
On the use of convolutive nonnegative matrix factorization
with mixed penalization for blind speech dereverberation

Francisco J. Ibarrola ∗1, Ruben D. Spies2, and Leandro E. Di Persia1

1Research Institute for Signals, Systems and Computational Intelligence, sinc(i), FICH-UNL, CONICET,
Ciudad Universitaria UNL, (3000) Santa Fe, Argentina.

2Instituto de Matemática Aplicada del Litoral, IMAL, CONICET-UNL, Centro Científico Tecnológico
CONICET Santa Fe, Colectora Ruta Nac. 168, km 472, Paraje “El Pozo”, 3000, Santa Fe, Argentina and

Departamento de Matemática, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe,
Argentina.

Abstract

When a signal is recorded in an enclosed room, it typically gets affected by reverberation. This
degradation represents a problem when dealing with audio signals, particularly for applications
involving automatic speech and/or speaker recognition. There are some approaches to deal with
this issue that are quite satisfactory when multi-channel recordings or learning data are available,
but this is not the general case in most human-computer interaction applications, and constructing
a method that works well in a general context still poses a significant challenge. In this article, we
propose a method based on convolutive nonnegative matrix factorization that mixes two penalizers
in order to impose certain characteristics over the time-frequency components of the restored signal
and the reverberant components. An algorithm for finding such a solution is described and tested.
Comparisons of the results against state of the art methods are presented, showing significant
improvement.

Keywords: signal processing, dereverberation, regularization.

1 Introduction
When captured in enclosed rooms, audio recordings will most certainly be affected by reverberant
components due to reflections of the sound waves in the walls, ceiling, floor or furniture. This can
severely degrade the characteristics of the recorded signal ([1]), generating difficult problems for pro-
cessing such a signal, particularly when required for certain speech applications ([2]). The goal of any
dereverberation technique is to remove or attenuate the reverberant components to obtain a cleaner
signal. The dereverberation problem is called “blind” when the available data consists only of the
reverberant signal itself, and this is the problem we shall address on this work.

Depending on the problem, our observation might consist of a single or multi-channel signal. That
is, we might have a signal recorded by one or more microphones. For the latter case, there are several
proposed methods that work quite well ([3]). For the case of single-channel, although some methods
perform reasonably well ([4], [5], [6]), there is still much room for improvement.
∗fibarrola@sinc.unl.edu.ar
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In this work we present a dereverberation method for single channel data based on the idea of
penalizing different characteristics of the components of a convolutive nonnegative matrix factorization
(NMF) representation model for the reverberation phenomenon.
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Figure 1: Spectrograms for a clean speech signal (left) and the corresponding reverberant speech
signal (right).

Let s, x : R→ R, with support in [0,∞), be the functions associated with the clean and reverberant
signals, respectively. Then, our reverberation model can be written as

x(t) = (h ∗ s)(t), (1)

where h : R → R is the room impulse response (RIR) signal, and “∗” denotes convolution. This
model is valid under the hypothesis of a linear, time-invariant system. In practice, this implies we are
assuming the source and microphone positions to be static, and the signal energy to be low enough for
the effect of the non-linear components to be insignificant.

When dealing with sound signals (particularly speech signals), it is often convenient to work with
the associated spectrograms rather than the signals themselves. Thus, we make use of the short time
Fourier transform (STFT), defined as

xk[t]
.
=

∫ ∞
−∞

x(u)w(u− t)e−2πiukdu, t, k ∈ R

where w : R → R+
0 is a given window function. Denoting the STFTs of h and s by sk[t] and hk[t],

respectively, a discretized approximation of the STFT model associated to (1) is given ([4]) by

xk[t] ≈ x̃k[t]
.
=

Th−1∑
τ=0

sk[t− τ ]hk[τ ], (2)

where t = 1, . . . , T, is a discretized time variable that corresponds to window locations, k = 1, . . . ,K,
denotes the frequency subband and Th is a parameter of the model associated to the expected maximum
duration of the reverberation phenomenon. Later on, the values of t will be chosen in such a way that
the union of the windows’ supports contain the support of the observed signal, and the values of k in
such a way that they cover the whole frequency spectrum, up to half the sampling frequency.

Now, let us write hk[τ ] = |hk[τ ]|ejφk[τ ]. It is well known that the phase angles φk[τ ] are highly
sensitive with respect to mild variations on the reverberation conditions. To overcome the problems
derived from this, we shall proceed (see [4]) to treat the K × Th variables φk[τ ] as random variables
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i.i.d. with uniform distribution in [−π, π). Denoting the complex conjugate as “∗” and the Kronecker
delta as δij , the expected value of |x̃k[t]|2 is given by

E|x̃k[t]|2 = E
( ∑

τ,ν

sk[t− τ ]s∗k[t− ν]hk[τ ]h∗k[ν]
)

=
∑
τ,ν

sk[t− τ ]s∗k[t− ν]|hk[τ ]||hk[ν]|Eej(φk[τ ]−φk[ν])

=
∑
τ,ν

sk[t− τ ]s∗k[t− ν] |hk[τ ]| |hk[ν]| δτν

=
∑
τ

|sk[t− τ ]|2 |hk[τ ]|2.

Note that the [−π, π) interval choice for φk[τ ] is arbitrary, since this result holds for any 2π−length
interval. Finally, let us define Sk[t]

.
= |sk[t]|2, Hk[t]

.
= |hk[t]|2 and Xk[t]

.
= E|x̃k[t]|2. Then, our model

reads
Xk[t] =

∑
τ

Sk[t− τ ]Hk[τ ], (3)

and the square magnitude of the observed spectrogram components can be written as

Yk[t] = Xk[t] + εk[t], (4)

where εk[t] denotes the representation error. As shown in [4], this model is equivalent to a convolutive
NMF ([11]) with diagonal basis. In the next section, we build a cost function in order to find an
appropriate convolutive representation that allows us to isolate the components of Sk[t].

2 Mixed Penalization
As a way of measuring the representation error, we will use the square of the Frobenius norm ||Y −X||2F ,
where Y and X are the matrices whose (k, t) components are Yk[t] and Xk[t], respectively.

Since we are dealing with a blind dereverberation problem, we have no information on the structure
of the matrix H (with elements Hk[t]). Hence, we must impose some conditions on the representation
(3) in order to ensure that S and H will provide a satisfactory representation for our dereverberation
problem.

As it can be seen in Figure 1, for clean speech signals, the spectrogram is expected to have some
sparse structure, which is not preserved under reverberant conditions. Sparsity can be regained by
introducing a penalization term over the matrix S. In a similar fashion, certain regularity conditions
over the matrix H can be imposed to improve its correspondence with a room impulse response (RIR)
signal.

Based upon these ideas, we propose the following cost function:

J(H,S)
.
=
∑
t,k

[
(Yk[t]−Xk[t])2+λ1,k|Hk[t]|p1+λ2,k|Sk[t]|p2

]
,

where λ1,k, λ2,k ≥ 0 are penalization parameters that quantify the weights of both penalizers relative
to the fidelity term, whereas the exponents p1, p2 ∈ (0, 2) are tunning parameters. Small values of these
parameters will promote sparsity, whereas values close to 2 will promote smoothness. Since there is
a clear scale indeterminacy in the representation (3), we impose the (somewhat arbitrary) additional
constraint ||Sk||2 = ||Yk||2 ∀k, which means that the `2−norm (energy) shall remain equal for every
frequency.
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2.1 Regularization parameters
As mentioned before, the parameters λ1,k, λ2,k, k = 1, . . . ,K, weight the penalizers against the fidelity
term. In this sense, the optimal weights of these regularization parameters might vary as a function
of the frequency subband, and hence their proposed dependency on k. Since searching blindly for 2K
parameters is non-viable in practice, we quantify this dependency by defining λ1,k

.
= λ1

∑T
t=1 |Yk[t]|2

and λ2,k
.
= λ2

∑T
t=1 |Yk[t]|2. This means we only need to look for two paramenters (λ1, λ2) and then

multiply them by the energy of the signal associated to each row of Y .
Next, we present an algorithm for approximating matrices H and S that minimize J .

3 Updating rules
We shall build an iterative algorithm following the idea in [4], which is based on the auxiliary function
technique.

Let Ω ⊂ R and f : Ω → R+
0 . Then, g : Ω × Ω → R+

0 is called an auxiliary function for f if
∀w,w′ ∈ Ω, g(w,w′) ≥ f(w) and g(w,w) = f(w). With this definition, it can be shown ([7]) that for
any w0 ∈ Ω, the sequence {f(wj)}∞j=0 is non-increasing under the update rule

wj = arg min
w

g(w,wj−1), j = 1, . . . ,∞. (5)

We will use this approach to alternatively update the matrices H and S. Let us begin by fixing
H = H ′, where H ′ is an arbitrary K × Th matrix. Then, if we let

X ′k[t] =
∑
τ

S′k[τ ]H ′k[t− τ ],

it can be shown that the function gs, defined as

gs(S, S
′)
.
=
∑
k,t,τ

S′k[τ ]H
′
k[t− τ ]

X ′k[t]

(
Yk[t]−

Sk[τ ]

S′k[τ ]
X ′k[t]

)2

+
∑
k,t

λ1,k|H ′k[t]|p1

+
∑
k,t

λ2,k

(p2
2
S′k[t]

p2−2Sk[t]
2+
(
1− p2

2

)
|S′k[t]|p2

)
,

is an auxiliary function for J with respect to S.
In an analogous way, fixing S = S′, an auxiliary function for J with respect to H is given by gh,

defined as

gh(H,H
′)
.
=
∑
k,t,τ

S′k[t− τ ]H ′k[τ ]
X ′k[t]

(
Yk[t]−

Hk[τ ]

H ′k[τ ]
X ′k[t]

)2

+
∑
k,t

λ1,k

(
p1
2
H ′k[t]

p1−2Hk[t]
2+

2− p1
2
|H ′k[t]|p1

)
+
∑
k,t

λ2,k|S′k[t]|p2 .

Now, since gs is quadratic with respect to S and gh is quadratic with respect to H, we can use the
first order necessary conditions to find the minimizers complying with the update rule (5). This leads
to the following updating rules:

Sk[τ ] = S′k[τ ]

∑
tH
′
k[t− τ ]Yk[t]∑

tH
′
k[t− τ ]X ′k[t] +

λ2,k

2 p2|S′k[τ ]|p2−1
,
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Hk[τ ] = H ′k[τ ]

∑
t S
′
k[t− τ ]Yk[t]∑

t S
′
k[t− τ ]X ′k[t] +

λ1,k

2 p1|H ′k[τ ]|p1−1
.

In order to avoid the aforementioned scale indeterminacy, every updating step is to be followed by
scaling Sk so that its `2 norm coincides with that of the observation Yk. In principle, the algorithm is
run until ‖S − S′‖2F decreases below an established threshold value, although it is worth noting that
other stopping criteria might also be suitable.

4 Experimental results
For the experiments, we took 110 speech signals from the TIMIT database1, recorded at 16 KHz,
and we artificially made them reverberant using the software Room Impulse Response Generator by
E.A.P. Habets2, based on the model in [9]. Each signal was degraded under different reverberation
conditions: three different room sizes, each with three different microphone positions and four different
reverberation times.

In order to avoid preprocessing, the choice of the regularization parameters was made a priori by
means of empirical rules, based upon signals from a different database. This is supported by the fact
that the parameters were observed to be rather robust with respect to variations of the reverberation
conditions, and hence they were chosen simply as λ1 = 1 and λ2 = 10−4. The rest of the model
parameters were chosen as specified in Table 1.

p1 p2 Th window size win. overlapping max. iter.
1.8 1 15 256 samples 128 samples 20

Table 1: Model parameter values

As previously discussed, the choice of p1 = 1.8 is meant to promote smoothness over H, while the
choice of p2 = 1 aims to induce sparsity over S.

In order to evaluate the performance of our model, we made comparisons against two state of
the art methods under the same conditions: the one proposed by Kameoka et al in [4], and the one
proposed by Wisdom et. al. in [10] (with a window length of 2048), choosing all the parameters as
suggested by the authors.

To measure performance, following [8], we made use of the frequency weighted segmental signal-to-
noise ratio (fwsSNR) and the cepstral distance. The results for each performance measure are stated in
Tables 2 and 3 and depicted in Figure 2, the different reverberation times: 300[ms], 450[ms], 600[ms]
and 750[ms]. Notice that for the case of fwsSNR, higher values correspond to better performance,
while for the cepstral distance, small values indicate higher quality.

Rev. time Rev. Signal Kameoka’s Wisdom’s Mixed pen.
300 [ms] 8.102(1.96) 7.950(1.73) 8.262(1.53) 9.148(1.71)
450 [ms] 4.815(1.42) 5.127(1.36) 5.771(1.28) 6.458(1.45)
600 [ms] 3.082(1.20) 3.358(1.19) 4.140(1.17) 4.547(1.31)
750 [ms] 1.998(1.11) 2.184(1.10) 3.013(1.12) 3.239(1.22)

Table 2: Mean and (standard deviation) of fwsSNR for each method and reverberation time.

In regard to the fwsSNR peformance measure, the values in Table 2 give account of a strong
improvement of our proposed method with respect to the others. As for the cepstral distance, although
our method outperforms the other two, an improvement with respect to the reverberant signal is

1https://catalog.ldc.upenn.edu/ldc93s1
2https://github.com/ehabets/RIR-Generator
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Table 3: Mean and (standard deviation) of cepstral distance for each method and reverberation time.

Rev. time Rev. Signal Kameoka’s Wisdom’s Mixed pen.
300 [ms] 3.440(0.44) 4.057(0.45) 3.908(0.48) 3.566(0.44)
450 [ms] 4.264(0.44) 4.636(0.42) 4.511(0.41) 4.124(0.41)
600 [ms] 4.716(0.46) 5.006(0.42) 4.860(0.40) 4.519(0.41)
750 [ms] 5.011(0.48) 5.264(0.43) 5.089(0.40) 4.807(0.42)

0.3 0.45 0.6 0.75
0

2

4

6

8

10

fwsSNR

Reverberant signal

Kameoka

Wisdom

Mixed Penalization

0.3 0.45 0.6 0.75
0
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Cepstral Distance
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Figure 2: Mean and standard deviations of performance measures for different reverberation times.

observed only for reverberation times of 450[ms] or greater. A t-test with significance level α = 0.05
was done using all the obtained results, showing statistical significance of the improvement on the
performance of our method with respect to the reverberant signal and the other methods.

5 Conclusions
In this work we presented a model for signal dereverberation based on convolutive NMF with mixed
penalization. An iterative updating algorithm was introduced and its performance was tested and
compared with two state of the art methods. The results show that our mixed penalization method
improves the quality of the restorations.

Although these preliminary results are promising, there is still room for improvement. For instance,
other types of penalizing terms can be used, different ways to optimize the model parameters can be
sought, etcetera.
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