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1. Introduction25

Model predictive control (MPC) refers to a class of algorithms in which26

models of the plant are used to predict the future behaviour of the system27

over a prediction horizon. It is formulated by solving an on-line optimization28

problem. The optimal control input sequence is calculated by minimizing29

an objective function subject to constraints. Only the first element of the30

computed optimal control input is applied to the plant according to a receding31

horizon strategy [1, 2]. Linear MPC has been successfully applied in a variety32

of cases due to its ability to explicitly incorporate the system model and33

state/inputs constraints into the control calculation [3–6].34

In the last few decades, MPC principles have been extended to non-linear35

processes yielding to non-linear model predictive control (NMPC). The use36

of general non-linear programming (NLP) techniques to solve the NMPC37

problem has been proposed in several works [7–10]. However, the solution38

methods based on NLP present some drawback. First, these algorithms are39

computationally demanding, as they require to solve on-line a non-linear40

optimization problem. Moreover, the constraints introduced by the non-41

linear model dynamics yields to non-convex optimization problems.42

Linearization and linear approximation have been adopted in a variety43

of works to overcome the computational complexity problem [11, 12]. The44

main advantage of these methods lie in the fact that the model used in the45

prediction calculation is a set of local linear approximation of the dynamics46

of the plant, thus converting the non-linear optimization problem into a set47

of locally convex ones, as it is done in [13–15]. However, linear predictive48

control techniques do not automatically ensure the stability of the closed-49

loop system. This issue has been studied by numerous researchers for many50

years (see [11, 16] for an overview). One way to address the stability problem51

is to add a contractive constraint to the optimization problem. This idea was52

firstly introduced by Yang and Polak [17] and the stability proof was devel-53

oped by De Olivera and Morari [18]. In this approach, the authors propose54

to add a contractive constraint that forces the system states to decrease at55

each time step. To the best of our knowledge, there are few works that ad-56

dress the addition of such contractive constraint and also this constraint has57

only been used to contract the system states.58

In this paper we present a novel robust predictive control algorithm for59

non-linear systems. The proposed algorithm uses a linearization process60

along pre-defined trajectories that transform the non-convex optimization61
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problem into a set of locally convex ones, which can be solved using the62

standard quadratic programming (QP) techniques. Here, to address stabil-63

ity and convergence issues, the addition of a set of contractive constraints to64

the optimization problem is analysed. These constraints force the cost func-65

tions to decrease or (at least) to remain constant within the current time66

instant, thus allowing to take into account disturbances and determining an67

upper bound of the cost functions value. Moreover, an inner iteration loop68

is added to the proposed algorithm to account for linearization errors and to69

obtain more accurate results.70

The organization of this paper is as follows: in Section 2 the formulation71

of the NMPC algorithm with the addition of the contractive constraint is72

presented. In Section 3 a simple methodology to obtain an outer bounding-73

tube for state trajectories is analysed. In Section 4 an inner iteration loop is74

added to the previous algorithm. Simulation results are shown in Section 5.75

Finally, conclusions are discussed in Section 6.76

2. Non-linear Model Predictive Control Formulation77

Consider the discrete non-linear system78

xk+1 = f (xk, uk, dk) (1)79

where xk = x(k) ∈ <n, uk = u(k) ∈ U ⊆ <m and dk = d(k) ∈ D ⊆ <l80

are the state vector, the control input vector and the bounded disturbance81

vector, respectively, U is the input constraint set and f(·) is a continuous82

and differentiable vector function that describes the dynamics of the system.83

The non-linear model predictive control problem is formulated as a regu-84

latory problem stated as follows:85

For a given1 disturbance sequence86

dk =
[
dk|k, · · · , dk+N−1|k

]T
, (2)87

find at each time instant k, a control input sequence88

uk =
[
uk|k, · · · , uk+N−1|k

]T
, (3)89

1If dk is not available, the most common assumption is dk+i = dk+i−1, i = 1, · · · , N
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and predicted state sequence90

xk =
[
xk+1|k, · · · , xk+N |k

]T
, (4)91

over a prediction horizon of N sampling intervals, such that92

min
uk∈U

J (k)

st. xk+1 = f(xk, uk, dk).
(5)93

The vectors dk+i|k, uk+i|k and xk+i|k in Eqs. (2) to (4) represent the distur-94

bance, input and state vectors at time k + i that are predicted using the95

information available at time k.2 The optimal solution of the problem (5) is96

denoted here as:97

u∗k =
[
u∗k|k, · · · , u∗k+N−1|k

]T
. (6)98

Regardless the cost function J (k) is convex or not, the optimization99

problem (5) is non-convex due to the non-linearity of the system dynamics,100

and the computational effort is a major issue in its on-line implementation. If101

J (k) is chosen to be a quadratic cost function, then the convexity of (5) can102

be recovered by approximating the non-linear model (1) with a linear time-103

varying (LTV) one [19, 20], which can be obtained linearizing the system104

around a desired state and input trajectory xrk, u
r
k, where105

xrk =
[
xrk+1|k, · · · , xrk+N |k

]T
, (7)106

and107

urk =
[
urk|k, · · · , urk+N−1|k

]T
. (8)108

Assuming that a reference perturbation drk+i|k, i = 0, · · · , N − 1 is given109

or estimated, then the dynamic behavior of the deviation from the desired110

trajectory can be written as an LTV model111

x̃k+1|k = Ak|kx̃k|k +Buk|k ũk|k +Bdk|k d̃k|k, (9)112

where113

x̃k|k = xk|k − xrk|k, ũk|k = uk|k − urk|k and d̃k|k = dk|k − drk|k. (10)114

2When it clearly refers to current time k, the time dependency at which the information
is available will be omitted, i.e. (·)k+i|k = (·)k+i
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The matrices Ak|k, Buk|k and Bdk|k , are the Jacobian matrices of the discrete115

non-linear system (1), and they are defined as follows116

Ak|k = ∂f(xk,uk,dk)
∂xk

∣∣∣∣
(∗)
, Buk|k = ∂f(xk,uk,dk)

∂u(k)

∣∣∣∣
(∗)
, Bdk|k = ∂f(xk,uk,dk)

∂d(k)

∣∣∣∣
(∗)
,

(11)117

where (∗) stands for (xrk, u
r
k, d

r
k). In terms of the LTV system (9), the fol-118

lowing quadratic objective function J (k), commonly used in the literature,119

is adopted:120

J (k) =
N−1∑
i=0

[
x̃Tk+i|kQx̃k+i|k + ũTk+i|kRũk+i|k

]
+ x̃Tk+N |kPk|kx̃k+N |k, (12)121

where Q,R, Pk|k are positive definite matrices; Pk|k is the terminal weight122

matrix that is chosen so as it satisfies the Lyapunov equation123

Pk|k − ATk|kPk|kAk|k = Q. (13)124

As a result, the non-convex optimization problem (5) can be rewritten as125

a convex optimization problem as follows:126

min
ũk∈U

J (k)

st.


x̃k+1|k = Ak|kx̃k|k +Buk|kũk|k +Bdk|kd̃k|k,
x̃k|k = xk|k − xrk|k,
ũk|k = uk|k − urk|k,
d̃k|k = dk|k − drk|k.

(14)127

In Algorithm 1 the NMPC receding horizon control technique is summarized.128
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Algorithm 1: NMPC Algorithm

Given Q,R > 0, xk|k the initial condition.

Step 1: Obtain the linearization trajectory xrk, u
r
k using as initial

condition u0
k = [u∗k|k−1, u

∗
k+1|k−1, · · · , u∗k+N−2|k−1, 0]T and estimate dk+i

for i = 0, · · · , N − 1

Step 2: Obtain the LTV system (9) and Pk|k solving (13)

Step 3: Compute the optimal control input sequence ũ∗k solving (14)

Step 4: Update u∗k ← urk + ũ∗k

Step 5: Apply uk|k = u∗k|k to the system

Step 6: Move the horizon forward to the next sampling instant
k ← k + 1 and go back to Step 1

129

Linearization techniques are the most straightforward ways to adapt lin-130

ear control methods to non-linear control problems. In absence of perturba-131

tions and linearization errors, the Algorithm 1 will guarantee the closed-loop132

stability.133

Assumption 1. The LTV system (9) is stabilizable for uk ∈ U .134

Assumption 2. The prediction horizon N is chosen sufficiently long.135

Assumption 3. There are no perturbations, i.e. dk+i = 0, i = 0, · · · , N−1.136

137

Theorem 1. Let assumptions 1 - 3 hold. If the optimization problem (14)138

solved using Algorithm 1 is feasible, then the origin is an exponentially stable139

equilibrium point.140

Proof. See Appendix 8.A.141

Although assumption 1 establishes that the prediction horizon N should142

be long enough, for engineering applications this horizon should be actually143

chosen as small as possible in order to reduce the workload of online calcu-144

lation. Consequently, the stability of the system should be ensured using a145

different argument (see for instance [15, 16, 18]). Moreover, if disturbances146

are present Theorem 1 might not be satisfied because the contractivity of147
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the cost function cannot be guaranteed at the successive time instants. To148

address this problem, we propose to add the convex contractive constraint149

J (k) ≤ J0(k), (15)150

to the optimization problem (14), where J0(k) denotes the cost function151

evaluated for the initial solution152

u0
k = [u∗k|k−1, u

∗
k|k−1, · · · , u∗k+N−2|k−1, 0]T . (16)153

at iteration k. Note that this constraint forces the cost function to remain154

constant or to decrease within the current time instant, thus determining an155

upper bound for J (k). Then, the new optimization problem can be stated156

as follows:157

min
ũk∈U

J (k)

st.


x̃k+1|k = Ak|kx̃k|k +Bk|kũk|k,
x̃k|k = xk|k − xrk|k,
ũk|k = uk|k − urk|k,
J (k) ≤ J0(k).

(17)158

As the contractive constraint (15) is defined at the current time instant, if159

any perturbation occur the value of J (k) can increase (only at time k) but160

then it is forced to decrease or to remain constant. The optimization problem161

(17) can be seen as a multi-objective problem, where the constraint (15) is162

used to guarantee the stability of the closed-loop system and J (k) is used to163

measure the performance of the closed-loop system.164

Theorem 2. If the optimization problem (17) solved using Algorithm 1 is165

feasible, then the closed-loop system is stable.166

Proof. See Appendix 8.B.167

Remark 1. Note that in the absence of perturbations, the constraint (15)168

guarantees the contractivity of the cost function at successive time instants,169

i.e.170

J ∗(k) ≤ J (k) ≤ J0(k) ≤ J ∗(k − 1) ≤ J (k − 1). (18)171

Remark 2. As the stability of the system is guaranteed, the prediction172

horizon N can be reduced, consequently lowering the workload of online173

calculation (see for instance the simulation example of Section 5.1).174
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Remark 3. The addition of the constraint (15) is equivalent to the addition175

of an input constraint on uk, hence if the system is stabilizable with uk ∈ U ,176

then the initial feasibility is guaranteed and using the argument of recursive177

feasibility, the contractive constraint (15) does not affect original feasibility178

[16].179

3. Robust Non-linear Model Predictive Control180

The design of robust control algorithms have been studied for many years181

because such algorithms have the ability to handle system parametric and182

structural uncertainties (modeled as bounded disturbances) during the sys-183

tem operation. One possible way of accounting for robustness in NMPC184

algorithm consists in evaluating at each sampling instant all the possible185

system state trajectories for a given (or estimated) disturbance. This can186

be done solving an optimization problem that considers the different states187

trajectories, i.e.:188

min
ũl
k∈U
J (k)

st.


x̃lk+1|k = Alk|kx̃

l
k|k +Bl

k|kũ
l
k|k,

x̃lk|k = xlk|k − xrk|k,
ũlk|k = ulk|k − urk|k,
J l(k) ≤ J l

0(k),

(19)189

where l = 1, · · · ,m stands for the different system realizations regarding the190

given disturbance. As a result, it can be thought that each state trajectory191

defines an edge of a time varying polytope [21, 22]. This polytope can be used192

to generate a tube which actually contains all the possible state trajectories.193

Tubes have been widely used to bound uncertainties [21, 23–25]. However,194

the determination of an exact tube for non-linear systems is very difficult.195

In this work, the LTV system (9) is obtained by a first order Taylor196

series expansion. To measure the deviation between the LTV system and197

the non-linear one, the second order Taylor remainder is used to bound these198

linearization errors. Instead of obtaining the sequence of all state trajectories199

xlk, l = 1, · · · ,m, we propose to use the Taylor remainder to compute state200

trajectory sequence with the worst uncertainty xM
k . This trajectory can then201

be used to determine an outer bounding-tube that contains all the state202

trajectories. Finally, this tube is used to guarantee the stability of the closed-203

loop system. The proposed procedure is explained below.204
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The non-linear system (1) can be approximated exactly with an LTV205

model if the second order Taylor reminder R1(x̃k, ũk, d̃k)
3 is added to the206

RHS of (9)207

x̃k+1|k = Ak|kx̃k|k +Bk|kũk|k +R1(x̃k, ũk, d̃k). (20)208

From equation (20) it can be seen that the term R1(·) acts as an additive209

disturbance. This term can be maximized4 in order to obtain xM
k , which is the210

state trajectory sequence with the worst uncertainty. Once xM
k is obtained,211

its associated cost J M(k) can be computed. Then, the stability condition212

for the whole problem can be established if this cost function is forced to213

decrease. This can be done adding the following contractive constraint214

J M(k) ≤ J M
0 (k), (21)215

to the optimization problem (17). Finally the proposed robust control prob-216

lem to be solved is217

min
ũk∈U

J (k)

st.


x̃k+1|k = Ak|kx̃k|k +Bk|kũk|k,
x̃k|k = xk|k − xrk|k,
ũk|k = uk|k − urk|k,
J (k) ≤ J0(k),
J M(k) ≤ J M

0 (k),

(22)218

where J M
0 (k) denotes the cost functions J M(k) evaluated for the initial con-219

dition u0
k.220

By including the contractive constraint (21) the stability of the origin is221

guaranteed as J M(k) is forced to decrease (or to remain constant). Moreover,222

as J M(k) is pushed to zero it actually contract the nominal cost. Following223

similar arguments as that used in the proof of Theorem 2 and in (18), it can224

be shown that if the optimization problem (22) solved using Algorithm 1 is225

feasible, then the origin is an exponentially stable equilibrium point.226

Remark 4. Note that as J M
0 (k) is a relaxed upper bound (see for instance227

Figs. 2(c) and 4(b)), then it is surely bigger than J M(k), thus not affecting228

the feasibility of the optimization problem (22).229

3R1(·) can be obtained as in [26]
4If there is no information about dk a given value can be assumed
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Remark 5. Following the same arguments used in Remark 3, it can be de-230

duced that the addition of the contractive constraint (21) in the optimization231

problem (22) does not affect original feasibility.232

It is worth comparing the proposed approach with those described in [24]233

and [21]. In our work an outer bounding-tube is obtained by simply max-234

imizing R1(x̃k, ũk, d̃k) and then computing the state trajectory xM
k . Within235

this bounding-tube lie all the perturbed system trajectories [23, 27]. Ad-236

ditionally, the stability condition is guaranteed just by the inclusion of the237

constraint (21). The procedure proposed in [24] by Cannon et al. is more238

complex. The authors solve a multi-parametric optimization problem with239

many constraints yielding a high computational burden (even for a simple240

state-space model) and the impossibility to solve the algorithm in real time.241

On the other hand, in [21] Langson et al. propose a method for robust242

MPC of linear constrained systems with uncertainties. They use (convex)243

compact polytopes and (convex) closed polyhedrons, which are difficult to244

handle when there are several resulting regions. Moreover, the tube is defined245

as a sequence of sets of states and associated time-varying control input law.246

This is time demanding as they compute all the possible state trajectories to247

define the tube.248

4. Iterated Robust Non-linear Model Predictive Control249

When non-linear systems are linearized, linearization errors may appear250

and they could be large if linearization trajectories are far from the system251

operating point. To account for these errors, we propose to include an iter-252

ative technique [15, 28] in Algorithm 1 in order to improve the performance253

of the closed-loop system. The proposed iteration works as follows: at each254

sampling instant, the non-linear system is linearized along a predefined lin-255

earization trajectory. The optimal control input sequence is computed and256

then it is checked if the breaking loop condition is satisfied. If it is not the257

case, the linearization trajectory is re-computed using the new control input258

sequence. The non-linear system is re-linearized and the control input se-259

quence is re-computed. This loop is followed until the convergence condition260

is satisfied. As a result, a more accurate optimal control input sequence u∗k261

is then obtained. In Algorithm 2 the proposed iterated robust NLMPC tech-262

nique is summarized.263

10

si
nc

(i
) 

R
es

ea
rc

h 
C

en
te

r 
fo

r 
Si

gn
al

s,
 S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

M
. M

ur
ill

o,
 G

. S
an

ch
ez

 &
 L

. G
io

va
ni

ni
; "

It
er

at
ed

 n
on

-l
in

ea
r 

m
od

el
 p

re
di

ct
iv

e 
co

nt
ro

l b
as

ed
 o

n 
tu

be
s 

an
d 

co
nt

ra
ct

iv
e 

co
ns

tr
ai

nt
s"

IS
A

 T
ra

ns
ac

tio
ns

 J
ou

rn
al

, f
eb

, 2
01

6.



Algorithm 2: Iterated Robust NMPC Algorithm

Given Q,R > 0, xk|k the initial condition, q the iteration index.

Step 1: Initialize uqk = [u∗k|k−1, u
∗
k+1|k−1, · · ·u∗k+N−2|k−1, 0]T

Step 2: Obtain the linearization trajectory xqk, u
q
k

Step 3: Obtain the LTV system (9) and P q
k|k solving (13)

Step 4: Compute the optimal control input sequence ũ∗,qk solving (22)

Step 5: Update u∗,qk ← uqk + ũ∗,qk

Step 6: if
∥∥u∗,qk − u∗,q−1k

∥∥
∞ ≤ ε

u∗k ← u∗,qk ,
k ← k + 1
q ← 0

else
q ← q + 1
Update uqk = u∗,q−1k

Go back to Step 2
end

Step 7: Apply uk|k = u∗k|k to the system and go back to Step 1

264

As the optimization problem to be solved in Algorithm 2 includes the265

contractive constraints (15) and (21), the stability of the algorithm is guar-266

anteed. Consequently, the iteration process can be stopped at any time, thus267

improving the online computational burden.268

Theorem 3. The iteration loop of Algorithm 2 converges to the optimal269

value.270

Proof. See Appendix 8.C.271

5. Simulation Examples272

In this section simulation examples are shown. Using the quadcopter273

model described in Appendix D and the iterated robust NMPC technique274

of Section 4 two autonomous maneuvers are performed. To evaluate the275

performance of the proposed controller, simulations with different horizons276

are also performed.277
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5.1. First Example: Climbing Up, Moving Forward and Landing with Colored278

Wind Gusts279

The first maneuver to be tested is the following: first the quadcopter280

starts climbing up with an altitude rate ḣ = 0.15 [m/ sec]. At approximately281

t = 10 [sec], the vehicle starts moving forward along the x -axis. When t =282

20 [sec], the quadcopter reaches the desired altitude hsp = 3 [m] and it keeps283

moving forward for about 5 seconds longer. When t = 25 [sec], the vehicle284

starts a landing maneuver. Finally, after 10 seconds, the quadcopter is back285

in the ground. It is assumed that the quadcopter flies immersed in colored286

wind. The forces generated by these wind gusts act at the quadcopter CG287

position and they vary randomly between −1.0 [N] and 1.0 [N], as it can be288

seen in Figure 1:

F
w

1
 [
N

]

-1

0

1

F
w

2
 [
N

]

-1

0

1

time [sec]

0 5 10 15 20 25 30 35

F
w

3
 [
N

]

-1

0

1

Figure 1: Evolution of colored wind gusts

289

The robust NMPC controller was designed using an horizon N = 3 and290

sampling period Ts = 0.1 [sec]. The weight matrices Q, R and Pk|k were291

defined as292

Q = diag(10, 1, 100, 10, 0, 10, 0, 10, 0, 10, 0, 10)

R = diag(0.1, 0.1, 0.1, 0.1)
(23)293

while Pk|k was computed at each sampling interval using (13). Fig. 2(a)294

shows the quadcopter position5. It can be seen that the vehicle starts climb-295

ing while moving forward. It reaches the desired altitude and continues296

5The x -axis points to the north (n), the y-axis points to the east (e) and the z -axis
points down (h=-z)
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moving along the positive x -axis. Finally, it lands in the ground successfully.297

Fig. 2(b) depicts the evolution of the computed optimal control inputs. The

n
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Iterated Robust NMPC Reference

(a) Quadcopter position
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(b) Quadcopter control inputs
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(c) Evolution of J (k) with initial guess
J0(k) for N = 3
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(d) Position errors for different horizons

Figure 2: Climbing up, moving forward and landing maneuver with colored wind gusts

298

obtained values are physically realizable for a quadcopter. Also, the varia-299

tion of the four control inputs are similar in shape and in magnitude, which300

allow to maintain the quadcopter at a stable flight. From Fig. 2(c) it can be301

seen clearly that the proposed contractive constraint J0(k) acts as an upper302

bound for the cost function J (k). This constraint is never active because303

the aim of including J0(k) in (22) is to limit the searching space of optimal304

solutions. It should be noted that despite the value of N was very short,305

the proposed maneuver was performed successfully. The adopted value in306
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fact corresponds to shortest horizon possible that can be used in a receding307

horizon control scheme with this quadcopter model (the number of unstable308

modes plus one [29]). Fig. 2(d) shows the errors in the quadcopter position309

when larger values of N are used. As it can be seen, the differences between310

the simulations are small. This is very advantageous as the computational311

burden of the robust NMPC scheme is reduced if shorter horizons are used.312

5.2. Second Example: Spiral Motion with Controlled Yaw Angle313

The second maneuver to be tested is a spiral descend motion with con-314

trolled yaw angle. For this case, the robust NMPC controller was also de-315

signed using an horizon N = 3 and sampling period Ts = 0.1 [sec]. The316

weight matrices Q, R and Pk|k were defined as317

Q = diag(100, 1, 100, 10, 0, 10, 0, 10, 0, 10, 0, 10)

R = diag(0.1, 0.1, 0.1, 0.1)
(24)318

while Pk|k was computed at each sampling interval using (13).319

The proposed maneuver, in addition of the spiral descend motion, also320

controls the quadcopter yaw angle in such a way that the quadcopter x -axis321

is always aligned with the circumference radius, and as a result the vehicle322

always ‘looks’ at the center of the spiral. This maneuver would result very323

useful, for example, if one would use a quadcopter with a fixed-mounted cam-324

era to inspect a tower. As it can be seen in Fig. 3, the desired maneuver was325

performed successfully. The quadcopter achieved the spiral descend motion326

while the yaw angle was controlled in order the quadcopter ‘looks’ at the327

center of the spiral. Fig. 4(a) shows the evolution of the computed control328

inputs. It can be seen that the propellers which are opposite to each other329

have a similar variation. Control inputs practically vary at the beginning330

and at the end of the maneuver, staying constant while the quadcopter is331

performing the spiral descent. Fig. 4(b) depicts both the cost function332

J (k) and its upper bound J0(k). It shows that when the spiral descend is333

being performed, the cost is constant and when the quadcopter reaches the334

ground, J (k) effectively tends to zero.335

5.3. Comparison between iterated robust NMPC and classical NMPC tech-336

niques337

Here, the proposed iterated robust NMPC technique is compared with338

the classical NMPC technique presented in [28]. To test the performance339
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Figure 3: Evolution of the quadcopter position
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Figure 4: Spiral motion with controlled yaw angle
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of our algorithm, we simulated the maneuver presented in Section 5.1 using340

both algorithms. In Figure 5 it can be seen the errors in the quadcopter341

position. The results suggest that when the value of N is maintained and342

the contractive contraints are not added to the optimization problem, then343

the errors in the quadcopter position are increased. However, in order to ob-344

tain a similar response as the one obtained with the iterated robust NMPC,345

we had to use the NMPC technique with a larger value of N , thus increas-346

ing the online computational workload. On the other hand, the proposed347

algorithm could be executed within a maximum of three iterations but as348

the stability of the closed-loop system is guaranteed, the iteration loop could349

have been stopped with fewer iterations, thus reducing even more the online350

computational workload.

e
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Figure 5: Comparison with the standard NMPC technique

351

Additionally, we have also compared our algorithm with the one proposed352

by Cannon et al. [24]. We performed the same maneuver as before using353

both algorithms. Similar results were obtained when a large horizon was used354

with Cannon’s algorithm. Moreover, we found that the online computational355

burden for this algorithm is three or four times higher than that obtained356

with our algorithm.357

Consequently, because of the presented results the iterated robust NMPC358

algorithm may be an useful tool for real time simulations as it allows to obtain359

acceptable responses at lower computational burden.360
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6. Conclusion361

In this paper, a robust non-linear model predictive control technique was362

presented. The proposed technique is based on the linearization of non-linear363

systems along pre-defined state trajectories and the minimization of a con-364

strained objective function. To guarantee the stability of the closed-loop365

system we add to the optimization problem a contractive constraint that366

forces the cost function to decrease (or to remain constant) at the current367

time instant. This stability can be also guaranteed even with uncertainties.368

As the stability of the system is guaranteed, the inclusion of this constraint369

allows to reduce the prediction horizon to its minimum value, thus lowering370

the computational workload. This may be useful when controlling non-linear371

systems with fast dynamics such as a quadcopter. The robustness of the372

proposed NMPC algorithm is achieved by using the Taylor reminder to com-373

pute the state trajectory associated to the worst uncertainty. This trajectory374

can then be used to determine an outer bounding-tube that contains all the375

system state trajectories. The proposed methodology to obtain the outer376

bounding-tube for state trajectories seems to be simpler and less computa-377

tionally demanding. To account for linearization errors and to improve the378

performance of the closed-loop system we have included an iteration loop in379

the robust NMPC algorithm, yielding to the iterated robust NMP algorithm.380

The iterated NMPC algorithm was used as a central unit that can control381

a full quadcopter model without the need of decoupling the non-linear sys-382

tem. To evaluate the performance of this algorithm, we have performed the383

simulation of two autonomous maneuvers, which were performed both suc-384

cessfully. Also, the results were compared with those obtained using larger385

horizons, having no significant differences between the short horizon adopted386

and the larger ones. Finally, we have performed a comparison between it-387

erated robust NMPC algorithm and classical NMPC. The results obtained388

suggest that the proposed algorithm can achieve a similar response to the389

classical NMPC but using a shorter prediction horizon, thus having a lower390

computational workload than classical NMPC.391
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8. Appendices396

A. Proof of Theorem 1397

Proof. First it is shown that the input and the state converge to the origin,398

and then it will be shown that the origin is an stable equilibrium point for399

the close-loop system. The combination of convergence and stability gives400

asymptotic stability.401

Convergence. Convergence of the state and input to the origin can be estab-402

lished by showing that the sequence of cost values is non-increasing.403

Let the cost function J (k) be given by (12), with Q, R and Pk|k positive404

definite matrices; Pk|k satisfies the Lyapunov equation.405

Let u∗k = [u∗k|k, u
∗
k+1|k, · · · , u∗k+N−1|k]T be the optimal control input se-406

quence computed at time k. Assuming that only exists inputs constraints,407

then the control input sequence ûk+1 = [u∗k+1|k, u
∗
k+2|k, · · · , u∗k+N−1|k, 0]T is408

feasible at time k+ 1. As Pk|k satisfies the Lyapunov equation, then the cost409

function (12) approximates exactly the infinite cost problem. Then, evaluat-410

ing J (k) for both u∗k and ûk+1, and assuming that there are no perturbations411

nor linearization errors, it can be shown that412

Ĵ (k + 1)− J ∗(k) = −xTk|kQxk|k − u∗k|kRu∗k|k, (25)413

where Ĵ (i) and J ∗(i) denote the values of the cost function for ûi and u∗i ,414

respectively. As the RHS of (25) is semi-negative definite, then415

Ĵ (k + 1) ≤ J ∗(k). (26)416

But ûk+1 is a feasible but sub-optimal sequence, then it can be said that417

J ∗(k + 1) ≤ J̃ (k + 1), and consequently418

J ∗(k + 1) ≤ J ∗(k) ∀k. (27)419

This shows that the sequence of optimal cost values {J ∗(k)} decreases along420

closed-loop trajectories of the system. The cost is bounded below by zero421

and thus has a nonnegative limit. Therefore as k → ∞ the difference of422

optimal cost ∆J ∗(k + 1) = J ∗(k + 1) − J ∗(k) → 0. Because Q and R are423

positive definite, as ∆J ∗(k+1)→ 0 the states and the inputs must converge424

to the origin xk → 0 and uk → 0 as k →∞.425
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Stability. To prove that the origin is asymptotically stable, from (27) it is426

clear that the sequence of optimal costs {J ∗(k)} is non-increasing, which427

implies J ∗(k) ≤ J ∗(0)∀k > 0. At time k = 0, the cost function can be428

written as429

J (0) = xT0 P0x0, (28)430

where P0 satisfies the Lyapunov equation Pk − ATkPkAk = Q, Q > 0. From431

the definition of cost function, it can be written that432

xTkQxk ≤ J ∗(k), (29)433

then,434

xTkQxk ≤ J ∗(k) ≤ J ∗(0) ≤ J (0) = xT0 P0x0, (30)435

which implies436

xTkQxk ≤ xT0 P0x0 ∀k. (31)437

Since Q and P0 are positive definite it follows that438

λmin(Q) ‖xk‖2 ≤ λmax(P0) ‖x0‖2 ∀k, (32)439

where λmin(·) and λmax(·) denote the min-max eigenvalue of the correspond-440

ing matrix. Finally it can be written that441

‖xk‖ ≤

√
λmax(P0)

λmin(Q)
‖x0‖ ∀k > 0. (33)442

Thus, the closed-loop is stable. The combination of convergence and stabil-443

ity implies that the origin is asymptotically stable equilibrium point of the444

closed-loop system.445

B. Proof of Theorem 2446

Proof. As the cost function (12) is locally convex at each sampling instant447

and only linear inputs constraints are considered, the optimization problem448

of Algorithm 1 is locally convex.449

Let the control input sequence u0
k be a feasible solution at time k defined450

as:451

u0
k = [u∗k|k−1, u

∗
k+1|k−1, · · · , u∗k+N−2|k−1, 0]T . (34)452
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At time k, let uk be a feasible convex combination of u∗k and u0
k, i.e.453

uk = αu∗k + (1− α)u0
k, with 0 ≤ α ≤ 1. (35)454

As J (k) is a locally convex function, it can be easily shown that455

J (k) = αJ ∗(k) + (1− α)J0(k),
= α (J ∗(k)− J0(k)) + J0(k),

(36)456

as 0 ≤ α ≤ 1 and J ∗(k) is the optimal value of the cost function at time k,457

then458

α (J ∗(k)− J0(k)) ≤ 0, (37)459

and consequently460

J (k) ≤ J0(k), (38)461

This shows that at each time instant k the cost function J (k) is non-462

increasing, thus the resulting closed-loop is stable.463

464

C. Proof of Theorem 3465

Proof. At iteration q = 1 let u1
k be a feasible convex combination of u∗k and466

u0
k, i.e.467

u1
k = αu∗k + (1− α)u0

k, with 0 ≤ α ≤ 1. (39)468

As the iterated cost function469

J q(k) =
N−1∑
i=0

[
x̃q

T

k+i|kQx̃
q
k+i|k + ũq

T

k+i|kRũ
q
k+i|k

]
+ x̃q

T

k+N |kP
q
k|kx̃

q
k+N |k, (40)470

is a locally convex function, then following a similar reasoning to the proof471

of Theorem 2, it can be easily shown that472

J 1(k) ≤ J 0(k), (41)473

The same argument can be repeated at subsequent iteration to show that474

J q+1(k) ≤ J q(k), q ≥ 0, (42)475

This shows that the sequence {J q(k)} is non-increasing. As the cost function476

is quadratic, it is bounded below by zero and thus has a non-negative limit.477

Therefore, as q → ∞ the difference of cost ∆J q(k) = J q+1 − J q → 0, and478

as a result J q(k)→ J ∗(k).479
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D. Non-linear Quadcopter Model480

The quadcopter state vector x is defined as:481

x = [n e h u v w φ θ ψ p q r]T , (43)482

where n, e and h = −z are the coordinates of the quadcopter CG position,483

u, v and w are the components of the quadcopter velocity vector, φ, θ and484

ψ are the Euler angles that define the roll, pitch and yaw movements and p,485

q and r are the components of the quadcopter angular velocity vector. The486

quadcopter control inputs vector u is defined as:487

u = [Ω0 Ω1 Ω2 Ω3]
T , (44)488

where Ωi denotes the absolute angular speed of the i-th rotor.489

Defining cα, sα, and tα as the notation representing cos(α), sin(α) and490

tan(α), respectively, for a generic angle α, the 6-degrees of freedom (6-DOF)491

non-linear dynamic of a quadcopter can be represented by the following set492

of differential equations:493

ẋ =



u cθ cψ +v(sφ sθ cψ− cφ sψ) + w(cφ sθ cψ + sφ sψ)
u cθ sψ +v(sφ sθ sψ + cφ cψ) + w(cφ sθ sψ− sφ cψ)

u sθ−v sφ cθ−w cφ cθ
rv − qw − g sθ− µ

m
u− C Axρ

2m
u |u|

pw − ru+ g sφ cθ− µ
m
v − C Ayρ

2m
v |v|

qu− pv + g cφ cθ− b
m

(Ω2
0 + Ω2

1 + Ω2
2 + Ω2

3)−
C Azρ
2m

w |w|
p+ q sφ tθ +r cφ tθ

q cφ−r sφ
q sφ sec θ + r cφ sec θ

Iy−Iz
Ix

qr + d b
√
2

2Ix
(−Ω2

0 − Ω2
1 + Ω2

2 + Ω2
3)−

kρA
Ix
p+ Jr

Ix
q(Ω0 − Ω1 + Ω2 − Ω3)

Iz−Ix
Iy

pr + d b
√
2

2Iy
(Ω2

0 − Ω2
1 − Ω2

2 + Ω2
3)−

kρA
Iy
q − Jr

Iy
p(Ω0 − Ω1 + Ω2 − Ω3)

Ix−Iy
Iz

pq + ε
Iz

(Ω2
0 − Ω2

1 + Ω2
2 − Ω2

3)−
kρA
Iz
r + Jr

Iz
(Ω̇0 − Ω̇1 + Ω̇2 − Ω̇3)



,

(45)494

where ẋ is the time derivative of Eq. (43), g = 9.81 [m/ sec] is the acceleration495

of gravity, m = 1 [kg] is the mass of the quadcopter, Ix = 8.1 ·10−3 [Nm sec2],496

Iy = 8.1 · 10−3 [Nm sec2] and Iz = 14.2 · 10−3 [Nm sec2] are the body moment497

of inertia around the x, y and z axis, respectively, µ = 1 · 10−5 [kg/ sec] is498

the rotor drag coefficient, C = 3 · 10−4 is a dimensionless friction constant,499

Ax = 0.05 [m2], Ay = 0.05 [m2] and Az = 0.1 [m2] are the projections of500
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the vehicle area on the yz, xz and xy planes of the B-Frame, respectively,501

ρ = 1.2 [kg/m3] is the air density, b = 54.2 · 10−6 [N sec2] is the aerodynamic502

contribution of thrust, d = 0.24 [m] is the distance between the center of the503

quadcopter and the center of a propeller, k = 1 · 10−5 [m3/ sec] is a frictional504

constant, A = 0.2 [m2] is the vehicle area, Jr = 104 · 10−6 [Nm sec2] is the505

rotational inertia of a propeller and ε = 1.1 · 10−6 [Nm sec2] is a yaw drag506

factor.507
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on robust control invariant set with application to lipschitz nonlinear594

systems, Systems and Control Letters 62 (2) (2013) 194–200. doi:595

10.1016/j.sysconle.2012.11.004.596

URL http://dx.doi.org/10.1016/j.sysconle.2012.11.004597

24

si
nc

(i
) 

R
es

ea
rc

h 
C

en
te

r 
fo

r 
Si

gn
al

s,
 S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

M
. M

ur
ill

o,
 G

. S
an

ch
ez

 &
 L

. G
io

va
ni

ni
; "

It
er

at
ed

 n
on

-l
in

ea
r 

m
od

el
 p

re
di

ct
iv

e 
co

nt
ro

l b
as

ed
 o

n 
tu

be
s 

an
d 

co
nt

ra
ct

iv
e 

co
ns

tr
ai

nt
s"

IS
A

 T
ra

ns
ac

tio
ns

 J
ou

rn
al

, f
eb

, 2
01

6.

http://dx.doi.org/10.1109/9.863592
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=863592
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=863592
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=863592
http://dx.doi.org/10.1109/CDC.2007.4434137
http://dx.doi.org/10.1002/rnc.1245
http://dx.doi.org/10.1002/rnc.1245
http://dx.doi.org/10.1002/rnc.1245
http://dx.doi.org/10.1016/j.automatica.2003.08.009
http://dx.doi.org/10.1016/j.automatica.2003.08.009
http://dx.doi.org/10.1016/j.automatica.2003.08.009
http://www.sciencedirect.com/science/article/pii/S0005109802000122
http://www.sciencedirect.com/science/article/pii/S0005109802000122
http://www.sciencedirect.com/science/article/pii/S0005109802000122
http://dx.doi.org/http://dx.doi.org/10.1016/S0005-1098(02)00012-2
http://www.sciencedirect.com/science/article/pii/S0005109802000122
http://www.sciencedirect.com/science/article/pii/S0005109802000122
http://www.sciencedirect.com/science/article/pii/S0005109802000122
http://dx.doi.org/10.1002/rnc.1758
http://dx.doi.org/10.1002/rnc.1758
http://dx.doi.org/10.1002/rnc.1758
http://dx.doi.org/10.1109/TAC.2011.2135190
http://dx.doi.org/10.1016/j.sysconle.2012.11.004
http://dx.doi.org/10.1016/j.sysconle.2012.11.004
http://dx.doi.org/10.1016/j.sysconle.2012.11.004
http://dx.doi.org/10.1016/j.sysconle.2012.11.004
http://dx.doi.org/10.1016/j.sysconle.2012.11.004
http://dx.doi.org/10.1016/j.sysconle.2012.11.004
http://dx.doi.org/10.1016/j.sysconle.2012.11.004
http://dx.doi.org/10.1016/j.sysconle.2012.11.004
http://dx.doi.org/10.1016/j.sysconle.2012.11.004


[26] J. A. Mart́ınez, Model order reduction of nonlinear dynamic systems us-598

ing multiple projection bases and optimized state-space sampling, Ph.D.599

thesis, University of Pittsburgh (2009).600

[27] S. Rakovic, D. Mayne, Set robust control invariance for linear discrete601

time systems, in: Decision and Control, 2005 and 2005 European Control602

Conference. CDC-ECC ’05. 44th IEEE Conference on, 2005, pp. 975–603

980. doi:10.1109/CDC.2005.1582284.604

[28] J. R. Cueli, C. Bordons, Iterative nonlinear model predictive control.605

Stability, robustness and applications, Control Engineering Practice606

16 (9) (2008) 1023–1034. doi:10.1016/j.conengprac.2007.11.003.607

[29] J. B. Rawlings, K. R. Muske, The stability of constrained receding hori-608

zon control, Automatic Control, IEEE Transactions on 38 (10) (1993)609

1512–1516. doi:10.1109/9.241565.610

25

si
nc

(i
) 

R
es

ea
rc

h 
C

en
te

r 
fo

r 
Si

gn
al

s,
 S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

M
. M

ur
ill

o,
 G

. S
an

ch
ez

 &
 L

. G
io

va
ni

ni
; "

It
er

at
ed

 n
on

-l
in

ea
r 

m
od

el
 p

re
di

ct
iv

e 
co

nt
ro

l b
as

ed
 o

n 
tu

be
s 

an
d 

co
nt

ra
ct

iv
e 

co
ns

tr
ai

nt
s"

IS
A

 T
ra

ns
ac

tio
ns

 J
ou

rn
al

, f
eb

, 2
01

6.

http://dx.doi.org/10.1109/CDC.2005.1582284
http://dx.doi.org/10.1016/j.conengprac.2007.11.003
http://dx.doi.org/10.1109/9.241565

	Introduction
	Non-linear Model Predictive Control Formulation
	Robust Non-linear Model Predictive Control
	Iterated Robust Non-linear Model Predictive Control
	Simulation Examples
	First Example: Climbing Up, Moving Forward and Landing with Colored Wind Gusts
	Second Example: Spiral Motion with Controlled Yaw Angle
	Comparison between iterated robust NMPC and classical NMPC techniques

	Conclusion
	Acknowledgments
	Appendices
	Appendix Proof of Theorem 1
	Appendix Proof of Theorem 2
	Appendix Proof of Theorem 3
	Appendix Non-linear Quadcopter Model
	References

