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Abstract
The  cestode  parasite  Echinococcus  multilocularis  is  the  aetiological  agent  of  alveolar
echinococcosis,  responsible  for  considerable  human  morbidity  and  mortality.  This  disease  is  a
worldwide zoonosis of major public health concern and is considered a neglected disease by the
World Health Organization. The complete genome of E. multilocularis has been recently sequenced
and assembled in a collaborative effort between the Wellcome Trust Sanger Institute and our group,
with the main aim of analyzing protein-coding genes. These analyses  suggested that approximately
10% of E. multilocularis genome is composed of protein-coding regions. This shows there is still a
vast proportion of the genome that needs to be explored, including non-coding RNAs such as small
RNAs (sRNAs). Within this class of small regulatory RNAs, microRNAs (miRNAs) can be found,
which have been identified in many different organisms ranging from viruses to higher eukaryotes.
MiRNAs are a key regulation mechanism of gene expression at post-ranscriptional level and play
important roles in biological processes such as development, proliferation, cell differentiation and
metabolism in animals and plants. In spite of this, identification of miRNAs directly from genome-
wide data only is still a very challenging task. There are many miRNAs that remain unidentified
due to the lack of either sequence information of particular phylums or appropiate algorithms to
identify  novel  miRNAs.  The motivation  for  this  work is  the  discovery  of  new miRNAs in  E.
multilocularis based on non-target genomic data only, in order to obtain useful information from the
currently available unexplored data. In this work, we present the discovery of new pre-miRNAs in
the  E.  multilocularis genome  through  a  novel  approach  based  on  machine  learning.  We  have
extracted the most commonly used structural features from the folded sequences of the parasite
genome: triplets, minimum free energy and sequence length. These features have been used to train
a novel deep architecture of self-organizing maps (SOMs). This model can be trained with a high
class imbalance and without the artificial definition of a negative class. We discovered 886 pre-
miRNA  candidates  within  the E.  multilocularis  genome-wide  data.  After  that,  experimental
validation by small  RNA-seq analysis  clearly showed 23 pre-miRNA candidates with a pattern
compatible with miRNA biogenesis, indicating them as high confidence miRNAs. We discovered
new pre-miRNA candidates in  E. multilocularis using non-target genomic data only. Predictions
were meaningful using only sequence data, with no need of RNA-seq data or target analysis for
prediction. Furthermore, the methodology employed can be easily adapted and applied on any draft
genomes, which are actually the most interesting ones since most non-model organisms have this
kind of status and carry real biological and sanitary relevance.

Availability
Web demo: http://fich.unl.edu.ar/sinc/web-demo/mirna-som/
Source code: http://sourceforge.net/projects/sourcesinc/files/mirnasom/  

1.Introduction

1.1 MicroRNAs in Echinococcus spp.
Echinococcus  multilocularis is  a  parasitic  flatworm  that  causes  human  alveolar

echinococcosis worldwide. It is amongst the world's most dangerous zoonoses, developing tumor-
like flatworm larvae growing in the body (Torgerson et al., 2010). The metacestode of this parasite
can grow in an aggressive manner budding exogenously, infiltrating and colonizing surrounding and
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distant tissues due to the metastatic nature of its germinative cells. The genome of E. multilocularis
was recently sequenced and assembled in a collaborative effort between the Wellcome Trust Sanger
Institute and our group (Tsai et al., 2013). Gene content analysis revealed that approximately 10%
of the genome are protein-coding regions (Cucher et al., 2015). This shows that there is still a vast
proportion of the genome that needs to be explored, including non-coding RNAs such as small
RNAs (sRNAs).
Within this class of small regulatory RNAs, microRNAs (miRNAs) have been identified in many
different organisms. MiRNAs are endogenous 22 nucleotide noncoding RNAs, which act as pos-∼
transcriptional regulators involved in the control of nearly all cellular pathways, from development
to diseases in animals and plants (Ameres and Zamore, 2013). MiRNAs act mainly silencing gene
expression by binding to complementary sequences in the 3' untranslated regions (UTRs) of their
target mRNAs. Animal miRNAs are processed in the nucleus from long primary RNA transcripts
(pri-miRNAs)  into  70  nt  long  stem  loop  intermediates,  known  as  miRNA precursors  (pre-∼
miRNAs), from which mature miRNAs are processed in the cytoplasm (Bartel, 2004). Pre-miRNAs
(also known as hairpins) generated during biogenesis have well-known RNA secondary structures
derived from primary structures that have allowed the development of computational algorithms for
their identification. In a previous report, we experimentally found that miRNAs are expressed in
Echinococcus  granulosus  sensu  lato (Cucher  et  al.,  2011),  a  species  closely  related  to  E.
multilocularis,  suggesting  that  these  small  RNAs  could  be  an  essential  mechanism  of  gene
regulation  in  this  genus.  Profiling  of  miRNAs  can  be  defined  as  the  assessment  of  miRNA
expression in a given cell type and condition (Pritchard et al., 2012). Several methods are available
to do this, and are preferentially used depending on a wide range of factors. The most important
considerations tend to be related to the amount of biological material available, the experimental
design and the final objectives of the study. As with model organisms, this kind of experiments is
time-consuming and depends on the expression level of each biological stage. With the advent of
new  sequencing  technologies,  it  is  faster  and  easier  to  obtain  genomic  sequences  from  new
organisms. However, only a few bioinformatics efforts are available to analyze this type of data,
which, on the other hand, provide limited capabilities and low prediction performance for non-
model  organisms. To  the  best  of  our  knowledge,  no  miRNA  discovery  studies  from  E.
multilocularis genome  wide  data  have  been  carried  out  to  date.  Thus,  knowledge  of  the  E.
multilocularis miRNA repertoire needs to be explored.

1.2 Tools for miRNA identification
MiRNAs can be identified either by bioinformatics approaches or by sequencing strategies,

both of which  need computational tools for the analysis of the sequences obtained. Some of the
oldest strategies for miRNAs discovery includes RNA conformation based approaches using Mfold
(Zuker  et al., 2003) and RNAfold (Hofacker  et al., 2003; Hofacker  et al., 1994; Jacobson  et al.,
1993) as core algorithms. Other approaches are based on homology methods using known miRNA
and pre-miRNA sequences from several well-known model organisms. One potential drawback of
these homology-based methods is their inability to identify completely novel miRNA sequences in
non-model genomes, precisely due to the conservation criteria between related genomes on which
they rely and that might not be true or known for brand-new recently sequenced genomes.  More
recently,  machine-learning  techniques  for  miRNA  prediction  have  been  proposed,  based  on
properties and features of well-known miRNAs. Among them, mainly supervised machine-learning
techniques have been employed, using sequence composition and structural conformation features
to train a learning system capable of identifying miRNA candidates (Saetrom  et al., 2007;  Wen-
Ching Chan et al., 2012). As opposed to homology based methods, this approach could be useful for
species-specific  miRNA discovery  since  it  does  not  depend  on  evolutionary  conservation.  As
mentioned above, many methods have been developed to predict  pre-miRNA loci based on the
genome sequence and structural properties of the candidate loci. The miRNA classifier methods use
different  features to  evaluate,  for example,  the structural  stability or sequence properties of the
candidates, in order to produce a final prediction (Li  et al., 2010; Liu  et al.; 2014, Lopes  et al.;
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2014).  However, this is a non-trivial problem when addressing it in a purely computerized way, in
particular with classical supervised learning because the artificial definition of a negative class is
required (Gomes  et al., 2013).  Although methods that use only positive samples to predict new
miRNAs have been described (Yousef et al., 2008), it is well known that, when the negative class is
complex,  these  methods  fail  because  they  do  not  model  these  regions  of  the  feature  space
appropriately. Actually, they do not model the negative class at all or they model it under very
simplified  assumptions.  Furthermore,  when  the  negative  class  is  not  artificially  defined  and
genome-wide data wants to be used, a huge imbalance is often present between the positive class (a
few known miRNAs)  and  the  unlabeled  data  (hundreds  of  thousands  of  sequences).  Since  E.
multilocularis genome was recently generated, mining this new genomic data will provide a deeper
understanding of parasite miRNome. In this work, we identify candidate novel miRNA precursors
in E. multilocularis through a novel approach based on self-organizing maps (SOM) (Kohonen et.
al., 2005; Milone et. al., 2010).

2. Materials and methods

2.1 Biologically relevant data set and hairpin features extraction
The main pipeline used for the analysis of the genome-wide data is presented in Figure 1.

The complete  E. multilocularis genome (Tsai  et al., 2013) was processed by Einverted software
(EMBOSS package) as described by de Souza Gomes et al. (2011) with the following parameters:
gap penalty 6, minimum score threshold 25, match score 3, mismatch score -3, maximum separation
between the start and end of the inverted repeat 95. Then, the inverted repeats were folded into
491532 sequences by RNAfold   (Supp. file 1).  The obtained sequences were then pre-processed.
Sequences with minimum free energy (MFE) threshold of -20 and  single-loop folded sequences
were  selected according to the miRNA biogenesis model (Bartel,  2004). The retained sequences
were analyzed using BLAST algorithm (Altschul et al., 1990) against an in-house database of CDS,
tRNAs, rRNAs and long non coding RNAs flatworm sequences (Cucher  et al., 2015). After this,
77429 sequences were retained. Then, all  E. multilocularis hairpin sequences were downloaded
from miRBase v21, BLAST searches among the 77429 sequences retained were performed and a
total  of  18  sequences  were  labeled  as  positive  class.  To represent  the  sequences,  the  34  most
commonly used features were extracted. We used the smallest and less costly to compute subset of
features that are extensively used nowadays to identify novel pre-miRNAs : 32 triplets (Xue et al.,
2005), sequence length and MFE (Lopes et al., 2014). These features were extracted with the web
tool miRNAfe (Yones  et al., 2015) recently developed by us. Then, the features extracted from
77429 sequences were used to train the SOM classifier, which identified 886 sequences as the best
pre-miRNA candidates.

2.2 Classifier
In this work, instead of training a classifier in a classical supervised manner, we identified

miRNA precursors with a novel approach based on several nested SOMs. For SOM training, there
is no need to define the negative miRNA class. Only some examples of positive class examples
(well-known pre-miRNAs) are needed to identify the neurons that have the best miRNA candidates
associated to them. In this context, each neuron in the SOM is a cluster of sequences. The SOM
classifier is actually composed of several nested SOMs, which are hierarchically related. This deep
architecture is shown at the top of Figure 2, where a 10-layered (h=10) example is provided. The
training process of the hierarchical maps starts with the root SOM on the first layer (left), with the
77429 sequences  as  input.  This  map undergoes  standard  training.  After  that,  all  the  sequences
grouped together in a neuron (cluster) having also well-known pre-miRNAs (painted in dark blue)
are labeled as highly likely pre-miRNA candidates. These sequences are chosen as input to train the
map in the following layer  (indicated with black lines).  This process is  repeated several times,
further refining the classifier level after level. With this approach, each internal map is trained with
only a portion of the input data: the data mapped in the pre-miRNA clusters in the previous layer. At
the bottom of Figure 2, the number of candidates is shown for each level of the SOM. It can be
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clearly  seen  here  that  this  method  significantly  reduces  the  number  of  possible  pre-miRNA
candidates,  level  after  level,  retaining  at  last  the  high-confidence  pre-miRNAs.  After  four
consecutive levels without changes in the number of data clustered into pre-miRNA neurons (8042
sequences), no more levels are added. These and the following levels are exactly the same since the
map is trained with exactly the same data.  Therefore,  adding more levels does not cause over-
training either. In the last level, each well-known pre-miRNA in the miRNA neurons (in blue) is
grouped together with unlabeled sequences. Among them, the best bona fide candidates are selected
(886)  as  those  having  feature  values  within  ranges  automatically  defined  by  rules  obtained
according to the positive class (well-known miRNAs). This reduction was possible because each
feature  was  evaluated  individually  with  respect  to  its  discriminative  power  for  separating  the
positive class (well-known miRNAs) from the rest of the sequences. This was done iteratively, until
all features were analyzed and all positive sequences were correctly classified. This way, several
rules for the feature ranges were extracted, which were applied to the 8042 sequences in order to
further reduce its number to 886.

2.3 Mature miRNA sequence extraction
The total number of candidate pre-miRNAs discovered by SOM analysis (886) was mapped

to the complete  E. multilocularis genome and sequences with more than 10 hits  were removed
(highly repetitive sequences, Figure 1). Then, in order to extract mature miRNA sequences from
pre-miRNAs retained in the previous step,  26.9 million  clean mapped reads from small RNA-seq
data of  E.  multilocularis metacestode  stage  retrieved  from Cucher  et  al.  (2015)  were  BLAST
searched against the pre-miRNAs sequences. BLAST algorithm was  optimized for small sequences
with word size set in 7, the filter for low complexity regions off, and an e-value set in 10.  For each
pre-miRNA with small  RNAseq evidence in  the stem region of  the  candidate  pre-miRNA, the
consensus mature sequence was extracted from alignments showing 100% of identity and 100% of
coverage.  This  data  was  used  for  mature  miRNA sequence  determination  and not  for  miRNA
expression quantification. In order to extract additional mature miRNA sequences, all  metazoan
mature miRNA sequences from miRBase 21 and  Echinococcus  mature miRNAs reported in the
literature that were not integrated in miRBase (Bai  et al.,  2014, Macchiaroli  et al.,  2015) were
analyzed  by  BLAST  and  SSEARCH  algorithms  against  candidate  pre-miRNAs.  Finally,  for
conservation  analysis,  all  E.  multilocularis  mature  sequences  identified  in  previous  steps  were
BLAST  searched  against  related  flatworm  genomes:  Echinococcus  granulosus,  Echinococcus
canadensis,  Hymenolepis  microstoma and  Taenia  solium.  The  genomes  were downloaded from
http://parasite.wormbase.org/index.html and processed as previously described for E. multilocularis
whole genome.

2.4 Further evaluation of the approach  in a model organism
In order to further evaluate the proposal, a model organism has been used. Caenorhabditis

elegans genome was processed in a similar way as previously described for E. multilocularis.  The
1,739,460  sequences  obtained  were  BLAST  matched  against  miRBase  v17  for  pre-miRNA
identification. A total of 200 well-known miRNAs of C. elegans included into miRBase v17  were
labeled as positive class. All genome data (including the identified positive class) were  used to train
SOM until the level where the number of candidates did not change (as described previously for E.
multilocularis).  In  order  to  evaluate  the  prediction  performance  of  new  miRNAs  in  a  model
organism, the miRNAs added to miRBase in its most recent version have been used as input test
sequences. Therefore, the trained SOM was tested with 48  C. elegans  pre-miRNA obtained from
miRBase v19 to v21 (absent in miRBase v17).

3. Results and Discussion

In this work, we discovered 886 pre-miRNA candidates from E. multilocularis genome-wide
data  (Figure  1).  Although  such  quantity  can  be  hard  to  validate  experimentally,  this  must  be
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interpreted  as  an  important  first  step  towards  the  discovery  of  new miRNAs  in  low explored
genomes, such as the  E. multilocularis one, where only few pre-miRNA sequences are available.
Computationally identified miRNAs suggests that miRNA gene numbers are substantially higher
than those currently known, as proposed by Piriyapongsa et al. (2007). Most computational methods
nowadays require expensive high-throughput RNA sequencing data as input (Friedlander  et al.,
2012, Hackenberg et al., 2011). However, we use NGS data only for validation after finding the pre-
miRNA candidates, as in (Saçar et al., 2014). The few methods that have been proposed to identify
miRNAs  from  a  complete  genome  without  such  data  obtain  a  very  high  number  of  initial
candidates, hundreds of thousands or tens of thousands of sequences (Mendes et al., 2010). After
that, a reduced list of the best candidates is obtained by manually applying ad hoc rules (Mendes et
al., 2012) in order to achieve a number of sequences that can be experimentally validated. However,
for miRNA prediction most of the published approaches do not really deal with genome-wide data
but with class and no-class data (Xue et al., 2005; Hertel et al., 2006; Huang et al., 2007; Jiang et
al., 2007; Xu et al., 2008; Gkirtzou et al., 2010; Ding et al., 2010; Rahman et al., 2012; Gudy et al.,
2013). In these works, in order to train classifiers, and measure sensitivity and specificity in a cross-
validation scheme, a reduced subset of negative examples must be artificially defined. Moreover,
these unrealistic tests are performed over the genomes of model organisms, such as mammals or
round  worms,  being  only  useful  to  precisely  measure  the  performance  in  cross-validation
experiments,  but  they cannot  be applied in  real  practical  scenarios.  In the proposed processing
pipeline, only obvious non-miRNA sequences are filtered (according to loops, energy threshold and
identity to known RNAs other than miRNAs). The remaining sequences from the original genome
are all presented to the SOM for training and classification. The first advantage here is that the
SOM does not require the artificial definition of negative class, thus it does not perform unrealistic
tests. The second advantage is that it works directly on complete genome-wide data, which is being
refined level after level, automatically discarding low-quality candidates. With this methodology,
artificial examples to represent the negative class (which is actually unknown) must not be defined.
The negative examples can be actually very hard to define, even for a model  genome (Wei et al.,
2014). Thus,    SOM is well suited to the analysis of genome data from novel non model organisms.

In order to classify each miRNA as conserved or novel, we analyzed the identity of all pre-
miRNA candidates discovered by SOM with already reported metazoan miRNAs (miRBase v21)
and E. multilocularis miRNAs (Cucher  et al., 2015).  This analysis allowed us to identify 13 pre-
miRNAs previously described (Supplementary Table S1). Taking into account the 18 miRNAs used
as  positive  class,  the  total  of  miRNAs  found  was  31  out  of  37  miRNAs  expected  to  be  in
Echinococcus multilocularis (Cucher et al., 2015). Since four miRNAs were absent in the genome
input dataset because their folded structure did not match the filter criteria employed, the sensitivity
of SOM reached 94% (31/33). Moreover, 10 new pre-miRNAs were also identified totaling 23 pre-
miRNAs.  The  mature  miRNA annotation,  their  clean  mapped  read  counts  and  the  biological
function in other organisms are shown in Table 1. E. multilocularis RNA-seq clearly mapped to the
hairpin stem region with a pattern compatible with miRNA biogenesis indicating them as high-
confidence miRNAs.  As an example, a schematic representation of the secondary structure from
the conserved E. multilocularis premiRNA 36b is shown in Figure 3.

These new pre-miRNAs represent, in the first place, flatworm-specific miRNAs since they
were not detected in any other phyla. Also, some of them were recently reported in E. granulosus
(Bai et al., 2014). It can be noticed here the ability of the SOM to discover of new miRNAs, only
with  genomic  data  as  input.  Furthermore,  the  secondary  structure  from  all  new  pre-miRNAs
discovered by SOM analysis is shown in Figure 4. Structural features such as MFE and mature
miRNA sequences that mapped to them clearly showed that they were bona fide pre-miRNAs. All
mature  and pre-miRNA sequences  and structures  are  available  in  Supplementary  Table  S1 and
Figure  S1.  Additionally,  our  method  discovered  miRNAs  in  E.  multilocularis that  were  not
identified by a recent bioinformatics approach  (Jin  et al., 2013) such as miR-36, miR-307, miR-
1992, mir-3479, highlighting the potential of SOM analysis for miRNA discovery. Interestingly, this
miRNAs were considered lost in Echinococcus (Fromm et al., 2013) but SOM discovered them in
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coincidence with previously reports (Cucher et al., 2015; Macchiaroli et al., 2015).
We  have  also  searched  for  these  23  pre-miRNA sequences  in  closely  related  flatworm

genomes. All of them were found in at least one of the four related flatworm species (Figure 3,
Supplementary Table S1). Several of the mature miRNAs found in this work are deeply conserved
among bilateria such as emu-miR-281 and emu-miR-31, but others are found only in protostomia
such as emu-bantam, emu-miR-36 and emu-miR-1992. So far, there is no information about the
biological function of these miRNAs in Echinococcus.  These results could be interpreted as a good
indicator of the biological confidence of the predictions obtained with the pipeline proposed in this
work,  and  indicate  that  the  SOM could  discover  both  conserved  and  novel  miRNAs  from  E.
multilocularis genome data. Although losses of conserved miRNAs have been previously proposed
in  parasite  flatworms (Fromm  et  al.,  2013;  Macchiaroli  et  al.,  2015),  the  presence  of  specific
miRNAs is expected since novel miRNAs have been recently reported from small RNAseq data in
other  helminth parasites (Winter  et  al.,2012;  Bai  et  al.,  2014).  The new pre-miRNA sequences
discovered in our work are good candidates to be flatworm-specific miRNAs since they have no
identity with miRNAs from other phyla. These miRNA sequences are the most interesting ones
because they could have a crucial role in the establishment and/or progression of human alveolar
echinococcosis. As future work, it could be interesting to be able to determine the E. multilocularis
life cycle stage where the new miRNAs discovered in this work are expressed which could be done
following approaches previously published by us (Macchiaroli et al. 2015). The knowledge of the
complete repertoire of miRNAs, conserved and specific ones, is key to understand the development
of the parasite and the progression and control of this neglected disease.

The  validation  of  the  proposed  methodology  in  a  non-model  organism  has  proved  its
effectiveness. However, benchmarking it in a well-known reference genome can provide evidence
of its utility in a wide number of organisms. Thus,  we have performed a benchmarking test of the
proposed SOM approach with a well- known reference genome. The SOM was trained with the
complete genome data plus a total of 200 C. elegans well-known pre-miRNA sequences present in
miRBase v17. Then, the trained SOM has been tested with  48 pre-miRNAs more recently added to
miRBase v18-21 and absent in v17. In this test, 44 out of 48 pre-miRNA have been  identified as
positive  class,  resulting  in  a  SOM  sensitivity  of  92%.  Results  are  available  at
http://fich.unl.edu.ar/sinc/blog/web-demo/mirna-som-ce/  .

 
Table  1:   Conserved and novel  Echinococcus  multilocularis microRNAs predicted  from whole

genome data.

MiRNA ID Read countsa Biological functionb Referenceb

emu-bantam-3p 1184581

Regulates the growth of dendrites in
sensory neurons of Drosophila

melanogaster epithelial cells. Present
only in protostomes

Parrish et al. (2009)

emu-miR-31-5p 88 Tumoursuppressor in humans O'Day et al. (2010)

emu-miR-36a-3p 617 Unknown, present only in protostomes Macchiaroli et al. (2015)

emu-miR-36b-3p 1075 Unknown, present only in protostomes
Cucher et al.  (2015)

emu-miR-61-3p 578860
Promotes development in

Caenorhabditis elegans. Present only in
protostomes

Yoo AS et al. (2005)

emu-miR-281-3p 17958
Enhance viral replication in Aedes

albopictus
Zhou et al. (2014)

emu-mir-307-3p 123277 Unknown, present only in protostomes Cucher et al.  (2015)

emu-miR-1992-3p 24 Unknown, present only in protostomes Cucher et al.  (2015)
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emu-miR-2162-3p 100642 Unknown, present only in protostomes Cucher et al.  (2015)

emu-miR-10293-3p 4017 Unknown Cucher et al.  (2015)

emu-miR-3479a-3p 56603 Unknown Cucher et al.  (2015)

emu-miR-3479b-3p 63552 Unknown Cucher et al.  (2015)

emu-miR-7b-5p 1070

Controls epidermal growth factor
receptor signaling and promotes

photoreceptor cell differentiation in
Drosophila 

Jiang et al. (2010); Macchiaroli
et al. (2015) (egr-miR-7b-5p)

emu-miR-new1-5p 8 Unknown
This work and Bai et al. (2014)

(egr-new-48)
emu_miR-new2-3p 32 Unknown This work

emu_miR-new3-5p 123 Unknown This work

emu_miR-new4-5p 58 Unknown
This work and  Bai et al. (2014)

(egr-new -12)

emu_miR-new5-3p 1 Unknown
This work and  Bai et al. (2014)

(egr-new-25)

emu_miR-new6-5p 1 Unknown
This work and  Bai et al. (2014)

(egr-new-114)

emu-miR-new7-5p 41 Unknown
This work and  Bai et al. (2014)

(egr-new-7)

emu-miR-new8-3p 20 Unknown
This work and  Bai et al. (2014)

(egr-new-24)
emu-miR-new9-3p 246 Unknown This work

emu-miR-new10-5p 231 Unknown
This work and  Bai et al. (2014)

(egr-new-29)

Total 2133125
aNumber of clean mapped reads without normalization. bDescribed in model species.
cMost relevant references for miRNA function in other organisms or studies on related Echinococcus species.

3.Conclusions

We applied SOM analysis  for  E. multilocularis miRNA prediction and demonstrated  its
effectiveness and usefulness. Although using purely computational methods for de novo miRNA
prediction was a real challenge and a difficult problem to address, this analysis allow us to discover
good  candidates  from  E.  multilocularis genome  sequencing  data.  Most  pre-miRNA prediction
methods  based  on  supervised  machine  learning  methods,  which  need  to  artificially  define  the
negative class, cannot handle the class imbalance existing in such genome-wide data. However, the
proposed method addressed the problem effectively without requiring the artificial definition of a
negative class  dataset.  With  this  approach,  complete  genomes containing thousands of  hairpins
sequences could be analyzed and only highly likely hairpin sequences can be further selected for
biological validation. We found novel E. multilocularis pre-miRNAs from non target genomic data
without  the need of  RNA-seq data  and all  of  them conserved in  at  least  one related  flatworm
species. These results clearly indicate that there are still several genomic sequences to be classified
and ready to be analyzed deeply. We found expression of mature miRNAs derived from pre-miRNA
candidates adding confidence to the predictions obtained by SOM analysis. The data obtained in
this work will be useful to search for new mature miRNAs expressed in the human parasite  E.
multilocularis resulting in new tools for the diagnosis, prevention and developmental regulation of
alveolar echinococcosis neglected disease.

288

289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305

si
nc

(i
) 

R
es

ea
rc

h 
C

en
te

r 
fo

r 
Si

gn
al

s,
 S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

L
. K

am
en

et
zk

y,
 G

. S
te

gm
ay

er
, L

. M
al

do
na

do
, N

. M
ac

ch
ia

ro
li,

 C
. Y

on
es

 &
 D

. H
. M

ilo
ne

; "
M

ic
ro

R
N

A
 d

is
co

ve
ry

 in
 th

e 
hu

m
an

 p
ar

as
ite

 E
ch

in
oc

oc
cu

s 
m

ul
til

oc
ul

ar
is

 f
ro

m
 g

en
om

e-
w

id
e 

da
ta

"
G

en
om

ic
s,

 2
01

6.



Authors’ contributions

LK, GS and DHM wrote the manuscript and designed the experiments. GS and DHM designed and
implemented the SOM deep architecture and training scripts. CY developed the scripts for feature
extraction  and  data  pre-processing.  LK,  NM  and  LM  analyzed  data  from  high-throughput
experiments. All authors read and approved the manuscript. 

Acknowledgements

This work was supported by Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT),
Argentina, project PICT-CABBIO 2012 No 3044 and PICT 2014 No 2627, Universidad Nacional
del Litoral  (UNL) CAI+D 2011 548, and by Consejo Nacional de Investigaciones Científicas y
Tecnológicas (CONICET) project PIP 114 2011 and PIP 117 2013. High-throughput analysis was
performed in a local server at Instituto de Investigaciones en Microbiología y Parasitología Médicas
(IMPaM) which is part of Sistema Nacional de Computación de Alto Desempeño (SNCAD) of
Ministerio  de  Ciencia,  Tecnología  e  Innovación Productiva  (MINCyT).  Thanks  to  Dr.  Marcela
Cucher for making raw data of E. multilocularis available.

Legends to figures
Figure  1:  Flow  diagram  of  the  pipeline  proposed  for  miRNA discovery  from  Echinococcus
multilocularis genome-wide data. The folded E. multilocularis genome (491532 sequences) is used
as input. Blue arrows indicate pre-processing and SOM analysis. Green arrows indicate pre-miRNA
validation after RNA-seq data integration.

Figure 2: Architecture developed to find pre-miRNA candidates in E. multilocularis genome. Top:
Hierarchy of SOM classifier for 10 levels (h=10). Dark blue neurons have highly likely pre-miRNA
candidates, which are input to the next level SOM (black lines). Bottom: Number of pre-miRNA
candidates in each level.

Figure 3: Schematic representation of the secondary structure from the conserved pre-miRNA 36b
discovered by the SOM. The secondary structure predictions for pre-miRNA-36b is shown for four
species of flatworms. Emul: E. multilocularis; Egra: E. granulosus; Ecan: E. canadensis; Hmic: H.
microstoma. Mature miRNA sequences are underlined. Minimum free energy (MFE) is expressed as
kcal/mol.

Figure 4: The secondary structure predictions of all new miRNAs from E. multilocularis discovered
by SOM analysis. Mature miRNAs are indicated in red. Minimum free energy (MFE) is expressed
as kcal/mol.
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Figure 1500
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Figure 2502
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