satisfy the WA

condition inM . Then the functional defined by (8) has a global minimizer û ∈ L2(Ω)∩BV (M).

If moreover, u ∈ N (T ) and u 6= 0 implies u|Ω1
6= 0, then such a global minimizer is unique.

Proof. We will prove that under the hypotheses of the theorem, the functional Fθ,A,p(·) defined
by (8) is weakly lower semicontinuous with respect to the L2(Ω) topology and BV-coercive.

First, note that under the hypotheses of the theorem we can write

Fθ,A,p(u) = ‖Tu− v‖2Y + α1‖
√
1− θ u‖2

L2(Ω c
1)
+ α2 Jθ,A,p(u), u ∈ X . (12)

Since 1
1−θ

∈ L1(Ω c

1
), it follows that ‖

√
1− θ · ‖L2(Ωc

1)
is a norm in L2(Ωc

1) and therefore

‖
√
1− θ u‖2

L2(Ω c
1)

is weakly lower semicontinuous. The weak lower semicontinuity of Fθ,A,p(·)
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then follows immediately from this fact, from Lemma 3.3 and from the convexity of ‖Tu−v‖2Y .
For the BV-coercivity, note that

‖Tu− v‖2Y + α2J
M

0
(u) ≤ ‖Tu− v‖2Y + α2

∥∥∥∥
1

θ

∥∥∥∥
L∞(M)

Jθ,A,p(u) (from Theorem 3.2 and Remark 2.2)

≤ ‖Tu− v‖2Y + α2

∥∥∥∥
1

θ

∥∥∥∥
L∞(M)

Jθ,A,p(u) + α1‖
√
1− θ u‖2

L2(Ω c
1)

≤
∥∥∥∥
1

θ

∥∥∥∥
L∞(M)

Fθ,A,p(u) (since
∥∥θ−1

∥∥
L∞(M)

≥ 1). (13)

Now, since Tχ
M
6= 0, by Lemma 4.1 in [1] the functional ‖Tu− v‖2Y +α2J

M

0
(u) is BV-coercive.

From this and inequality (13) it follows that Fθ,A,p(·) is also BV-coercive. The existence of a

global minimizer û ∈ L2(Ω) is then obtained from Theorem 3.1 in [1]. The fact that û ∈ BV (M)

follows immediately from observing that û ∈ L1(M) and, by virtue of (13), JM

0
(û) < ∞ (since

Fθ,A,p(û) < ∞). Finally, since Tu = 0 (for u 6= 0) implies u|Ω1
6= 0, it follows that Fθ,A,p is

strictly convex and therefore such a global minimizer û is unique.

Note that if in Theorem 3.8 Ω1 = ∅ and M = Ωc

0 (where Ωc

0 is as in Theorem 3.7) then

Theorem 3.8 reduces to Theorem 3.7.

Finally, we present two stability results for the minimizers of functionals of type (8) under

perturbations in the data, in the model and in the regularization parameters.

Theorem 3.9. Let Ω ⊂ R
2 be a bounded open convex set with Lipschitz boundary, X = L2(Ω),

Y a reflexive Banach space, p ∈ [1, 2], θ ∈ M̂(Ω) such that 1
1−θ

∈ L1(Ω) and 1
θ
∈ L∞(Ω),

A : Ω → R
2×2 a measurable matrix field such that θ and A satisfy the WA condition in Ω. Let

also T, Tn ∈ L(X ,Y), v, vn ∈ Y , α1, α2, α
(n)
1
, α(n)

2
positive constants, for n = 1, 2, ..., such that

as n → ∞, α(n)
1 → α1, α

(n)
2 → α2, vn → v and Tnu → Tu uniformly for u in Wθ,A,p-bounded

sets, where Wθ,A,p is as in (6). Let Fθ,A,p be as in (8) and define

F (n)

θ,A,p
(u)

.
= ‖Tnu− vn‖2Y + α(n)

1
‖
√
1− θ u‖2

L2(Ω)
+ α(n)

2
Jθ,A,p(u), u ∈ L2(Ω).

If û, un are the global minimizers of Fθ,A,p and F (n)

θ,A,p, respectively, then un
w−→ û.

Proof. Note first that by virtue of Theorem 3.4 the functionals Fθ,A,p and F (n)

θ,A,p have unique

global minimizers û and un, respectively. To prove that un
w−→ û, we will resort to Theorem 3.3

in [11], for which we need to prove that the following conditions hold: i) the functional Wθ,A,p is

uniformly bounded from below; ii) every Wθ,A,p-bounded set is relatively compact in X ; iii) the

functional Fθ,A,p is Wθ,A,p subsequentially weakly lower semicontinuous; iv) the functional F (n)

θ,A,p

isWθ,A,p-coercive; and v) F (n)

θ,A,p isWθ,A,p-uniformly consistent for Fθ,A,p (i.e. F
(n)

θ,A,p(u) → Fθ,A,p(u),

uniformly for u in Wθ,A,p-bounded sets).
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Condition i) is trivial while condition ii) was proved in Theorem 3.4. On the other hand,

for iii), with a proof analogous to that of Theorem 3.8 (with Ω1 = ∅) it follows that Fθ,A,p is

weakly lower semicontinuous (and hence subsequentially weakly lower semicontinuous). For

iv), let {uj} ⊂ L2(Ω) such that Wθ,A,p(uj) → ∞ as j → ∞ and note that F (n)

θ,A,p
(uj) ≥

α(n)

1
‖
√
1− θ uj‖2L2(Ω)

+ α(n)

2
Jθ,A,p(uj) ≥ cnWθ,A,p(uj), where cn

.
= min

{
α
(n)
1

α1
,
α
(n)
2

α2

}
> 0, for all

n ∈ N. Thus, F (n)

θ,A,p is Wθ,A,p-coercive. Finally, v) follows immediately from the convergence of

α(n)
i to αi, as n→ ∞, for i = 1, 2, from the fact vn converges to v and from the hypothesis that

Tnu→ Tu uniformly for u on Wθ,A,p-bounded sets.

The result then follows from Theorem 3.3 in [11].

The next stability result corresponds to the existence proof of Theorem 3.6.

Theorem 3.10. Let Ω ⊂ R
2 be a bounded open convex set with Lipschitz boundary, X = L1(Ω),

Y a reflexive Banach space, p ∈ [1, 2], A : Ω → R
2×2 a measurable matrix field such that θ and

A satisfy the WA condition in Ω. Let also T, Tn ∈ L(X ,Y), v, vn ∈ Y , α, αn positive constants,

for n = 1, 2, ..., such that as n → ∞, αn → α, vn → v, ‖TnχΩ‖ ≥ γ > 0 and Tnu → Tu for

every u in X . Let FA,p be as in (9) and define

F (n)

A,p
(u)

.
= ‖Tnu− vn‖2Y + αn sup

~ν∈VA,p

∫

Ω

−u div(A~ν) dx, u ∈ L1(Ω),

where VA,p is as defined in Theorem 3.6. If û, un are the global minimizers of FA,p and F (n)

A,p,

respectively, then ‖un − û‖L1(Ω) −→ 0.

Proof. Under the hypotheses of the theorem, the existence of unique global minimizers û, un of

FA,p and F (n)
A,p, respectively, follows immediately from Theorem 3.6.

To prove the result we will use Theorem 3.2 in [1]. For that, it suffices to prove that: i) the

functionals FA,p and F (n)
A,p are BV-coercive; ii) FA,p and F (n)

A,p are lower semicontinuous; iii) the

sequence of functionals {F (n)

A,p} is uniformly BV-coercive and iv) {F (n)

A,p} is consistent for FA,p,

uniformly on BV-bounded sets.

Conditions i) and ii) for FA,p and F (n)
A,p follow immediately as in the proof of Theorem 3.6.

For the uniform BV-coercivity condition iii) note that for any u ∈ L1(Ω) one has

F (n)

A,p
(u) = ‖Tnu− vn‖2Y + αn sup

~ν∈VA,p

∫

Ω

−u div(A~ν) dx

≥ ‖Tnu− vn‖2Y + αnJ0(u) (by virtue of Theorem 3.2)

≥ ‖Tnu− vn‖2Y + (α− ǫ)J0(u) (for some ǫ > 0, since αn → α). (14)
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Now, by Theorem 4.2 in [1] it follows that the functional ‖Tnu− vn‖2Y+(α−ǫ)J0(u) is uniformly

BV-coercive. From this and inequality (14) we conclude that {F (n)
A,p} is uniformly BV-coercive.

Condition iv) (consistency) follows immediately as in Theorem 4.2 in [1].

The result then follows from Theorem 3.2 in [1].

4 APPLICATIONS TO IMAGE RESTORATION

The purpose of this section is to present some applications of the mixed regularization method

developed in the previous section, consisting in the simultaneous use of penalizers of L2 and

anisotropic bounded-variation (BV) type, to tackle an image restoration problem. We will show

how this mixed method outperforms the pure single ones, more so when the regularity of the

exact solution is inhomogeneous and/or anisotropic.

4.1 Modeling

The basic mathematical model for image blurring is given by the following Fredholm integral

equation of the first kind:

T f(x, y) =

∫ ∫

Ω

k(x, y, x′, y′)f(x′, y′)dx′dy′ = g(x, y), (15)

where Ω ⊂ R
2 is a bounded domain, f ∈ X .

= L2(Ω) represents the original image, k is the

so called “point spread function” (PSF) and g is the blurred image. For the examples shown

below we used a PSF of “atmospheric turbulence” type, i.e. we chose k to be a two-dimensional

Gaussian kernel:

k(x, y, x′, y′) = (2πσhσv)
−1 exp

(
− 1

2σ2
h

(x− x′)2 − 1
2σv

2 (y − y′)2
)
, (16)

where σh and σv are the horizontal and vertical standard deviations, respectively. It is well

known ([6]) that with this PSF the operator T in (15) is compact with non-closed range and

therefore T †, the Moore-Penrose inverse of T , is unbounded and problem (15), i.e.

T f = g (17)

is ill-posed.

4.2 Discretization

For the numerical examples that follow, we considered images defined over the domain Ω =

[0, 1] × [0, 1], discretized to obtain an M-by-M pixel grid and hence an M-by-M matrix U ,
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whose entries consist of the values of the light intensity function f at the centerpoints of

each pixel. Next, we stacked the columns of the matrix U to get a vector u ∈ R
M2

so that

uM(l−1)+m = Um,l ∀ l, m = 1, 2, . . . ,M . Denoting with T the matrix associated to the standard

discretization of the operator T , the finite dimensional problem corresponding to (17) reads

Tu = v,

where v is the vector obtained by evaluating g at the centerpoints of the pixels. We further

assume that our observations are contaminated with white noise. Hence, our model is finally

stated as

Tu = v + ǫ, (18)

where ǫ ∈ R
M2

is a realization of a random variable with distribution N (0, σ2
noiseIM2).

Similarly, the discretized version of functional (8) takes the form

Fθ,A,p(u)
.
=

1

M2
‖Tu− v‖22 +

α1

M2
‖
√
1− θ u‖22 +

α2

M2

∑

m∈M

θm

∥∥∥∥∥Am

(
M(um − um+1)

M(um − um−M)

)∥∥∥∥∥
p

,

(19)

where Am and θm are the values of the matrix field A and of the weighting function θ at the

centerpoint of the mth pixel, respectively, and M denotes the set of interior pixels. Next, we

shall state a suitable method to approximate the minimizer of (19) when p = 1. Similar steps

lead to the corresponding method for the case p = 2. Although we do not delve into details

here, a complete explanation for the case p = 1 can be found in [10].

4.3 Numerical implementation

We build the anisotropy matrix field A : Ω → R
2×2 following the ideas in [4]. We begin

by computing an a-priori estimation of the gradient field ∇up(x, y), where up is a zero-order

Tikhonov-Phillips restoration. Then A is constructed from ∇up so as to comply with the

following properties:

• A(x, y) is a symmetric positive definite matrix ∀(x, y) ∈ Ω.

• If ∇up(x, y) = 0, A(x, y) = I (the identity matrix).

• If ∇up(x, y) 6= 0, A(x, y) has eigenvalues σj(x, y) and eigenvectors vj(x, y), j = 1, 2, such

that

v1(x, y) ‖ ∇up(x, y), σ1(x, y) = h(|∇up(x, y)|),
v2(x, y) ⊥ ∇up(x, y), σ2(x, y) = 1,
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where the function h above is decreasing, with 0 < h(t) ≤ 1 ∀t ∈ R
+, h(0) = 1 and

h(∞) = 0.

For our numerical examples, we took h(t) = [1 + (t/τ)κ]−1, where τ, κ > 0 are control

parameters that can roughly be referred to as the break point from which we infer the image

has an edge and the width of the transition region, respectively. With this choice of h, A was

constructed as

A(x, y) = I − (1− h(|∇up(x, y)|))
[ ∇up(x, y)
|∇up(x, y)|

] [ ∇up(x, y)
|∇up(x, y)|

]T
. (20)

The weighting function θ was constructed by scaling to [0, 1] the norm of ∇up; that is

θ(x, y) =
|∇up(x, y)|

max(x,y)∈Ω |∇up(x, y)|
. (21)

Notice that with this choice of θ, functional (19) resembles the one corresponding to pure

Tikhonov-Phillips regularization where |∇up| is small, while it approaches a pure anisotropic

BV functional where |∇up| is large. It can be shown that θ and A as chosen in (21) and (20),

satisfy the WA condition (7) in Ω = [0, 1]× [0, 1] for both p = 1 and p = 2.

It now remains to find the minimizer of (19). To acomplish this, we approximate Fθ,A,1 by

a differentiable functional in order to consider its first order necessary condition. We do so by

replacing, for w ∈ R, the value of |w| by φ(w), where φ : R → R is given by φ(t)
.
=
√
t2 + η2−η,

for η sufficiently small. With this choice of φ, it can be shown ([15], §12) that there exists a

function ψ satisfying the following duality relation:

φ(t) = inf
s>0

(st2 + ψ(s)), (22)

ψ(s) = sup
t∈R

(φ(t)− st2),

and therefore
∥∥∥∥∥Am

(
M(um − um+1)

M(um − um−M)

)∥∥∥∥∥
1

≈ inf
sm∈R+

(
smt

2
m,1 + ψ(sm)

)
+ inf

qm∈R+

(
qmt

2
m,2 + ψ(qm)

)
,

where

tm,1 =M [am1,1(um − um−M) + am1,2(um − um+1)],

and

tm,2 =M [am2,1(um − um−M) + am2,2(um − um+1)].

Define now the four M2-by-M2 diagonal matrices Ai,j, for i, j = 1, 2, by Ai,j
m,m = ami,j

if m ∈ M and Ai,j
m,m = 0 otherwise. In a similar fashion, let Θ

.
= diag(θm)M2×M2, and
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S,Q : RM2 → R
M2×M2

defined as S(s)
.
= diag(sm)M2×M2 and Q(q)

.
= diag(qm)M2×M2 . Let Lx

and Ly be theM
2-by-M2 first order finite difference approximating matrices for the components

of the gradient, and let R1 and R2 be the M
2-by-M2 matrices defined as R1

.
= A1,1Lx +A1,2Ly

and R2
.
= A2,1Lx + A2,2Ly. Finally, let I be the M2-by-M2 identity matrix, and define the

functional F̂θ,A,1(u, s, q) : (R
M2

)3 → R by

F̂θ,A,1(u, s, q) =‖Tu− v‖2 + α1

M2
ut(IM2 −Θ)u+ α2u

tRt
1ΘSR1u+ α2u

tRt
2ΘQR2u

+
α2

M2

∑
θmψ(sm) +

α2

M2

∑
θmψ(qm). (23)

It can be shown ([10]) that

inf
s,q∈RM2

F̂θ,A,1(u, s, q) = Fθ,A,1(u),

and hence, our problem of approximating the minimizer of (19) turns out to be tantamount to

minimizing F̂θ,A,1 with respect to u, s and q, simultaneously. Note that the first order necessary

condition on F̂θ,A,1 with respect to u can be written as:
(
T tT + α1(IM2 −Θ) + α2R

t
1ΘSR1 + α2R

t
2ΘQR2

)
u = T tv. (24)

In order to minimize F̂θ,A,1 with respect to s and q we resort to (22) to deduce that if

bm
.
= argminsm∈R+

{
smt

2
m,1 + ψ(sm)

}
, then

bm =
φ′(tm,1)

2tm,1

. (25)

Similarly, if cm
.
= argminqm∈R+

{
qmt

2
m,2 + ψ(qm)

}
, then

cm =
φ′(tm,2)

2tm,2

. (26)

Finally, the iterative algorithm can be stated as follows:

Step 1 - Initializing. Set j = 0, and initialize uj = u0, bj = b0 and cj = c0. (u0, b0, c0 ∈ R
M2

arbitrarily chosen.)

Step 2 - Counting. Make j = j + 1.

Step 3 - Updating b. Update bj and cj using equations (25) and (26).

Step 4 - Updating u. Update uj by solving the linear system (24).

Step 5 - Stopping. If a previously defined convergency criterion is satisfied, the algorithm

ends and the global minimizer of (23), û, is approximated by uj. Otherwise, the algorithm

repeats from step 2.

Next, we show some restoration examples produced with the aforementioned algorithm.
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4.4 Numerical results

We shall first consider a 130×130 pixel color image and its corresponding blurred noisy version,

obtained by model (18) with σh = σv = 2.5% and σnoise = 2.5%.

It is worth mentioning here that the blurring process, noise addition and restorations for the

following examples were done separately on the red, green and blue layers of the color images.

Example 1: Figure 1 depicts the blurred noisy image that constitutes the observation v

of the problem, along with a restoration produced with the traditional zero-order Tikhonov-

Phillips regularization (from which we later estimated the gradient field to build A and θ).

Figure 2 shows the images restored using both the isotropic and anisotropic BV methods, with

p = 1. Note that there is a significant difference on the curvature of some of the edges produced

by the different methods. Finally, Figure 3 depicts the results of the isotropic and anisotropic

mixed methods.

(a) (b)

Figure 1: (a) Blurred noisy image (observation); (b) Tikhonov-Phillips restoration.
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(a) (b)

Figure 2: (a) Isotropic BV restoration; (b) Anisotropic BV restoration.

(a) (b)

Figure 3: (a) Mixed isotropic restoration; (b) Mixed anisotropic restoration.

In order to make an objective performance comparison, we use the ISNR, defined as

ISNR(û) = 10 log10
(
‖v − u0‖2/‖û− u0‖2

)
,

where u0 is the original image (unknown in real-life problems) and û is the restored image. The

ISNR values of the restorations for Example 1 are depicted in Table 1, alongside the original

image u0.
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Figure 4: Original image

Restoration Method ISNR

Tikhonov 0 2.508

Isotropic BV 2.452

Anisotropic BV 2.998

Mixed Isotropic 3.211

Mixed Anisotropic 3.398

Table 1: ISNR values.

In order to illustrate the importance of allowing θ to be space-dependent, the same previous

deblurring problem was solved by choosing θ constant (note that in this case the existence and

uniqueness of minimizers is well known for the extreme cases θ = 1 and θ = 0, while for 0 <

θ < 1 well-posedness is given by Theorem 3.8). Both the mixed isotropic and mixed anisotropic

methods were run for the image shown in Figure 1(a) setting θ ∈ (0, 1) as a constant. Note that

the value of this constant results irrelevant since it will be compensated by the regularization

parameters α1 and α2 (obtained using Morozov’s Discrepancy Principle). The obtained ISNR

values were 3.124 and 3.285 for the isotropic and anisotropic mixed regularization models,

respectively.

Example 2: We now show another example of a 130 × 130 pixel color image, blurred

with standard deviations σh = σv = 2% and contaminated with 2.5% white additive Gaussian

noise. The blurred noisy image v is depicted in Figure 5 along with the restoration produced

with a zero-order Tikhonov-Phillips regularization. In this case, the restorations including BV

regularization were done with p = 2. Figures 6 and 7 show the results for the BV and mixed

methods.
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(a) (b)

Figure 5: (a) Blurred noisy image (observation); (b) Tikhonov-Phillips restoration.

(a) (b)

Figure 6: (a) Isotropic BV restoration; (b) Anisotropic BV restoration.
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(a) (b)

Figure 7: (a) Mixed isotropic restoration; (b) Mixed anisotropic restoration.

Once again, we computed the ISNR values, which are presented in Table 2 along the original

image u0, in Figure 8.

Figure 8: Original image

Restoration Method ISNR

Tikhonov 0 2.415

Isotropic BV 2.580

Anisotropic BV 2.627

Mixed Isotropic 2.845

Mixed Anisotropic 2.942

Table 2: ISNR values.

5 CONCLUSIONS

In this work we presented several mathematical results on existence, uniqueness and stability of

global minimizers of generalized Tikhonov-Phillips functionals with penalizers given by convex

spatially-adaptive combinations of L2 and anisotropic BV type. These penalizers are conceived

so as to capture the benefits of both smooth L2 regularization and the well known border-

preserving properties of total variation penalization. Adaptivity is achieved through a spatially-

varying weighting function θ while anisotropy is attained by the inclusion of a matrix field in
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the BV part of the penalizer. Although both the weighting function and the anisotropy matrix

field can be prescribed a-priori, we showed how both can be appropriately constructed from a

first estimation of the gradient field.

The main stability results (Theorems 3.9 and 3.10) contemplate not only perturbations in

the data, but also in the model and in the regularization parameters.

In order to illustrate the performance of the mixed L2-BV regularization method, some

examples of image restoration problems were presented. Through these examples it was shown

that the introduction of spatial adaptivity improves the quality of the restoration on images with

heterogeneous properties in terms of edges and smooth regions. Furthermore, the introduction

of anisotropy in the model was shown to improve restoration of borders in the images. These

conclusions are supported by the ISNR values on Tables 1 and 2. Although there is undoubtedly

much room for further research, these preliminary results indicate that, with appropriate choices

of the weighting function θ and of the anisotropy matrix field A, the mixed combined method

outperforms all single ones.

ACKNOWLEDGMENTS

This work was supported in part by Consejo Nacional de Investigaciones Cient́ıficas y Técnicas,

CONICET, through PIP 2014-2016 Nro. 11220130100216-CO, by Universidad Nacional del

Litoral, through projects CAI+D PJov 2011 Nro. 50020110100055, CAI+D PI 2011 Nro.

50120110100294 and by the Air Force Office of Scientific Research, AFOSR/SOARD, through

Grant FA9550-14-1-0130.

References

[1] R. Acar and C. R. Vogel, Analysis of bounded variation penalty methods for ill-posed

problems, Inverse Problems 10 (1994), 1217–1229.

[2] R. A. Adams, Sobolev spaces, Academic Press [A subsidiary of Harcourt Brace Jovanovich,

Publishers], New York-London, 1975, Pure and Applied Mathematics, Vol. 65.

[3] H. Attouch, G. Buttazzo, and G. Michaille, Variational analysis in Sobolev and BV spaces,

MPS/SIAM Series on Optimization, vol. 6, Society for Industrial and Applied Mathematics

(SIAM), Philadelphia, PA, 2006, Applications to PDEs and optimization.

[4] D. Calvetti, F. Sgallari, and E. Somersalo, Image inpainting with structural bootstrap pri-

ors, Image and Vision Computing 24 (2006), 782–793.

20

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

F.
 J

. I
ba

rr
ol

a,
 G

. L
. M

az
zi

er
i, 

R
. S

pi
es

 &
 K

. G
. T

em
pe

ri
ni

; "
A

ni
so

tr
op

ic
 B

V
-L

 2
 r

eg
ul

ar
iz

at
io

n 
of

 li
ne

ar
 in

ve
rs

e 
ill

-p
os

ed
 p

ro
bl

em
s"

Jo
ur

na
l o

f 
M

at
he

m
at

ic
al

 A
na

ly
si

s 
an

d 
A

pp
lic

at
io

ns
, 2

01
7.



[5] A. Chambolle and J. L. Lions, Image recovery via total variation minimization and related

problems, Numer. Math. 76 (1997), 167–188.

[6] H. W. Engl, M. Hanke, and A. Neubauer, Regularization of inverse problems, Mathematics

and its Applications, vol. 375, Kluwer Academic Publishers Group, Dordrecht, 1996.

[7] G. Gilboa, N. Sochen, and Y. Y. Zeevi, Variational denoising of partly textured images by

spatially varying constraints, IEEE Trans. Image Proc. 15 (2006), no. 8, 2281–2289.

[8] M. Grasmair and F. Lenzen, Anisotropic total variation filtering, Applied Mathematics

and Optimization 62 (2010), no. 3, 323–339.
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