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Abstract

Consensus clustering has emerged as a powerful technique for obtaining bet-

ter clustering results, where a set of data partitions (ensemble) are generated,

which are then combined to obtain a consolidated solution (consensus par-

tition) that outperforms all of the members of the input set. The diversity

of ensemble partitions has been found to be a key aspect for obtaining good

results, but the conclusions of previous studies are contradictory. Therefore,

ensemble diversity analysis is currently an important issue because there

are no methods for smoothly changing the diversity of an ensemble, which

makes it very difficult to study the impact of ensemble diversity on consensus

results. Indeed, ensembles with similar diversity can have very different prop-

erties, thereby producing a consensus function with unpredictable behavior.
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In this study, we propose a novel method for increasing and decreasing the

diversity of data partitions in a smooth manner by adjusting a single param-

eter, thereby achieving fine-grained control of ensemble diversity. The results

obtained using well-known data sets indicate that the proposed method is

effective for controlling the dissimilarity among ensemble members to ob-

tain a consensus function with smooth behavior. This method is important

for facilitating the analysis of the impact of ensemble diversity in consensus

clustering.

Keywords: Cluster ensembles, consensus clustering, diversity analysis,

diversity control, ensemble diversity

1. Introduction

Clustering is fundamental for understanding the structure of data [45]

and it has been used in a wide range of areas, including engineering, finan-

cial, biological science, and medical applications [29, 25, 34, 44, 40]. How-

ever, the correct choice of a clustering algorithm, or even setting its param-

eters, requires knowledge of the data set and the data distribution assumed

by algorithms, since they can strongly affect the final results obtained [22].

Clustering algorithms have been developed to solve a wide range of different

problems, but there is no universal method that can be applied to solve all.

Thus, different but equally valid solutions can be obtained using various al-

gorithms, which is one reason why clustering is considered to be an ill-posed

problem among researchers [24, 50].

In the past decade, consensus clustering (or cluster ensembles) has emerged

as a powerful approach for mitigating the issues of conventional cluster
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analysis. First, a set of data partitions is generated, which is called an

ensemble. Next, a consensus function combines the ensemble into a con-

solidated solution or consensus partition, which has greater overall accu-

racy [39, 21, 19, 54, 56, 42, 10, 18]. Given the ill-posed nature of clustering,

the accuracy is typically measured by comparing the final solution with a

known reference partition, which is generally based on the class labels asso-

ciated with the data set [20, 50, 30, 41, 46]. Although this reference parti-

tion might not be the only valid structure for the data, many studies have

tried to determine how ensembles should be built, and which characteristics

they should have to obtain high accuracy. In particular, among these char-

acteristics, the level of disagreement between ensemble members, which is

called the ensemble diversity, has been identified as a key factor in the clus-

ter ensemble problem [7, 20, 17], and various diversity measures have been

proposed [15, 14, 2, 33, 55].

Many strategies have been used to explore how diversity affects consensus

performance [8, 20], where they usually aim to generate a set of ensembles

with different diversity, before observing the performance of the consensus

function. One of the most common approaches involves generating the en-

semble members by randomly varying a parameter [8, 27, 15, 17], which can

be the clustering algorithm itself [36, 28], the number of clusters [12, 49, 57],

or its initialization [37, 26]. Instead of changing the clustering algorithm,

a common method involves changing the data by randomly selecting sub-

samples [11, 32, 38, 48], using different features [43, 52, 37, 23, 51], em-

ploying random projections [8, 37, 39], or combining several methods to-

gether [47, 53]. An alternative to the purely random approach generates the
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ensemble that maximizes a given criterion. First, a pool of partitions is cre-

ated by using the strategies described above and a subset of this pool is then

selected, which maximizes the objective function. For example, this greedy

approach was used in [20], where a set of criteria were defined to obtain low,

medium, and highly diverse ensembles.

These methods have been used widely to explore the dissimilarity within

an ensemble, but the results obtained indicate that there is an important

problem with current methods for ensemble diversity analysis. Indeed, pre-

vious studies provide opposing opinions regarding this issue, where some have

suggested that more diverse ensembles are better for obtaining more accu-

rate solutions [8, 20], whereas others have proposed that moderate diversity

is the preferred choice [15]. In addition to these contradictory results, high

variability has been found not only among data sets but also when different

ensemble generation strategies are employed. Moreover, plots of the accuracy

as a function of diversity have shown that ensembles with similar diversity

can differ greatly in their accuracy [15, 20]. These confusing results show that

current approaches can generate diversity but they cannot control it, and this

limitation may lead to unpredictable outputs by the consensus method. This

is an important issue and it must be addressed before any analysis of the im-

pact of diversity on consensus clustering. This unpredictable behavior occurs

because as one diversity measure is being observed, another properties of the

ensemble are changing, thereby leading to erratic behavior by the consensus

function. In addition, it is difficult to generate ensembles that are uniformly

distributed in the diversity range under evaluation, which could lead to a

biased analysis. Both of these reasons demonstrate the need to control the
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ensemble diversity in order to effectively analyze its impact on the consensus

results.

Due to the importance of diversity in consensus clustering, the issues

highlighted above motivated us to unveil a new problem in this area and

to propose a novel method that allows fine-grained control of the ensemble

diversity. To the best of our knowledge, no methods have been proposed pre-

viously for controlling disagreement among ensemble partitions. Our method

extracts information from the ensemble structure and then uses it to make

small changes, which decrease and increase the diversity among ensemble

members in a smooth manner. The results that we obtained using six well-

known data sets demonstrate that this method is effective for controlling the

ensemble diversity, where the consensus function behaves in a smooth man-

ner, thereby providing a novel approach for studying the impact of diversity

on consensus clustering.

The remainder of this paper is organized as follows. In Section 2, we

explain the problems with current methods and we define the steps in the

diversity control method. Section 3 describes the data sets and performance

measures used for testing. Section 4 presents the evaluation procedure and

the results obtained. In Section 5, we summarize our conclusions as well as

suggesting possible improvements and future research.

2. Novel method for controlling diversity

Current methods assume implicitly that ensembles with a particular level

of diversity are comparable; thus, equal diversity values should represent sim-

ilar ensembles, or at least similar inputs for the consensus function, which is
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Figure 1: Accuracy of the consensus partition as a function of the pairwise diversity for

the Wine data set using the method proposed by [20].

expected to produce similar results. However, this might not be the case in

practice. An example of such results is shown in Figure 1, where the accu-

racy of the consensus partition [20] is plotted as a function of the pairwise

ensemble diversity. Similar results can be found in[15]. Two problems are

evident based on this plot. The first is the behavior of the output consensus

accuracy (y-axis) when the pairwise diversity (x-axis) is around 0.21, where

the diversity values are close to each other but many points differ greatly in

their accuracy. A similar behavior can be observed around a diversity value

of 0.28. Thus, ensembles with similar diversity can represent very different

inputs for the consensus function. The second problem is that the diversity

range is not always sampled uniformly; for example, there are far less ensem-

bles with diversity values in [0.10, 0.20] and even none in [0.31, 0.38]. These
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Table 1: Notations used in the proposed method for diversity control.

Symbol Description

π Single data partition

Π Ensemble with groups of partitions

q Number of groups of partitions in Π

Πi Group of partitions (member of Π)

pi Size of group Πi

π̌i Representative partition for group Πi

Π∗ Ensemble with controlled diversity

π∗ Final consensus partition

φi Clusterer

m Number of clusterers used

n Number of times a clusterer is run

Υ Normalized mutual information

two issues make the study of diversity a fairly difficult problem. As stated

earlier, a possible explanation for this behavior is that different properties of

the ensemble may change while a single diversity measure is being observed.

This makes it very difficult to analyze how diversity affects the consensus

function, because it is not possible to make strong conclusions when the

target variable (the accuracy in this case) exhibits erratic behavior. Further-

more, the analysis is made even more difficult due to the lack of uniformity

in the sampling method for the range of diversity under examination. Thus,

it is necessary to control the ensemble diversity in a smooth manner before

it can be studied correctly.

In this section, we propose a diversity control method. Table 1 presents

the notations used and the general process is depicted in Figure 2. The first

step generates an ensemble Π from the data. This ensemble is then divided
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Data

Ensemble
generation

Consensus
function

Ensemble with
groups of partitions

Ensemble with
controlled diversity

Consensus
partition

Similarity
matrix

Weights

Group comparison with
representative partitions

Non-linear weighting

Weights
distribution

Adjusted
weights

distribution

Non-linear
function

Groups
resampling

Figure 2: The diversity control method: steps and intermediate outcomes.

into groups of partitions, which are created by clustering over the ensemble

members. The ensemble with controlled diversity Π∗, which is produced

by resampling from the original groups, is finally combined to obtain the

consensus partition. The resampling step is shown in detail at the right of the

figure. First, information about the ensemble structure is extracted, which

is obtained by comparing each group with the others. Instead of a direct

group comparison, representative partitions π̌ are defined for each group. A

weight is calculated for each group based on the similarity matrix between

the representatives. Next, the distribution of these weights is adjusted using

a nonlinear function and they are employed to resample from the groups of

partitions in Π. Based on the adjusted distribution, the resampling process
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Data

Ensemble with groups of partitionsPartitions of the data

Clustering over data Grouping data partitions

Figure 3: Ensemble generation based on groups of partitions. The ensemble generation

process comprises two phases: 1) clustering over data and 2) grouping data partitions.

modifies the group sizes to change the ensemble diversity in a smooth manner.

Thus, a new ensemble Π∗ is created and its diversity is controlled by the

distribution of the weights. Finally, a consensus function is used to derive

the final partition π∗ from Π∗. The following subsections explain these steps

in detail.

2.1. Ensemble generation based on groups of partitions

Ensemble generation, which is the first step of the diversity control method,

receives an input data set and produces an ensemble organized into groups

of partitions. This step is depicted in detail in Figure 3 and it comprises two

phases: 1) clustering over data where several partitions are obtained and 2)

grouping data partitions, which identify different groups of partitions.

Phase 1: Clustering over data. Several methods can be used to create

an ensemble. A common approach involves producing different partitions of

the data using a single clustering algorithm and randomly varying some of

its parameters [26, 20]. In particular, k-means is a frequent choice and one

of the following schemes for selecting the number of clusters is commonly
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employed: k is fixed and the cluster centers are randomly initialized [15, 57];

or k is chosen randomly within an interval [kmin, kmax] [13, 26, 18]. Our

proposed approach uses a combination of both. A diagram illustrating this

clustering process is shown in the first part of Figure 3. A clusterer φi is

defined for each k in the chosen interval, where φi is run n times with random

initializations, thereby producing a set of m×n partitions. This process aims

to obtain as many different partitions as possible. The ensembles generated

in this manner have a known structure with sets of partitions, where each

set is generated by the same clusterer only by varying the initialization.

Phase 2: Grouping data partitions. After producing the initial en-

semble, the second phase of the ensemble generation step involves gathering

information about its structure. This phase basically applies a clustering

algorithm Φ to the previously generated ensemble members, which obtains

groups of partitions denoted as Πi, with size pi. Therefore, this phase does

not modify the initial ensemble and it simply regroups its members. Three

grouping algorithms are proposed for this purpose, each of which produces

groups of partitions with different properties. The first algorithm is the

simplest and it groups the ensemble members according to their number of

clusters. Thus, each group of partitions produced using this approach has

the same k and this method is called ensemble grouping by k (Gk). The

second method, called full ensemble grouping (FG), involves applying a hier-

archical agglomerative clustering algorithm to the ensemble members. This

method uses the distance 1 − Υ(πi, πj), where Υ(πi, πj) is the normalized

mutual information (NMI) [36] between partitions πi and πj. In contrast to

Gk, FG allows to specify the number of groups q to be produced. The third
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algorithm, called FGk, is a combination of both, where it takes the groups

formed by FG and then splits them according to Gk.

2.2. Group comparison with representative partitions

The previous step of the method produces an ensemble Π with groups of

partitions Πi. The next step involves comparing those groups to obtain infor-

mation about the structure of Π, which can be achieved simply by performing

a pairwise comparison between groups. However, given the structure of Π, it

is possible to define a more efficient method for comparing groups. It should

be noted that each group member shares some properties with the others,

and thus each group of partitions can be considered as a cluster. There-

fore, instead of comparing all of the group members, the similarity between

two groups can be estimated by comparing their corresponding representa-

tive partitions. The representative partition π̌i (see Figure 2) is the single

partition that best represents its group Πi. A convenient definition of the

representative that maximizes the information shared with group members

is:

π̌i = arg max
π̌

∑
∀π∈Πi

Υ(π, π̌). (1)

A consensus function can be used as a method for obtaining a partition π̌.

Group members could certainly have different numbers of clusters (particu-

larly when FG is employed), so it is necessary to decide how many clusters the

representative partition should contain. This is achieved by obtaining a con-

sensus partition for each k in Πi, where that with the maximum agreement

among group members is finally selected as the representative. For instance,
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Figure 4: Similarity matrix for the representative partitions generated for the Wine data

set. The last row represents the column average (discarding the main diagonal).

if group Πi contains many data partitions with k = 3, 5 and 7, then three

consensus partitions are derived from Πi, with 3, 5 and 7 clusters. Thus, the

consensus partition that maximizes (1) is selected as the representative for

group Πi.

After obtaining all of the representative partitions, they are compared

with each other to produce a similarity matrix

rij = Υ(π̌i, π̌j). (2)

This matrix contains information about the ensemble structure. The sim-

ilarity of a group with respect to the other groups is estimated by r̄i =

1
q−1

∑
∀j 6=i rij. An example of a similarity matrix is shown in Figure 4, which

compares five representatives. According to this similarity matrix, group Π3

is most similar to the rest of the ensemble and Π5 is most different. This

information can be used to modify Π and obtain a new ensemble Π∗ with

12

si
nc

(i
) 

R
es

ea
rc

h 
C

en
te

r 
fo

r 
Si

gn
al

s,
 S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

M
. P

iv
id

or
i, 

G
. S

te
gm

ay
er

 &
 D

. H
. M

ilo
ne

; "
D

iv
er

si
ty

 c
on

tr
ol

 f
or

 im
pr

ov
in

g 
th

e 
an

al
ys

is
 o

f 
co

ns
en

su
s 

cl
us

te
ri

ng
"

In
fo

rm
at

io
n 

Sc
ie

nc
es

, 2
01

6.



controlled diversity.

2.3. Nonlinear group weighting and resampling

After gathering the information about the ensemble structure, the next

stages produce a new ensemble Π∗ (with controlled diversity) by adjusting the

distribution of r̄i to obtain a weight wi for each group and then resampling

from the groups in ensemble Π. If small increases in diversity are desired, it is

intuitive to increase the size of the most different groups slightly, whereas the

proportion of the most similar groups is reduced. By contrast, the opposite

operation should decrease the diversity. Both mechanisms provide a way of

controlling the diversity.

The similarity of a group with the rest of the ensemble, r̄i, is used to cal-

culate a weight wi. The mechanism employed to obtain fine-grained control

over ensemble diversity involves applying a nonlinear function to r̄i values.

This function is used to adjust the distribution of r̄i in a smooth manner,

thereby allowing small increases or decreases in diversity. In the proposed

method, we employ a sigmoid function and the computation of the group

weights is given by

wi(h) =
pi

1 + e−h(¯̄r−r̄i)
, (3)

where pi is the size of group Πi, ¯̄r is the mean of r̄i, and h controls the change

in diversity. A new ensemble Π∗ can be created for each h (with Π∗ = Π

for h = 0). Thus, when h > 0, the method makes Π∗ more diverse than Π

because the most different groups in the ensemble receive higher weights. By

contrast, when h < 0, Π∗ has lower diversity than Π because the most similar
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Figure 5: Adjustment of the distribution of r̄i using a sigmoid function with two different

values for parameter h.

groups are favored. It is possible to obtain smooth increases (decreases) in

the ensemble diversity by gradually increasing (decreasing) h.

An example of the application of this method is shown in Figure 5, which

presents three histograms. The distribution of r̄i (middle) is modified by

using two different values for h (top and bottom). The histogram in the

middle shows that r̄i is greater than the mean for the majority of the groups.
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This explains why most of the groups are favored when the method tries to

decrease the diversity (see the histogram at the bottom with a sigmoid using

h = −75). The opposite effect is obtained when the method attempts to

increase the ensemble diversity (h = 75).

After obtaining the weights wi, the new groups in ensemble Π∗ are pro-

duced by resampling the groups in Π with probability Pi = wi/
∑

iwi. For

example, if we suppose that there are three groups, which obtain weights of

w1 = 0.8, w2 = 0.3 and w3 = 0.4 for a particular value of h, and the size of

ensemble Π∗ is 100, then according to P1, P2 and P3, 53 of its members will

be drawn uniformly from group Π1, 20 from Π2 and 27 from Π3. When a

slightly different value is used for h to calculate wi, the amount of partitions

drawn from each group will also change slightly, thereby obtaining smooth

changes in diversity.

The final step in the overall method involves deriving a consensus parti-

tion from ensemble Π∗. In previous studies, several consensus functions have

been introduced and different approaches have been used to combine a set of

partitions. Among these consensus methods, some of the most popular are

based on graph representations [36, 9, 5, 31], and co-association matrices or

evidence accumulation [12, 13]. Any consensus approach can be employed

during this step in the proposed method.

3. Materials and performance measures

In this section, we describe the data sets and performance measures used

to test the proposed method. These measures were used to quantify the

performance of the diversity control method in different steps.
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Table 2: Descriptions of the artificial and real data sets used in the experiments. N is the

number of data points, D the number of dimensions, and k the number of clusters.

Data set N D k

Difficult Doughnut 500 12 2

Four Gaussian 100 12 4

Iris 150 4 3

Ionosphere 351 34 2

Glass 214 9 6

Wine 178 13 3

(a) Difficult Doughnut (b) Four Gaussian (c) Iris

(d) Ionosphere (e) Glass (f) Wine

Figure 6: Cluster shapes for the data sets employed. For artificial data sets (6a and 6b)

the two noiseless dimensions were used to obtain the plots. For real data sets, principal

components analysis projection was employed.

3.1. Data sets

Six well-known artificial and real data sets were employed (Table 2). Diffi-

cult Doughnut and Four Gaussian [26] were created artificially by generating
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two dimensions of data and then adding 10 dimensions of uniform noise.

These two data sets had very different cluster shapes (see Figures 6a and

6b), thereby representing different levels of difficulty for the clustering algo-

rithm. The real data sets were obtained from the UCI repository [1]. As

shown in Table 2 and Figure 6, they contained different number of objects,

dimensions, and classes, and their clusters had distinct shapes and degrees

of overlapping.

3.2. Performance measures

The diversity control method has different steps, so it can be evaluated

at the end of each. We assessed its performance using different types of

measures, which quantified three distinct aspects of the overall process. The

first type comprised ensemble measures for quantifying the diversity of the

ensembles generated. The next type comprised clustering measures, which

we used to observe the impact of the generated ensembles on the consensus

partition from different perspectives. Finally, a smoothness measure was used

to evaluate the fine-grained control over ensemble diversity, which assessed

how the ensemble and clustering measures evolved with diversity. A higher

level of smoothness was associated with better control over the ensemble

diversity.

3.2.1. Ensemble measures

Pairwise diversity. Two pairwise measures were used to quantify the

ensemble diversity. Given an ensemble Π∗ of size P , the first measures the

dissimilarity among the ensemble members [8], which can be defined as the

mean of the ensemble members dissimilarities
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Dp1 =
2

P (P − 1)

P−1∑
i=1

P∑
j=i+1

(1−Υ(πi, πj)). (4)

The second measure, Dp2, quantifies the spread of the diversity [15], which

is calculated as the standard deviation of the dissimilarities among the en-

semble members.

Non-pairwise diversity. The average NMI (ANMI) [36] indicates the

average amount of information shared between the consensus partition π∗

and the members of its corresponding ensemble Π∗,

Ῡ =
1

P

∑
∀πi∈Π∗

Υ(π∗, πi). (5)

ANMI can be considered as a level of representativeness of π∗. The comple-

ment of (5) can be used as an ensemble diversity measure [15, 27], where Dnp1

is defined as the average of the differences between π∗ and each member of

Π∗. The standard deviation of these differences represents another measure,

which is denoted as Dnp2.

3.2.2. Clustering measures

These measures comprise external and internal criteria for validating con-

sensus partitions [45, 16]. The external criteria compare the consensus par-

tition with a reference partition of the data, which is drawn independently.

By contrast, internal criteria validate π∗ using only the inherent information

related to the data.

Accuracy: refers to the degree of agreement with a reference or true

partition. The accuracy is calculated as
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A = Υ(π∗, π̃), (6)

where π̃ is the reference partition of the data, which is often based on the

class labels (which were available for all of the data sets used in this study).

Compactness: measures the cluster homogeneity in a partition by cal-

culating the intra-cluster variance. The global compactness for partition π∗

is given by

C =
1

k

k∑
i

Ci =
1

k

k∑
i

 1

|Ωi|
∑
∀xj∈Ωi

‖xj − µi‖2

 , (7)

where k is the number of clusters Ωi in π∗, xj is a data vector, and µi is

the centroid of the cluster. Values of C closer to 0 indicate more compact

clusters.

Separation: quantifies the degree of separation between clusters in a

partition. This measure is given by

S =
2

k(k − 1)

k−1∑
i=1

k∑
j=i+1

‖µi − µj‖2. (8)

Higher values of S indicate greater separation of the clusters in partition π∗.

Davies-Bouldin index: this measure combines compactness and sepa-

ration [4], and it is defined as

B =
1

k

k∑
i=1

max
j 6=i

(
Ci + Cj
‖µi − µj‖2

)
. (9)

This index is a function of the ratio of the sum of the within-cluster scatter

relative to the between-cluster separation. Therefore, B values close to 0

indicate that a partition π∗ has compact and separated clusters.
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Dunn index: this index combines the dissimilarity between clusters and

their diameters [6], and it is given by

D =

min
0<m 6=n≤k

 min
∀xi∈Ωm
∀xj∈Ωn

{‖xi − xj‖2}


max

0<m≤k
max

∀xi,xj∈Ωm

{‖xi − xj‖2}
. (10)

This index measures the relationship between the minimum inter-cluster dis-

tance and the maximum intra-cluster distance. If the partition contains well-

separated clusters, the minimum distance among them is usually large and

their maximum diameter is expected to be small. Therefore, larger values of

D indicate better partitions.

3.2.3. Smoothness measure

Control over the diversity of an ensemble can be assessed by studying

the evolution of ensemble and clustering measures, which involves observ-

ing the behavior of the inputs of the consensus function (ensembles Π∗) and

their corresponding outputs (consensus partitions π∗). On the one hand, if a

single diversity measure is being controlled, it is expected that other diver-

sity measures will change in a smooth manner. On the other hand, current

approaches assume that ensembles with similar diversity values are simi-

lar inputs for the consensus function, and thus they are expected to produce

comparable consensus partitions. To verify whether this assumption actually

holds, clustering measures can be calculated over the consensus partitions. If

they change in a smooth manner, this indicates that ensembles with similar

diversity are actually similar inputs for the consensus function.

The autocorrelation coefficient at lag 1 can be used as a smoothness
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measure. It is known that this coefficient can be employed to detect non-

randomness [3], and this conforms with the intuitive concept of smoothness.

From this viewpoint, the randomness in a sequence refers to the indepen-

dence or unpredictability of one value relative to another. For example, for

accuracy, this coefficient can be calculated as

ρ1 =

∑
d(Ad − Ā)(Ad+1 − Ā)∑

d(Ad − Ā)2
, (11)

where A is a sequence of accuracies sorted by diversity d and Ā is their

mean. Any of the ensemble or clustering measures defined previously can

be used instead of the accuracy. Thus, values of ρ1 closer to 1 indicate the

smooth behavior of a sequence of values, so control over the diversity of the

ensemble is better. By contrast, ρ1 near 0 indicates rough changes, thereby

demonstrating almost no control of the diversity of an ensemble.

4. Results and discussion

We evaluated the proposed method in several different ways, as described

in this section. First, we specified the experimental setup and determined the

ability of the method to control the ensemble diversity for all of the data sets

described in Section 3.1. After that, the evolution of the clustering measures

was used to indicate the effects of the method on the performance of the

consensus function. Finally, we calculated the autocorrelation at lag 1 (ρ1)

for the ensemble and clustering measures.

4.1. Experimental setup

For phase 1 in the ensemble generation step (Section 2.1), the base cluster-

ing algorithm employed was k-means, with kmin = 2 and kmax = 20 (m = 19),
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and 20 random initializations (n = 20) for each k. The number of groups of

partitions produced in phase 2 was 19 for both Gk and FG (q = 19). The

representative of each group and the consensus partition π∗ obtained at the

final step were derived using a supra-consensus function [36]. This supra-

consensus function employed 10 different consensus methods and it selected

the method that maximized the ANMI. These internal methods comprised

three graph-based functions: Cluster-based similarity partitioning algorithm

(CSPA), HyperGraph partitioning algorithm (HGPA) and Meta-CLustering

Algorithm (MCLA) [36], as well as seven methods based on evidence accu-

mulation [13]. The latter methods accumulated the results found by all of

the ensemble members in a co-association matrix, before applying a hier-

archical agglomerative clustering algorithm to derive a consensus partition.

Seven types of distances were used as linkage criteria: nearest (single), fur-

thest (complete), unweighted average, weighted average, unweighted center

of mass, weighted center of mass, and inner squared (minimum variance).

The entire experiment was repeated 50 times.

For further details and testing with more experimental setups, the full

source code1 is freely available for download. In addition, the diversity control

algorithm can be tested rapidly using a web-demo2, which is an accessible

web interface developed with [35].
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Figure 7: Evolution of the control of diversity for six data sets.
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4.2. Control of ensemble diversity

The diversity control results for all of the data sets are shown in Figure 7,

in which the pairwise ensemble diversity (Dp1) is plotted as a function of the

sigmoid parameter h. Each repetition is indicated by a different line style

and color. A single ensemble Π∗ was created for each h value by considering

a wide interval [−100, 100] in order to observe how the method behaved with

intermediate cases, but also with the extreme cases. The size of Π∗ was 100

and the grouping algorithm was FG.

The results show that although different behaviors were observed for each

data set, in all cases the method could increase and decrease the pairwise

ensemble diversity by adjusting h. In addition, the method effectively pro-

duces a smooth change in Dp1, where the full diversity range was uniformly

sampled. When the method was used to decrease or increase Dp1, each curve

finally converged to a certain level, although each arrived at different lower

and upper bounds. Saturation occurred at both sides of the curve because

when higher values were used for h, minor changes were observed in the sig-

moid function, and thus there was almost no difference in the size of the

groups among the newly created ensembles. In this extreme situation, the

only source of change was the random selection of members from each group

of partitions. Therefore, no changes were expected in the ensemble diversity

at the highest values of h. Another interesting behavior was observed as the

diversity increased (h > 0), where a point of maximum diversity was reached

and it then decreased to a certain level. This change occurred because high

1https://sourceforge.net/projects/sourcesinc/files/divcontrol/0.10/
2http://fich.unl.edu.ar/sinc/web-demo/divcontrol/
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values of h made some wi ≈ 0, thereby producing empty groups, whereas

others wi were sufficiently large to introduce repeated partitions.

The results show clearly that the proposed method could decrease or

increase the ensemble diversity in an effective manner. A wide range was

employed for h, but in practice, it would be necessary to focus on a more

useful range for h values in the vicinity of h = 0, where the diversity exhibits

large changes. h can take continuous values, so it is easy to reduce the step

size and explore this range, which we tested in the following experiments.

The diversity could be controlled independently of the data characteristics

by controlling the diversity for data sets with compact and well-separated

clusters (e.g., Four Gaussian), as well as those with far more complex struc-

tures (such as Ionosphere and Glass). In addition, it should be noted that

the full diversity range was uniformly sampled. This results in a fine-grained

method to control the level of disagreement among ensemble members in a

smooth manner.

4.3. Performance evaluation

Next, we calculated the classical performance measures described in Sec-

tion 3.2 for the final consensus partition, which allowed us to observe how

these quantities evolved for ensembles with controlled diversity. The results

are shown in Figure 8 for the six measures calculated based on the Wine data

set3. The average of all the repetitions is plotted for each h as well as the

corresponding confidence intervals in grey (α = 0.05).

In addition to the control of ensemble diversity, as demonstrated ear-

3Full results for all of the data sets are available in the supplementary material.
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Figure 8: Six performance measures calculated for the consensus partitions obtained from

the Wine data set. The compactness and Davies-Bouldin index are presented in reverse,

so the values at the top are better for all of the measures.
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lier, the results showed that the proposed method could also induce smooth

changes in the performance measures. In most cases, the quantities tended

to improve with higher values of h (more diverse ensembles). Most of them

did not appear to be affected greatly, but the accuracy and ANMI exhibited

relatively high increases. Thus, the partitions π∗ appeared to have almost

equally compact and separated clusters for all values of h, but they definitely

represented different partitions of the data. Therefore, the proposed method

could change the final partition properties in a smooth manner by control-

ling the diversity. The ability to produce smooth changes in the performance

measures is a very important feature of the proposed method and future

studies could explore the influence of the ensemble on the consensus quality.

4.4. Smoothness of the performance measures

The smoothness (ρ1) was determined for the ensemble and clustering

measures using different approaches for ensemble generation. Two existing

methods were compared with our proposed approach: a random generation

method (RN) described by [15, 8, 27, 17], which randomly creates a set of

ensembles with different diversities; and the method proposed by [20], which

we refer to as category-based (CB), where this method generates a set of

ensembles that belong to “low,” “medium,” and “high” diversity categories.

The proposed method for diversity control used three alternative algorithms

to generate groups: Gk, FG and FGk. Only a useful range for h was em-

ployed in these tests, i.e., a range where the diversity exhibited large changes.

Sequences of ensembles were generated for these five methods and sorted by

ascending diversity. The average smoothness of the ensemble and clustering

measures were determined for all of the repetitions.
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Table 3: Smoothness of the ensemble measures.

ρ1
Difficult Doughnut Four Gaussian

RN CB Gk FG FGk RN CB Gk FG FGk

Dp2 0.69 0.95 0.98 0.98 0.98 0.75 0.95 0.98 0.98 0.98

Dnp1 0.66 0.71 0.96 0.97 0.98 0.15 0.74 0.95 0.97 0.98

Dnp2 0.48 0.95 0.86 0.97 0.92 0.03 0.57 0.64 0.80 0.89

ρ1
Iris Ionosphere

RN CB Gk FG FGk RN CB Gk FG FGk

Dp2 0.61 0.95 0.98 0.98 0.98 0.17 0.90 0.97 0.98 0.98

Dnp1 0.07 0.70 0.97 0.97 0.98 0.65 0.62 0.98 0.98 0.98

Dnp2 0.10 0.84 0.96 0.97 0.97 0.50 0.72 0.97 0.97 0.98

ρ1
Glass Wine

RN CB Gk FG FGk RN CB Gk FG FGk

Dp2 0.51 0.95 0.97 0.97 0.98 0.56 0.93 0.98 0.98 0.98

Dnp1 0.46 0.92 0.94 0.96 0.97 0.02 0.64 0.96 0.96 0.96

Dnp2 0.02 0.86 0.92 0.88 0.94 0.17 0.73 0.93 0.94 0.93

The smoothness results for the ensemble measures are presented in Ta-

ble 3, where the average ρ1 was calculated for three diversity measures: Dp2,

Dnp1 and Dnp2. Bold numbers indicate the maximum ρ1 obtained for each

data set and ensemble measure. The differences between underlined and

non-underlined values are statistically significant (α = 0.05). For all of the

data sets, we found that RN always obtained the lowest scores for ρ1. Thus,

the ensemble diversity values for Dp2, Dnp1 and Dnp2 changed roughly com-

pared with Dp1. By contrast, CB obtained higher ρ1 values, which indicates

that it could generate ensembles that changed more smoothly than the ran-

dom approach. This may be explained by the “greedy” nature of CB when

creating the diversity categories because although it contains a random com-
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Table 4: Smoothness of the clustering measures.

ρ1
Difficult Doughnut Four Gaussian

RN CB Gk FG FGk RN CB Gk FG FGk

A 0.03 0.91 0.77 0.95 0.82 0.03 0.64 0.60 0.76 0.79

C 0.02 0.88 0.68 0.93 0.77 0.03 0.47 0.55 0.66 0.75

S 0.02 0.92 0.77 0.95 0.82 0.04 0.47 0.60 0.72 0.77

B 0.02 0.89 0.80 0.95 0.82 0.03 0.17 0.60 0.71 0.78

D 0.28 0.35 0.51 0.73 0.57 0.02 0.57 0.65 0.74 0.80

ρ1
Iris Ionosphere

RN CB Gk FG FGk RN CB Gk FG FGk

A 0.04 0.39 0.61 0.81 0.71 0.06 0.58 0.32 0.43 0.41

C 0.01 0.45 0.29 0.59 0.70 0.19 0.18 0.34 0.50 0.31

S 0.01 0.41 0.48 0.78 0.75 0.15 0.61 0.57 0.46 0.55

B 0.07 0.16 0.52 0.76 0.70 0.23 0.50 0.56 0.45 0.52

D 0.07 0.44 0.67 0.85 0.71 0.05 0.27 0.45 0.33 0.27

ρ1
Glass Wine

RN CB Gk FG FGk RN CB Gk FG FGk

A 0.04 0.32 0.74 0.83 0.78 0.05 0.40 0.56 0.71 0.62

C 0.03 0.28 0.60 0.60 0.70 0.03 0.46 0.28 0.37 0.39

S 0.11 0.57 0.87 0.88 0.90 0.03 0.55 0.72 0.81 0.72

B 0.11 0.42 0.87 0.88 0.89 0.03 0.35 0.28 0.44 0.38

D 0.04 0.57 0.77 0.77 0.82 0.04 0.33 0.37 0.50 0.39

ponent (the first partition of the ensemble is selected randomly), this method

selects the next partition incrementally according to the target diversity cate-

gory. These diversity categories generally produce a set of similar ensembles,

thereby obtaining smooth differences among them. However, this behavior

has a side effect because the diversity categories frequently differ greatly from

each other, so CB does not sample uniformly from the diversity range.
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The diversity control method (with all three alternatives) obtained the

highest ρ1 values for all of the data sets, with statistically significant dif-

ferences compared with the other methods. This is because the ability to

control diversity resulted in small changes among the ensembles, and thus

all of the ensembles differed from each other in a smooth manner, whereas

CB created cohesive but separate ensemble categories. Overall, all of the

grouping algorithms obtained similar performance, but FGk produced the

best results followed closely by FG. The higher performance of these algo-

rithms compared with Gk was due to the cohesion between the generated

groups of partitions. Indeed, Gk only groups by k, which might leave very

different partitions within the same group.

Table 4 presents the changes in the outputs of the consensus function,

where five clustering measures are shown: accuracy (A), compactness (C),

separation (S), the Davies-Bouldin index (B), and the Dunn index (D).

The trends in these results were similar to those obtained for the ensemble

measures. The ensembles generated by RN allowed the consensus function to

derive unpredictable partitions. Using this method, the smoothness scores for

clustering measures were always close to 0, which indicates that the ensembles

changed in a highly irregular manner according to the measures based on the

output of the consensus function. Although CB was far superior to RN,

the diversity control method obtained the best performance. In addition to

producing ensembles that changed in a smooth manner from the viewpoint

of diversity (Table 3), the diversity control method could also induce smooth

changes in the consensus partitions.

For the diversity control method, a joint analysis of the smoothness for
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the ensemble and clustering measures showed that given a slight change in

the input, the consensus function could produce an acceptable slight change

in the output. This was the case for the Four Gaussian, Iris, and Glass

data sets, but especially for Difficult Doughnut, where the proposed method

appeared to even control the quality of the consensus partition.

These results suggest that current methods can generate ensembles with

differences in diversity, but their internal structures might actually differ in

an unpredictable manner. Thus, these methods are less useful and reliable

in cases where it is necessary to analyze how diversity affects the consensus

performance. By contrast, our proposed method can control a particular

measure of ensemble diversity (as shown in Section 4.2), but it also guarantees

that all aspects of the ensemble change in a smooth manner. This was

demonstrated by the high smoothness scores obtained from the perspectives

of the diversity and consensus function. Therefore, it can be stated that

the proposed method is more suitable for generating ensembles that differ

according to the fine-grained control of their diversity.

5. Conclusions

In this study, we identified and addressed a problem in existing methods

for generating diverse ensembles. Thus, when these methods are used to

create sets of clustering solutions with several levels of disagreement, ensem-

bles with similar diversity may actually have very different properties, which

leads to unpredictable behavior by the consensus function. As a consequence,

studying ensemble diversity is a difficult problem. By contrast, our proposed

method can increase and decrease the dissimilarity among ensemble members
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in a smooth manner, thereby providing a novel approach for ensemble diver-

sity analysis. Our method analyzes the structure of the ensemble and makes

small changes to it, which allows the fine-grained control of diversity. The

performance of our method was demonstrated experimentally by evaluating

different aspects of the overall method. The proposed method could produce

ensembles that changed not only in a smooth manner from the viewpoint

of diversity, but also according to different quality measures based on the

output of the consensus function.

The proposed diversity control method is an important step in the de-

velopment of a more robust approach for effectively exploring how ensemble

diversity affects the final quality of clusters. In future research, we will per-

form more in-depth investigations using different data sets, base clustering

algorithms, consensus functions, and validation measures.
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Figure 1: Six performance measures calculated for the consensus partitions obtained from the Difficult
Doughnut data set. The compactness and Davies-Bouldin index are presented in reverse, so the
values at the top are better for all of the measures.
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Figure 2: Six performance measures calculated for the consensus partitions obtained from the Four Gaus-
sian data set. The compactness and Davies-Bouldin index are presented in reverse, so the values
at the top are better for all of the measures.
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Figure 3: Six performance measures calculated for the consensus partitions obtained from the Iris data set.
The compactness and Davies-Bouldin index are presented in reverse, so the values at the top are
better for all of the measures.

2

si
nc

(i
) 

R
es

ea
rc

h 
C

en
te

r 
fo

r 
Si

gn
al

s,
 S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

M
. P

iv
id

or
i, 

G
. S

te
gm

ay
er

 &
 D

. H
. M

ilo
ne

; "
D

iv
er

si
ty

 c
on

tr
ol

 f
or

 im
pr

ov
in

g 
th

e 
an

al
ys

is
 o

f 
co

ns
en

su
s 

cl
us

te
ri

ng
"

In
fo

rm
at

io
n 

Sc
ie

nc
es

, 2
01

6.



−100 −50 0 50 100 150
0.105

0.11

0.115

0.12

0.125

0.13

0.135

0.14

0.145
A

 (
A

cc
ur

ac
y)

h

−100 −50 0 50 100 150
0.5

0.55

0.6

0.65

0.7

0.75

A
N

M
I

h

−100 −50 0 50 100 150

2.31

2.32

2.33

2.34

2.35

2.36

2.37

2.38

C
 (

C
om

pa
ct

ne
ss

, r
ev

er
se

d)

h

−100 −50 0 50 100 150
2.92

2.94

2.96

2.98

3

3.02

3.04

3.06

3.08

3.1

S
 (

S
ep

ar
at

io
n)

h

−100 −50 0 50 100 150

1.68

1.7

1.72

1.74

1.76

1.78

1.8

1.82

B
 (

D
av

ie
s−

B
ou

ld
in

 in
de

x,
 r

ev
er

se
d)

h

−100 −50 0 50 100 150
0.06

0.062

0.064

0.066

0.068

0.07

0.072

0.074

D
 (

D
un

n 
in

de
x)

h

Figure 4: Six performance measures calculated for the consensus partitions obtained from the Ionosphere
data set. The compactness and Davies-Bouldin index are presented in reverse, so the values at
the top are better for all of the measures.
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Figure 5: Six performance measures calculated for the consensus partitions obtained from the Glass data
set. The compactness and Davies-Bouldin index are presented in reverse, so the values at the top
are better for all of the measures.
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