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Abstract—Snoring affects the sleep quality of the snorer itself
and its social circle. Some types of snoring are related to sleep
apnea, which leads to sleepiness during the day and to several
health risks. Thus automatic detection of the different types of
snoring may lead to more specific diagnosis and consequent
treatment. In this work, we propose to use a reduced set of
speech related features that includes spectral information, Mel-
Frequency Cepstral Coefficients (MFCCs), prosodic values and
bioinspired information. Extreme Learning Machines (ELM)
are proposed to learn on the non-linear feature set. A well-
known classifier as Support Vector Machines (SVM) is used as
baseline. Several configurations for the feature sets and the ELM
were evaluated. The bioinspired information shows promising
results on the Munich-Passau Snore Sound Corpus (MPSSC)
with respect to the baseline performance on the development
partition.

Index Terms—snore recognition, snoring classification, spectral
features, auditory features

I. INTRODUCTION

Snoring is produced by vibration of the respiratory upper
way during the sleep. Beside this is not a harmful illness by
itself, it leads to several affections. The sleep hygiene of the
snorer is affected, leading to a poor performance during the
day. Moreover, certain types of snoring are associated with
the obstructive sleep apnea. Beyond reducing sleep quality
the apnea causes cyclic reduction of blood oxygen saturation,
which can rise several health risks as hypertension, strokes,
and diabetes, among others [1]. In the social aspect, it can
also disturb the bed-partner sleep and become a threat to their
relationship.

Currently, there exists therapeutic and surgical methods
to treat some cases of snoring. However, their effectiveness
highly depends on the correct diagnosis of the snoring cause.
The standard diagnostic procedure is the Drug Induced Sleep
Endoscopy (DISE), in which the snoring cause is identified
using video records. This technique is time consuming, re-
quires anesthetics and an uncomfortable setting for the patient,
thus finding new paths on the diagnostic tools is meaningful.
Analyzing snoring using only sound records can provide a
basis for studies during natural sleep. Moreover, by working
on the recognition performance of snore sounds, simple pre-
diagnostic evaluations could be made at home by the patient
himself.

Objective measuring of snoring sounds have been already
proposed to assess treatment evolution [1]. Authors stated

that the pitch of snores is under 500 Hz and it relates to
palatal vibration, whereas higher frequency come from other
anatomic levels. Previous works mostly aim to detect snores
as separate sounds from regular respiration. This detection
was used mainly on sleep apnea pre-screening approaches [2],
[3], [4], [5]. Others have modeled the airways obstructions
as a filter and used its characteristics to identify apnea-
related obstructions [3]. Several additional features have been
explored such as: average power, zero-crossing rate and the
lowest frequency and energy of the spectral peak with the
lowest frequency [6]. A more recent work have proposed two
extensive feature sets to identify snoring types [7]. The first
one is a big set containing 6373 classical features obtained
from statistics over low-level descriptor contours (FLLD). The
second one is a bag-of-audio-words (BoAW) set, a codebook
representation of audio low-level descriptor distributions [8],
[9]. In addition, authors proposed an end-to-end method to
avoid feature optimization. To this end, a long-short term
memory neural network (LSTM) was trained using the win-
dowed sound signal.

Besides snoring is not a speech event by itself, the snore
sound is formed within the same tract, thus it define a
particular speaker trait. Previous works have not explored
advanced speech related features to model snore sounds.
Among these features, auditive bioinspired features are robust
to noise. Moreover, diagnostic information is often inferred
from the bed-partners’ reports about how they perceive the
snore sound [10]. Therefore, the discriminative power of
different bioinspired and prosodic features for snoring source
identification can be further analyzed.

In this work we investigate the usability of several speech
and auditory related features and propose a novel framework
for snoring classification. For the feature extraction stage,
we explore features that have been successfully exploited
in speech and emotion recognition tasks. The sounds have
common elements with paralinguistic communication as well
that should be investigated [11]. Classical spectral features
as MFCC, prosodic and spectral energy features of different
spectral representations are evaluated. Additionally, we eval-
uate a bioinspired feature model extracted from the auditory
model proposed in [12]. This model has been useful for feature
extraction in robust speech and emotion recognition [13], [14],
[15]. Using this model, we expect to mimic the auditory
system and investigate if these features are useful for the
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recognition of the snoring type. Several combinations of these
features are tested. For the classification stage, we propose
the use of Extreme Learning Machines (ELM), an emerging
classifier family that has shown interesting properties on
several benchmarks [16]. The proposed methods are evaluated
using the Munich-Passau Snore Sound Corpus (MPSSC), a
challenging dataset that consist of four snoring types recorded
on several subjects.

The organization of this work is as follows. In Section 2 we
present the dataset used, the feature extraction and classifier
methods proposed, and experimental protocol to evaluate the
methods. In Section 3 we show and discuss obtained results.
Finally, relevant conclusions are drawn in Section 4.

II. MATERIALS AND METHODS

A. Snoring dataset

The recording of snore sounds is difficult to replicate as
placement of microphones, hardware and software are highly
variable across different studies [1]. In an effort to improve this
situation, the Munich-Passau Snore Sound Corpus (MPSSC)
was publicly released [7]. This dataset consists of snore sounds
recordings during the DISE procedure in different institutions.
Experts labeled the samples in 4 classes according to the
anatomical source of the snoring: V for Velum (palate), O
for Oropharyngeal lateral walls, T for Tongue and E for
Epiglottis. Public release of the dataset consist of two par-
titions: 282 samples for training and 283 for development. An
additional test partition is provided but its use is restricted to
avoid model overfitting. The partitions have highly imbalanced
classes, which is consistent with clinical observations: 60%
of samples from the class V , 25% class O, 11% class E
and 4% class T . The snore sounds records have been already
segmented, discarding events with non-stationary noise.

B. Acoustic features

The features proposed here have been of interest in different
speech related tasks. Prosodic features have been extensively
studied in emotion recognition [17], [18], [19]. The toolbox
provided by Giannakopoulos and Pikrakis [20] was used to
compute the prosodic features: zero crossing rate, energy,
energy entropy, and fundamental frequency.

Additional spectral features have been included. Spectral
entropy and MFCC are widely known in emotion recognition
and speech analysis as well [21], [22], [23]. The first 13 MFCC
were calculated within Hamming windows of 25 ms with a
25 ms frame shift. We also considered the mean of the log-
spectrum (MLS) coefficients, defined as

S(k) =
1

N

N∑
n=1

log |v(n, k)|, (1)

where k is a frequency band, N is the number of frames in
the utterance, and v(n, k) is the discrete Fourier transform
of the signal in frame n. These were computed using spec-
trograms from non-overlapped Hamming windows of 25 ms.
In speech related tasks, the MLS coefficients corresponding

to lower frequencies (0 − 1200 Hz) contain the most useful
information [24]. Therefore, only the first 30 MLS coefficients
are extracted here.

We also propose a novel set of features based on an auditory
spectrogram, using the neurophysiological model proposed by
Yang et al. [25]. This model consists of two stages. The
first one models an early auditory spectrum of the temporal
signal at the auditory nerve level. The second stage mimics
the way primary auditory cortex in mammalians process the
spectrum. The first part of the model is composed of a bank
of cochlear overlapping filters with center frequencies that are
uniformly distributed along a logarithmic frequency axis. This
process provides 128 coefficients representing the range of 0
to 4000 Hz, not equally distributed in frequencies. Given the
low frequency component of the snore sounds, only the first
71 coefficients are used here. These coefficients correspond
to the [0 − 1200] Hz interval (same range than MLS), which
proved to be satisfactory for discriminating important acoustic
clues for emotion recognition [15].

We compute the mean of the log-spectrum as well from the
auditory spectrogram (MLSa), which is defined as

Sa(k) =
1

N

N∑
n=1

log |a(n, k)|, (2)

where k is a frequency band, N is the number of frames in
the utterance and a(n, k) is the k-th coefficient obtained by
applying the auditory filter bank to the signal in frame n. The
MLSa was computed using auditory spectrograms calculated
for windows of 25 ms without overlapping. The sound repre-
sentation in the auditory model was obtained using the Neural
System Lab model1. All features were computed at frame
level, and then the mean and standard deviation of all features
over the whole utterance was calculated. Combinations of
proposed features are obtained by concatenation.

C. Extreme Learning Machines

The primary implementation of ELM theory is a type of
artificial neural network with one hidden layer [26]. The main
differences with classical models are in the training algorithm.
The hidden units are randomly generated, thus the parameter
tuning of this layer is avoided. As a direct consequence, the
training time is reduced significantly compared with other
training methods that have to use more complex optimization
techniques.

Starting with a feature set of N samples, their projection on
the random hidden-layer gives the output H = [h1, . . . ,hN ]T .
The projected features are the input of a single-node layer
with weights W. In a matrix form, the network output can be
written as

Ỹ = HW. (3)

If the non-linear function of the nodes are infinitely differ-
entiable and hidden weights are picked at random, it can be

1Neural Systems Lab., Institutes for Systems Research, UMCP. http://www.
isr.umd.edu/Labs/NSL/
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TABLE I
RESULTS OF SVMS CLASSIFIERS (BASELINES).

Feature set # of features UAR [%]

FLLD [7] 6373 40.60
BoAW [7] 500 46.60

Pros+MFCC 18 41.70
MLS 30 42.90
MLSa 71 40.60
MLS+MLSa 101 43.50
MLS+MLSa+(Pros+MFCC) 119 48.10

shown that the ELM can approximate the target Y as much
as required by adjusting only the number of hidden units and
the output weights [26]. The optimization problem for W can
be written as

minimize
W

||HW −Y||2, (4)

which is a least square optimization problem. The smallest
norm solution is given by

Ŵ = H†Y, (5)

where H† is the Moore-Penrose pseudoinverse [27]. The
solution of this optimization problem is extremely fast when
compared with other classical classifiers as SVM or backprop-
agation multi-layer perceptrons.

D. Experiments setup

To evaluate the proposed methods, different hyperparam-
eters were used to train models with the training partitions
defined in the dataset and evaluated on the development
partition. The test partition was used to test only the optimal
configurations as its use is restricted to avoid overfitting. The
SVM classifier as well as FLLD and BoAW features were
used as baseline methods.

The chosen performance measure is the Unweighted Aver-
age Recall (UAR),

UAR =

∑nc

i Ai

C
, (6)

where Ai is the class i recall and C is the number of classes.
UAR is the average recall per class, which is more descriptive
than the simple accuracy for highly class unbalanced distribu-
tions.

III. RESULTS

First, different sets of the proposed features were evaluated
using the SVMs on the development partition. These baseline
results are shown in TABLE I. The rows are the feature sets,
where the first two are the features from [7] and the others
are incremental concatenated sets as proposed in Section II-B.
Columns show the size of the feature set and the UAR on
development set. The FLLD seem to be outperformed by
almost all of the proposed feature sets. In addition, the BoAW
performance is overcome in 1.5% using all the proposed
features.

TABLE II
BEST RESULTS USING THE PROPOSED FEATURE SETS ON ELM.(∗)BEST

ELM CONFIGURATIONS.

Feature set # of features # of H.N.(∗) UAR [%]

FLLD 6373 31865 34.68
BoAW 500 6500 42.70

Pros+MFCC 18 36 38.42
MLS 30 780 35.84
MLSa 71 142 42.90
MLS+MLSa 101 505 38.00
MLS+MLSa+(Pros+MFCC) 119 833 41.70

It is important to note that the proposed sets have a smaller
dimension respect to the previous works. Results indicate that
the proposed features (less than 2% of the FLLD dimension)
improve the performance using in a similar baseline scheme.
Respect to the BoAW performance, the improvement is of
1.5% using 20% of the number of inputs.

The next experiments were carried on using ELM as clas-
sifier. For every case, the number of hidden neurons (H.N.)
was set as 1-to-30 times the input dimension. Unlike the SVM
performance, the ELM had no benefit from upsampling or
equalizing the training class balance. Consequently, the ELMs
were trained using the unbalanced training set. Results show
that the baseline is improved by using the features based
on the auditory representation (TABLE II). In comparison
with TABLE I, SVM get benefit from features with high
dimensional space, thus the combination of all features seems
to achieve better results. In the case of ELM, using only MLSa
coefficients arrives to the best performance.

The MLSa was not optimized for snore sounds, but it
was defined and adjusted for emotion recognition. As MLSa
features have not been explored yet for the snoring task, we
consider that the appropriate number of coefficients has to be
optimized. Thus, the first 8 coefficients corresponding to lower
frequencies were evaluated, then, the first 18 coefficients were
evaluated and so on. The best results obtained for each set of
MLSa coefficients are presented in TABLE III. The best results
is reached using 98 coefficients giving a relative increase
of 9% respect the best baseline provided, while several sets
improved the FLLD performance presented in TABLE II,

In order to validate if 98 is the most suitable set size
for MLSa, we reproduced the experiment but now training
with the development partition and evaluating on the training
partition. The same was performed for the baseline functionals
and SVM. In Figure 1, the UAR scores are shown for each
MLSa in comparison with the baselines. As can be seen in both
experiments, the highest performance is reached for the same
number of MLSa (98). The proposed features significantly
improve the baseline for training-development case, while they
perform well in development-training case but do not exceed
the baseline.

After the previous analysis, we selected 2 models to evaluate
its generalization capabilities on the testing partition, which
was not used up to this point. The first model is the com-
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Fig. 1. UAR for Training-Development (blue) and Development-Training (red). Full lines are MLSa features with ELM, dotted lines are the best SVM
baselines for reference.

TABLE III
RESULTS FOR DIFFERENT NUMBER OF MLSA COEFFICIENTS ON ELM

(TRAIN-DEVELOPMENT). (∗)BEST ELM CONFIGURATIONS.

# of features # of H.N.(∗) UAR [%]

8 96 31.50
18 108 34.17
28 224 34.17
38 418 36.07
48 912 37.76
58 522 43.54
68 1360 37.08
78 234 42.62
88 2200 48.69
98 2450 49.38
108 756 44.84
118 3068 42.93
128 2688 42.54

plete set of proposed features MLS+MLSa+(Pros+MFCC) and
SVM classifier, which obtained an UAR score of 37.89%.
The difference with development results suggests that this
classification framework is not generalizing well. The other
model is ELM with the MLSa coefficients which were opti-
mized in 98 coefficients. The optimal size of the random layer
was chosen as the biggest number considering both previous
experiments on development partition (M = 2450), expecting
the model to be able to manage the data complexity. Results on
test provided an UAR of 41.40%. This result outperform the
state-of-the-art LSTM-based method presented in [7]. Other
methods were reported to achieve an UAR=58.5% using FLLD
and SVM [7]. However several models and their hyperpa-
rameters were tried on the test dataset and consequently the
generalization of the approaches should be further investigated
on independent datasets.

IV. CONCLUSIONS

In this work we proposed small feature sets based on
spectral and auditory features for snore sound classification.
The MLSa coefficients and ELM classifier achieved an im-
provement about 9% of UAR on the development partition

with respect to the baseline. In addition, the size of this set is
below 2% of the baseline feature set FLLD. ELM classifiers
outperformed SVM when auditory features were used for this
task. Moreover, ELM training and prediction algorithms are
faster and require lower computer capabilities than SVM.
This may lead to efficient implementations on mobiles and
wearables devices for effective snoring detection.

On future works some automatic methods to reach opti-
mised sets of features will be implemented. It would be useful
to consider other models to extract features from the high
frequency spectrum, related with the noisy characteristics of
snore sounds.
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