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Abstract. We propose a novel weakly supervised discriminative algo-
rithm for learning context specific registration metrics as a linear com-
bination of conventional similarity measures. Conventional metrics have
been extensively used over the past two decades and therefore both their
strengths and limitations are known. The challenge is to find the optimal
relative weighting (or parameters) of different metrics forming the simi-
larity measure of the registration algorithm. Hand-tuning these parame-
ters would result in sub optimal solutions and quickly become infeasible
as the number of metrics increases. Furthermore, such hand-crafted com-
bination can only happen at global scale (entire volume) and therefore
will not be able to account for the different tissue properties. We propose
a learning algorithm for estimating these parameters locally, conditioned
to the data semantic classes. The objective function of our formulation is
a special case of non-convex function, difference of convex function, which
we optimize using the concave convex procedure. As a proof of concept,
we show the impact of our approach on three challenging datasets for
different anatomical structures and modalities.

1 Introduction

Deformable image registration is a highly challenging problem frequently encoun-
tered in medical image analysis. It involves the definition of a similarity crite-
rion (data term) that, once endowed with a deformation model and a smoothness
constraint, determines the optimal transformation to align two given images. We
adopt a popular graphical model framework [5] to cast deformable registration
as a discrete inference problem. The definition of the data term is among the
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most critical components of the registration process. It refers to a function that
measures the (dis)similarity between images such as mutual information (mi) or
sum of absolute differences (sad). Metric learning in the context of image regis-
tration [2,8,9,11,18] is an alternative that aims to determine the most efficient
means of image comparison (similarity measure) from labeled visual correspon-
dences. Our approach can be considered as a specific case of metric learning
where the idea is to efficiently combine the well studied mono/multi-modal met-
rics depending on the local context. We aim to learn the relative weighting
from a given training dataset using a learning framework conditioned on prior
semantic knowledge. We propose a novel weakly supervised discriminative learn-
ing framework, based structured support vector machines (ssvm) [13,15] and its
extension to latent models lssvm [16], to learn the relative weights of context
specific metric aggregations.

Metric Learning. Various metric learning methods have been proposed in the
context of image registration. Lee et al. [8] introduced a multi-modal registra-
tion algorithm where the similarity measure is learned such that the target and
the correctly deformed source image receive high similarity scores. The train-
ing data consisted of pre-aligned images and the learning is performed at the
patch level with an assumption that the similarity measure decompose over the
patches. [2,9] proposed the use of sensitive hashing to learn a multi-modal met-
ric. Similar to [8], they adopted a patch-wise approach. The dataset consisted
of pairs of perfectly aligned images and a collection of positive/negative pairs of
patches. Another patch-based alternative was presented by [14] where the train-
ing set consisted of non-aligned images with manually annotated patch pairs
(landmarks). More recently, approaches based on convolutional neural networks
started to gain popularity. Zagoruyko et al. [18] discussed CNN architectures to
learn patch based similarity measures. One of them was then adopted in [11]
to perform image registration. These methods require ground truth data in the
form of correspondences (patches, landmarks or dense deformation fields), which
is extremely difficult to obtain in real clinical data. Instead, our method is only
based on segmentation masks.

Metric Aggregation. In contrast to the above approaches, our method aggre-
gates standard metrics using contextual information. [3] showed, in fact, that
using a multichannel registration method where a set of features is globally
considered instead of a single similarity measure, produced robust registration
compared to using individual features. However, they did not discuss how these
features can be weighted. Following this, [4] proposed to estimate different defor-
mation fields from each feature independently, and then compose them into
final diffeomorphic transformation. Such strategy produces multiple deforma-
tion models (equal to number of metrics) which might be locally inconsistent.
Thus, their combination may not be anatomically meaningful. Our method is
most similar to Tang et al. [12], which generates a vector weight map that deter-
mines, at each spatial location, the relative importance of each constituent of
the overall metric. However, the proposed learning strategy still requires ground
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258 E. Ferrante et al.

truth data in the form of correspondences (pre-registered images) which is not
necessary in our case.

Contribution. We tackle the scenario where the ground truth deformations
are not known a priori. We consider these deformation fields as latent variables,
and devise an algorithm within the lssvm framework [16]. We model the latent
variable imputation problem as the deformable registration problem with addi-
tional constraints. In the end, we incorporate the learned aggregated metrics
in a context-specific registration framework, where different weights are used
depending on the structures being registered.

2 The Deformable Registration Problem

Let us assume a source three dimensional (3D) image I, a source 3D segmen-
tation mask SI and a target 3D image J . The segmentation mask is formed
by labels sk ∈ C, where C is the set of classes. We focus on the 3D to 3D
deformable registration problem. Let us also adopt without loss of generality a
graphical model [5] for the deformable registration problem. A deformation field
is sparsely represented by a regular grid graph G = (V,E), where V is the set
of nodes and E is the set of edges. Each node i ∈ V corresponds to a control
point pi. Each control point pi is allowed to move in the 3D space, therefore, can
be assigned a label di from the set of 3D displacement vectors L. Notice that
each 3D displacement vector is a tuple defined as di = {dxi, dyi, dzi}, where
dx, dy, and dz are the displacements in the x, y, and z directions, respectively.
The deformation (labeling of the graph G) denoted as D ∈ L|V | is associated
to a set of nodes V , where each node is assigned a displacement vector di from
the set L. The new control point obtained when the displacement di is applied
to the original control point pi is denoted as p̄i. Let us define a patch Ω̄I

i on
the source image I centered at the displaced control point p̄i. Similarly, we
define ΩJ

i as the patch on the target image J centered at the original control
point pi, and Ω̄SI

i as the patch on the input segmentation mask centered at
the displaced control point p̄i. Using the above notations, we define the unary
feature vector corresponding to the ith node for a given displacement vector di

as Ui(di, I, J) = (u1(Ω̄I
i , ΩJ

i ), · · · , un(Ω̄I , ΩJ
i )) ∈ R

n, where n is the number of
metrics (or similarity measures) and uj(Ω̄I

i , ΩJ
i ) is the unary feature correspond-

ing to the jth metric on the patches Ω̄I
i and ΩJ

i . In case of single metric, we
define n = 1. Therefore, given a weight matrix W ∈ R

n×|C|, where W (i, j) denote
the weight of the ith metric corresponding to the class j, the unary potential of
the ith node for a given displacement vector di is computed as:

Ūi(di, I, J, SI ;W ) = w(c̄)�Ui(di, I, J) ∈ R. (1)

where, w(c̄) ∈ R
n is the c̄th column of the weight matrix W and c̄ is the most

dominant class in the patch on the source segmentation mask Ω̄SI

i obtained as
c̄ = argmaxc∈C f(Ω̄SI

i , c), with f(Ω̄SI

i , c) being the number of voxels of class
c in the patch Ω̄SI

i . Other criterion could be used to find the dominant class.
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Deformable Registration Through Learning 259

The pairwise clique potential between the control points pi and pj is defined as
V(di,dj), where V(., .) is the L1 norm between the two input arguments. Thus,
the multi-class energy function is:

E(I, J, SI ,D;W ) =
∑

i∈V

Ūi(di, I, J, SI ;W ) +
∑

(i,j)∈E

V(di,dj) (2)

Then, the optimal deformation is obtained as D̂ = argminD∈L|V |

E(I, J, SI ,D;W ). This problem is np-hard in general. Similar to [5], we adopt
a pyramidal approach to solve the problem efficiently. We use FastPD [7] for the
inference at every level of the pyramid. Notice that the energy function (2) is
defined over the nodes of the sparse graph G. Once we obtain the optimal defor-
mation D̂, we estimate the dense deformation field using a free form deformation
(FFD) model [10] in order to warp the input image.

3 Learning the Parameters

Knowing the weight matrix W a priori is non-trivial and hand tuning it quickly
becomes infeasible as the number of metrics and classes increases. We propose
an algorithm to learn W conditioned on the semantic labels assuming that in the
training phase semantic masks are available for the source and the target images.
Instead of learning the complete weight matrix at once, we learn the weights (or
parameters) for each class c ∈ C individually. Now onwards, the weight vector wc

denotes a particular column of the weight matrix W , representing the weights
corresponding to the cth class.

Training Data. Consider a dataset D = {(xi,yi)}i=1,··· ,N , where xi = (Ii, Ji),
Ii is the source image and Ji is the target. Similarly, yi = (SI

i , SJ
i ), where SI

i

and SJ
i are the segmentation masks for the source and target images. The size

of each segmentation mask is the same as that of the corresponding images.
As stated earlier, the segmentation mask is formed by the elements (or voxels)
sk ∈ C, where C is the set of classes.

Loss Function. The loss function Δ(SI , SJ ) ∈ R≥0 evaluates the similarity
between the segmentation masks SI and SJ . Higher Δ(., .) implies higher dis-
similarity. We use a dice based loss function as this is our evaluation criteria:

Δ(SI , SJ ) = 1 − DICE(SI , SJ) = 1 − (2
∑

i∈V

|φ(pI
i ) ∩ φ(pJ

i )|
|φ(pI

i )| + |φ(pJ
i )| ), (3)

where, φ(pI
i ) and φ(pJ

i ) are the patches at the control point pi on the segmenta-
tion masks SI and SJ , respectively, and |.| represents cardinality. This approxi-
mation makes the dice decomposable over the nodes of G enabling a very efficient
training.

Joint Feature Map. Given wc for the c-th class, the deformation D and input
x, the multi-class function (2) can be trivially converted into class-based energy
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260 E. Ferrante et al.

Algorithm 1. The cccp Algorithm.
1: D, w0, C, α, η, the tolerance ε.
2: t = 0, wt = w0.
3: repeat
4: For a given wt, impute latent variables D̂i for each sample by solving (9).
5: Update parameters wt+1 by optimizing the convex optimization problem (10).
6: t = t + 1
7: until The objective function of the problem (7) does not decrease more than ε.

function as:

Ec(x,D;w) = w�
c

∑

i∈V

Ui(di,x) + wp

∑

(i,j)∈E

V(di,dj), (4)

where wp ∈ R≥0 is the parameter for the pairwise term. The final parameter
vector w ∈ R

n+1 is the concatenation of wc and wp. Thus, the function (4) can
be written as:

Ec(x,D;w) = w�Ψ(x,D), (5)

where Ψ(x,D) ∈ R
n+1 is the joint feature map defined as:

Ψ(x,D) =

⎛

⎜⎜⎜⎝

∑
i∈V U1

i (di,x)
...∑

i∈V Un
i (di,x)∑

(i,j)∈E V(di,dj)

⎞

⎟⎟⎟⎠ (6)

Notice that the energy function (4) does not depend on the source segmentation
mask SI . The only use of the source segmentation mask in the energy function (2)
is to obtain the dominant class which in this case is not required. However, we
will shortly see that the source segmentation mask SI plays a crucial role in the
learning algorithm.

Latent Variables. Ideally, the dataset D must contain the ground truth defor-
mations D corresponding to the source image I in order to compute the energy
term defined in the Eq. (4). Since annotating the dataset with the ground truth
deformation is non-trivial, we use them as the latent variables in our algorithm.

The Objective Function. Given D, we learn the parameter w such that min-
imizing the energy function (4) leads to a deformation field which when applied
to the source segmentation mask gives minimum loss with respect to the target
segmentation mask. We denote g(S,D) as the deformed segmentation when the
dense deformation field obtained from D is applied to the segmentation mask S.
Similarly to the latent ssvm [16], we optimize a regularized upper bound on the
loss:
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Deformable Registration Through Learning 261

min
w,{ξi}

1
2
||w||2 + α||w − w0||2 +

C

N

∑

i

ξi,

s.t. min
D,Δ(g(SI

i ,D),SJ
i )=0

w�Ψ(xi,D) ≤ w�Ψ(xi, D̄) − Δ(g(SI
i , D̄), SJ

i ) + ξi,

∀D̄, wp ≥ 0, ξi ≥ 0,∀i. (7)

where, D̄ = argminD E(xi,D;w). The above objective function minimizes an
upper bound on the given loss, called slack (ξi). The effect of the regularization
term is controlled by the hyper-parameter C. The second term is the proximity
term to ensure that the learned w is close to the initialization w0. The effect
of the proximity term is controlled by the hyperparameter α. Intuitively, for a
given input-output pair, the constraints of the above objective function enforce
that the energy corresponding to the best possible deformation field, in terms
of both energy and loss (in order to be semantically meaningful), must always
be less than or equal to the energy corresponding to any other deformation field
with a margin proportional to the loss and some non negative slack.

The Learning Algorithm. The objective function (7) turns out to be a special
case of non-convex functions (difference of convex), thus can be locally optimized
using the well known cccp algorithm [17]. The cccp algorithm consist of three
steps – (1) upperbounding the concave part at a given w, which leads to an affine
function in w; (2) optimizing the resultant convex function (sum of convex and
affine functions is convex); (3) repeating the above steps until the objective can
not be further decreased beyond a given tolerance of ε. The complete cccp
algorithm for the optimization of (7) is shown Algorithm 1. The first step of
upperbounding the concave functions (Line 4) is the same as the latent impu-
tation step, which we call the segmentation consistent registration problem. The
second step is the optimization of the resultant convex problem (Line 5), which
is the optimization of the ssvm for which we use the well known cutting plane
algorithm [6]. In what follows, we discuss these steps in detail.

Segmentation Consistent Registration. This step involves generating the
best possible ground truth deformation field (unknown a priori) at a given w,
known as the latent imputation step. Since we optimize the dice loss, we for-
mulate this step as an inference problem with additional constraints to ensure
that the imputed deformation warps the image minimizing the loss between the
deformed source and the target. Mathematically, for a given parameter vector
w, the latent deformation is imputed by solving:

D̂i = argmin
D∈L|V |,Δ(g(SI

i ,D),SJ
i )=0

w�Ψ(xi,D). (8)

We relax the above problem as it is difficult and may not have a unique solution:

D̂i = argmin
D∈L|V |

(
w�Ψ(xi,D) + ηΔ(g(SI

i ,D), SJ
i )

)
, (9)

where, η ≥ 0 controls the relaxation trade-off. Since the loss function used is
decomposable, the above problem can be optimized using FastPD inference for
the deformable registration with trivial modifications on the unary potentials.
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262 E. Ferrante et al.

Parameters Update. Given the imputed latent variables, the resultant
objective is:

min
w,{ξi}

1

2
||w||2 + α||w − w0||2 +

C

N

∑

i

ξi,

s.t.w�Ψ(xi, D̂i) ≤w�Ψ(xi, D̄) − Δ(g(SI
i , D̄), SJ

i ) + ξi, ∀D̄, wp, ξi ≥ 0, ∀i. (10)

where, D̂i is the latent deformation field imputed by solving the problem (9).
Intuitively, the above objective function tries to learn the parameters w such
that the energy corresponding to the imputed deformation field is always less
than the energy for any other deformation field with a margin proportional to
the loss function. The above objective function has exponential number of con-
straints, one for each possible deformation field D̄ ∈ L|V |. In order to alleviate
this problem we use cutting plane algorithm [6]. Briefly, for a given w, each defor-
mation field D̄ gives a slack. Instead of minimizing all the slacks for a particular
sample at once, we find the deformation field that leads to the maximum value
of the slack and store this in a set known as the working set. This is known as
finding the most violated constraint. Thus, instead of using exponentially many
constraints, the algorithm uses the constraints stored in the working set and this
process is repeated until no constraints can be further added. Rearranging the
terms in the constraints of the objective function (10) and ignoring the constant
term w�Ψ(xi, D̂i), the most violated constraint can be obtained by solving:

D̄i = argmin
D∈L|V |

(
w�Ψ(xi, D̄) − Δ(g(SI

i , D̄), SJ
i )

)
. (11)

Since the loss is decomposable, this problem can be solved using FastPD inference
for the deformable registration with trivial modifications on the unary terms.

Prediction. Once we obtain the learned parameters wc for each class c ∈ C
using the Algorithm1, we form the matrix W where each column of the matrix
represents the learned parameter for a specific class. This W is then used to
solve the registration problem (Eq. 2) using the approximate inference discussed
in Sect. 2.

4 Results and Discussion

As a proof of concept, we evaluate the effect of the aggregated metric on three
different medical datasets – (1) RT Parotids, (2) RT Abdominal, and a down-
sampled version of (3) IBSR [1], involving several anatomical structures, different
image modalities, and inter/intra patient images We used four different metrics:
(1) sum of absolute differences (sad), (2) mutual information (mi), (3) normal-
ized cross correlation (ncc), and (4) discrete wavelet coefficients (dwt). The
datasets consists of 8 CT (RT Parotids, head images of 56 × 62 × 53 voxels), 5
CT (RT Abdominal, abdominal images of 90×60×80 voxels) and 18 MRI images
(a downsampled version of IBSR dataset, including brain images 64 × 64 × 64
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Deformable Registration Through Learning 263

Fig. 1. Results for RT parotids (a), RT abdominal (b) and IBSR (c) datasets. We show
dice between the deformed source and the target segmentation masks after registration,
for the single-metric registration (sad, mi, ncc, dwt) and the learned multi-metric
registration (mw). In (a), ‘Parotl’ and ‘Parotr’ are the left and the right parotids. In
(b), ‘Bladder’, ‘Sigmoid’, and ‘Rectum’ are the three organs in the dataset. In (c),
annotations correspond to Cerebrospinal fluid (CSF), grey (GM) and white (WM)
matter. The red square is the mean and the red bar is median. (Color figure online)

voxels). We performed multi-fold cross validation in every dataset, considering
pairs with different patients in training and testing. For a complete description
of the datasets and the experimental setting, please refer to the supplementary
material. The results on the test sets are shown in Fig. 1. As it can be observed in
Fig. 1, the linear combination of similarity measures weighted using the learned
coefficients systematically outperforms (or is as good as) single metric based
registration, with max improvements of 8% in terms of dice (see Fig. 2).

Fig. 2. Example of learned weights for RT Parotids (a), RT Abdominal (b) and IBSR
(c) datasets. Since the structures of interest in every dataset present different intensity
distributions, different metric aggregations are learned. Note that in case of the RT
Parotids, given that both parotid glands present the same intensity distribution, similar
weightings are learned for both structures, with SAD dominating the other similarity
measures. However, in IBSR dataset, NCC dominates in case of CSF and WM, while
MI receives the higher value for gray matter (GM).
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Discussion and Conclusions. We have showed that associating different sim-
ilarity criteria to every anatomical region yields results superior to the classic
single metric approach. In order to learn this mapping where ground truth is gen-
erally given in the form of segmentation masks, we defined deformation fields as
latent variables and proposed a lssvm based framework. The main limitation
of our method is the need of segmentation masks for the source images in test-
ing time. However, different real scenarios like radiation therapy or atlas-based
segmentation methods fulfill this condition. Note that, at prediction (testing)
time, the segmentation mask is used to determine the metrics weights combi-
nation per control node (finding the dominant class). The segmentation labels
are not used at testing time to guide the registration process which is purely
image based. In our multi-metric registration approach, segmentation masks are
only required (at testing time) for the source image and used to choose the best
learned metric aggregation. The idea could be further extended to unlabeled
data (as it concerns the source image at testing time) where the dominant label
class per control node is the output of a classification/learning method. From
a theoretical viewpoint, we showed how the three main components of LSSVM:
(1) latent imputation (Eq. 9); (2) prediction (optimizing Eq. 2) and (3) finding
most violated constraint (Eq. (11)), can be formulated as the exact same prob-
lem. The difference among these problems is the unary potentials used. This
is extremely important given that further improvements in inference algorithms
will directly increase the quality of the results. As future work, the integration of
alternative accuracy measures, other than dice, such as the Hausdorff distance
between surfaces or real geometric distances for anatomical landmarks could
further enhance the performance of the method.
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