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Abstract

In the frequency domain independent component analysis approaches for au-

dio sources separation, the convolutive mixing problem is replaced by the

solution of several instantaneous mixing problems, one for each frequency

bin of the short time Fourier transform. This methodology yields good re-

sults but requires the solution of the permutation ambiguity. Moreover, the

performance of the separation algorithms for each bin is not guaranteed to

be equivalent, thus some bins can have worse results than others. In this

paper a technique based on data from multiple bins is proposed to address

these issues. The use of multiple bin information produces a coupling of the

separation, resulting in more stable separation matrices and reducing the oc-

currence of permutations, but increasing in computational cost. This can be

mitigated by a sub sampling of the multiple bins information. The results

show that both approaches are beneficial for the frequency domain ICA ap-

proach, producing better separation in terms of objective quality measures.
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1. Introduction

The Audio Source Separation problem is very important for man-machine

interfaces, domotics, robotics and many applications of communications [1].

One of the most successful approaches for this problem is the frequency

domain independent component analysis (FD-ICA)[2, 3]. The time-domain

mixture of sources in a real environment can be expressed as

x(t) = H(t) ∗ s(t), (1)

where x(t) = [x1(t), x2(t), . . . , xN(t)]
T is the vector of N measured signals or

mixtures, H(t) is a FIR matrix with impulse responses of the room from each

source location to each microphone location, s(t) = [s1(t), s2(t), . . . , sM(t)]T

is the vector of M sources, and the symbol ∗ stands for convolution. This

operation is similar to a matrix-vector multiplication, replacing scalar mul-

tiplication by filtering using a convolution. A usual assumption is that the

number of mixtures N equals the number of sources M , a case known as

determined mixture, that will be considered in this paper.

Using the short time fourier transform (STFT) (1) can be written as

X(ωk, τ) = H(ωk)S(ωk, τ), (2)

where X(ωk, τ) is the vector of mixtures in the frequency domain, for fre-

quency ωk of bin k and time τ ; the same for S(ωk, τ) but for the source signals,

2
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and H(ω) is a standard scalar matrix with the values of the filters for each

frequency ωk [3]. It must be noted that a stationary mixture was assumed in

the previous equation, and thus H is not a function of the time index τ . This

equation means that in the frequency domain, the convolutive mixture prob-

lem has been replaced by many instantaneous mixture problems, one for each

frequency bin. This allows the problem to be solved efficiently by using any

instantaneous ICA algorithm applied to each frequency bin, that is, to find

a matrix W (ωk) such that the estimated sources Y (ωk, τ) = W (ωk)X(ωk, τ)

result as statistically independent as possible.

One of the main disadvantages of the FD-ICA approach is that the solu-

tion of the ICA subproblems in each frequency bin will produce an arbitrary

permutation and scaling of the sources. These ambiguities should be solved

before applying the inverse STFT to return to the time domain. The am-

plitude ambiguity is usually solved by the Minimal Distortion Principle [4].

For the permutation ambiguity, there have been several approaches with dif-

ferent degrees of success, using for example the correlation among envelopes

[5] or power ratios [2], the generalized coherence function [6], the use of in-

formation theoretic distance measures [7], or the pseudoanechoic model for

blind source separation [8]. In the last case, the problem was simplified in

such a way that it required the robust estimation of the separation matrix

for only one frequency bin, which then will serve to estimate the parameters

for defining the separation matrices for all bins.

One important problem of the FD-ICA approach is that, as each of the

ICA subproblems is independently solved, the quality of the solution found

for each of them will vary from bin to bin, and the problem will be worst
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for short signal duration [3]. This will produce a degradation of the sepa-

ration, and also it can increase the difficulty in the disambiguation of the

permutations. In [9] the separation quality for each bin is evaluated using

the directivity patterns, and is shown that the direction of sources detected

by the ICA method can vary a lot from bin to bin, due to poor results in the

separation of individual bins.

To improve these issues we present an approach based on multiple fre-

quency bin information as input data to each ICA subproblem. The use of

multiple bins can be applied to the general FD-ICA framework, where an ICA

subproblem needs to be solved for each frequency bin. The main hypothesis

is that the addition of lateral bins can produce a more robust estimation of

the separation matrices for all bins. That is, the main idea of this work is

to provide robustness to the estimation of each separation matrix through

the coupling of information of different bins. This would have an impact on

both, the quality of separation for each individual bin and the production

of less permutations, simplifying the postprocessing needed to obtain proper

alignment of the separated components.

In Section 2 the general methodology to include multiple bin information

is introduced. The algorithm is presented, and two variants of it are proposed.

Section 3 presents the experimental framework and the comparative results.

Finally, Section 4 presents the conclusions.
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2. Methods

2.1. Standard FD-ICA

A recent review of the FD-ICA, with special emphasis to multichannel

blind source separation, was given in [10]. A general framework for FD-ICA is

presented in the flow chart diagram of Fig. 1. The first step is a transforma-

tion to the time-frequency domain by using a STFT with given window and

step sizes. The next step is the estimation of the separation matrix for each

frequency bin. As shown in the flow chart, this is performed by a sequence of

three operations. First, the separation matrix obtained in the previous bin

is used as initial value for the present bin as in [11]. This is done because

the separation matrices should change slowly with the frequency, and thus

using the previous estimated one is better than using a random matrix and

provides a faster convergence. In the second operation, the data to be used

to learn the separation for each bin should be selected. For standard FD-ICA

this is simply all the data for the given frequency bin (this step is what will be

modified by our proposed algorithms). In a third operation, the separation

is done by the methodology proposed in [2]. The initial estimation is refined

by using the complex FastICA method [12]. This method is very fast but

the estimated separation matrix is not the best possible. Thus, it is further

refined by using the Scaled Natural Gradient (SNG) ICA method [13]. The

SNG ICA method is certainly efficient and the literature is rich in adaptation

methods for neural-network-based signal processing, based on the differen-

tial geometry, that insist on complex-valued manifolds [14, 15, 16, 17]. This

method is usally slower that FastICA, requiring more iterations to converge

(about 100), but if a good initial estimate is used, as in this case with the
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FastICA estimation, a few iteretions (around 20) can be used to improve the

results. After this stage, the estimated sources Ŝi(ωk, τ) are obtained.

[Figure 1 about here.]

Once the separation is obtained, the next step is to correct the permuta-

tion using the power ratio [2]. For each estimated source for a given frequency

bin, its power ratio is defined as

ρi(ωk, τ) =
||Ŝi(ωk, τ)||

2

�N

i=1
||Ŝi(ωk, τ)||2

. (3)

By definition, the power ratios have values 0 ≤ ρi(ωk, τ) ≤ 1. If the i-th

estimated source in bin k−1 correspond to the same original source that the

one obtained in bin k, the correlation among ρi(ωk−1, τ) and ρi(ωk, τ) will be

high. A coarse alignment algorithm similar to k-means clustering is applied,

using the correlation as similarity measure. Next, a fine local permutation

correction is applied, which compares adjacent bins and harmonic related

bins. The permutation that maximizes the sum of the correlations of the

given bin with the three (to each side) lateral bins, and also with the bins at

double and half frequencies, is selected.

Once the permutation has been fixed, the amplitude indeterminacy shoud

be corrected using the Minimum Distortion Principle [4]. Given an estimation

of the separation matrix Ŵ (ωk), an estimation of the mixing matrix Ĥ(ωk)

can be obtained as its inverse (or pseudoinverse if the number of mixtures

and sources are not the same). The idea is to obtain the sources as measured

at each sensor. Suppose that one of the estimated sources is kept, with the

other ones set to zero. The application of the mixing matrix will produce
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a set of measurements of that individual source as seen by all the sensors.

Repeating this for all the sources produces a set of so called “image sources”.

In this process, the amplitude ambiguity is eliminated. Finally, the last step

is a transformation to the time domain of the individual image sources, by

using an ISTFT. This is the standard method against which our proposals

will be compared.

2.2. Multi-bin FD-ICA

Let X(ωk, τ) be the vector of mixtures for the ωk frequency associated to

the k-th frequency bin, for each time τ as in (2), and let

X̂(ωk) = [X(ωk, 1)X(ωk, 2) · · ·X(ωk, P )]

be the N -by-P single-bin data matrix for bin k, where P is the number of

time frames. To produce a robust solution for the ICA subproblems, instead

of using data from the present bin only (in the block labelled “Bin Data

Selection” in Fig. 1), our proposal is to use data from a number L of adjacent

bins to each side of the central bin, in a method we call multi-bin ICA (MB-

ICA). Using the single-bin data matrix we construct the N -by-(2L + 1)P

multi-bin data matrix as

XL(ωk) =
�

X̂(ωk−L) X̂(ωk−L+1) · · ·

· · · X̂(ωk) · · · X̂(ωk+L)
�

, (4)

Let XL(ωk, r) denote the r-th column of the multi-bin data matrix. Using

this multi-bin data matrix, a separation matrixW (ωk) for whichW (ωk)XL(ωk, r)

result as statistical independent as possible, can be estimated by the same

ICA methods described in section 2.1, and the estimated separated sources
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can be obtained by Y (ωk, τ) = W (ωk)X(ωk, τ). After this point, the algo-

rithm follows the same steps as the standard FD-ICA method.

Lateral bins have two effects. For one side, they produce an increase of

the data used to learn the separation matrix. As all the ICA methods use

some estimation of expectations, the more data available will produce better

estimations of the separation matrix, which will be particularly important

for short duration signals. On the other side, this produces a coupling of the

separations for all bins, and thus the separation matrix will have a reduced

variability among them. The reduced variability in the separation matrices

would have an impact in terms of reducing the scaling and permutation

problems.

There is also a theoretical justification for this multi bin usage. Under

assumption of an anechoic transmission, or if the environment can be mod-

eled by the pseudoanechoic model [8], the mixing matrix can be expressed as

Hi,j(ω) = λi,je
−jωdi,j , where Hi,j(ω) is the Fourier transform of the impulse

response from source j to microphone i, λi,j is the attenuation produced by

the energy loss in the travel from the source to the microphone, which does

not depends on the frequency, and di,j is the delay produced during the trans-

mission. In this way, with di,j small (as it will be for small spacing between

microphones as used in this work), there will be a smooth variation among

mixing matrices when increasing the frequency ω. For this reason, using data

from succesive frequency bins will use information from very similar mixing

matrices, and the resulting mixing matrix estimation will be some kind of

nonlinear average of them. This estimation will be robust, in the sense that

if for some frequency bin the available data is corrupted or the signal to noise
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ratio is very bad, the use of information from lateral bins which do not have

those problems will produce a usable estimation of the separation matrix.

[Figure 2 about here.]

The directivity patterns can be used to show the improvements produced

by the use of several frequency bins. In [9] it was shown that the separation

matrix produced by FD-ICA can be interpreted as a set of null beamform-

ers, that show nulls in the direction of interfering sources. In Fig. 2a the

beampattern obtained for each frequency are draw for a two mixtures-two

sources case, in a room with 349 ms of reverberation time, using the stan-

dard FD-ICA method (after the solution of the scaling problem). The two

sources are located at -30 and +30 degrees. In the left, the beampattern

obtained from row 1 of the separation matrices is shown. As can be seen,

the estimated direction shows a lot of variability with the frequency, and also

there are many permutations and discontinuities that make difficult to see

the right direction. In the right part of Fig. 2a, the same beampattern of the

separation matrices is shown, but after solution of the permutation problem.

One interesting thing to note is that there are several frequency bins where

the separation method failed, which can be seen as horizontal lines with near

uniform color. For those bins, there was no detection of the correct source

directions. In Fig. 2b our proposed multi-bin method with L = 2 was ap-

plied (all the other stages of the algorithm are identical). In this case, the

directivity pattern before solution of the permutation problem, in the left,

shows a smoother and more consistent direction along all frequencies, and

also a lower number of permutations. In the right, it can be seen that the
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permutations were easily solved, and the pattern shows a more consistent

direction detection for all bins.

2.3. Subsampled multi-bin FD-ICA

The MB-ICA method for each bin uses 2L+ 1 times the amount of data

that is used in the standard method, and this will be reflected in the compu-

tation time. As a way to reduce this computational load while preserving the

advantages produced by the use of lateral bins, we propose also an additional

strategy: subsampling the data of the lateral bins by a factor of F . Let

X̂F (ωk) = [X(ωk, 0)X(ωk, F ) · · ·X(ωk, QF )]

be the subsampled data matrix for bin k, where Q = ⌊P/F ⌋. We define the

subsampled multi-bin data matrix as

X F
L (ωk) =

�

X̂F (ωk−L) X̂F (ωk−L+1) · · ·

· · · X̂(ωk) · · · X̂F (ωk+L)
�

, (5)

in which it must be noted that the data for bin k has not been subsam-

pled. Using this subsampled multibin data matrix, the separation matrix

W (ωk) can be estimated by ICA as in the previous method and the algo-

rithm continues as already stated. The method will be called subMB-ICA

in the following. This alternative will maintain the coupling among bins and

thus smooth the separation process, making the permutations easier to solve

when compared to the standard case. At the same time, it will reduce the

computational cost of the full MB-ICA approach.
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3. Results

To test the capabilities of the proposed algorithms we use artificial con-

volutive mixtures produced by convolving the impulse responses measured

in two reverberant rooms with reverberation times (RT) of 195 ms and 349

ms, as shown in Fig. 3. We use a determined mixture of two sources and

two mixtures. As the mixtures were generated artificially by convolving the

source signals with measured impulse responses, we have access to the source

images, which are the signals produced by each source in each microphone

without the presence of the other source.

[Figure 3 about here.]

Five sentences from Albayzin database [18] were used, uttered each by

two male and two female speakers, for a total of 20 utterances. The average

duration of the sentences was 3.55 s. A competing speech source with the

same power of the desired source was used as noise. For female speakers we

used a competing male noise, and vice versa. The data were sampled at 8000

Hz. For all separation algorithms a STFT with a window length of 1024

samples, a window step size of 256 samples and windowing with a Hamming

window were used. For each mixture, the separation algorithm under test

was applied and the quality measures were evaluated comparing the resulting

image sources with the reference ones. Individual results for each sentence

were averaged to produce a single value for the room of interest.

To evaluate the quality of separation we used the signal to distortion

rate (SDR), the source image to spatial distortion ratio (ISR), the signal to

interference ratio (SIR) and the signal to artifact ratio (SAR) objective qual-
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ity measures, as proposed in [19]1. Also we use PESQ [20], which has been

previously reported to have a high correlation with automatic speech recog-

nition results [21]. Finally, the average processing time measured in seconds

is computed, to give an idea of the computational cost of the algorithm. All

the algorithms were programmed in Matlab and run in an Intel I5 processor

at 2.5 GHz. 2

The first experiment was designed to evaluate the effect of the number of

bins used on the separation quality. We evaluate the use of L = {1, 2, 3, 4, 5}

lateral bins in MB-ICA. We compare these results to those of the standard

FD-ICA approach. Results are shown in Table 1. Method MB-ICA with

L = 1 lateral bin produces an improvement in PESQ, SDR, ISR and SAR

with respect to the standard FD-ICA, while FD-ICA is a little better for the

SIR measure. Using L = 2 still produces better PESQ and SAR than the

standard FD-ICA, but the other quality measures are degraded. The use of

more lateral bins, although produces a good convergence, may also introduce

an excessive smoothing in the estimated separation matrix, which explains

the degradation when increasing L. Thus, we will fix the number of L = 1 for

the next experiments. It must be noted also that the increase in processing

time is not proportional to L. This is due to a faster convergence of the ICA

algorithms, which partially compensates the increased computation time due

to the use of more data.

1We used the function bss eval images from the Bss eval toolbox http://bass-db.

gforge.inria.fr/bss_eval/
2A web demo and source code for our algorithms can be found in http://fich.unl.

edu.ar/sinc/web-demo/multibinica/
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[Table 1 about here.]

To evaluate the capabilities of the subsampling of lateral bins in subMB-

ICA, we fixed the number of bins in L = 1, as suggested in the previous

experiment, and changed the subsampling factor F ∈ {2, 4, 6, 8, 10}. We

compare these results with the ones for standard FD-ICA and MB-ICA with-

out subsampling. The results are shown in Table 2. In this case, it can be

seen that the processing time decreases when subsampling factor increases,

as expected, and also that for F ∈ {4, 6, 8, 10} it is even smaller than that of

standard FD-ICA, showing better convergence properties. For Room 1, the

value of F = 2 gives the best results in terms of PESQ, SDR and SAR, and

F = 8 the best results in terms of ISR and SIR. For Room 2 the results are

more disperse, with F = 6 as the best subsampling in terms of PESQ, SDR

and SIR. Following the results from Room 1, we select F = 2 for the last

comparison, but depending on the application a higher value for F may be

desirable.

[Table 2 about here.]

Finally, we compare our results with those of the standard FD-ICA

method, with the ones of MB-ICA with L = 1 lateral bin, and the ones

of subMB-ICA with L = 1 lateral bin and subsampling by a factor of F = 2.

For this final test, the audio data from the Signal Separation Campaign

(SiSEC 2010) for the case of “robust blind linear/nonlinear separation of

short two sources two microphones recordings” was used [19]. This dataset

consists on six combinations of sources in two rooms and for each room, three

different source positions, for a total of 36 mixtures. The average values of
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the quality measures for each algorithm over all the mixture cases are shown

in Table 3. The two proposed algorithms outperform the standard FD-ICA

in all measures with the exception of processing time. This shows that the

use of lateral bins had a positive impact in the quality of the estimation of

separation matrices. Even in the subMB-ICA where not all information of

lateral bins is included, there is an advantage of its usage. The best im-

provement is obtained by MB-ICA, at the price of about a 20% increase in

computational cost. The subMB-ICA method produces results which are a

compromise between the quality improvement of MB-ICA and the speed of

FD-ICA, as expected.

[Table 3 about here.]

4. Conclusions

In this paper a new method to improve the quality of FD-ICA algorithms

was proposed. The use of lateral bins has shown to produce a higher quality of

separation, as measured by several objective quality scores. The experiments

show that this improvement of quality produce a higher computational cost.

To reduce it, an intermediate solution is to use a subsampling factor on the

additional data. In this way the benefits of the lateral bins are mantained,

but reducing the amount of extra data to be processed, thus avoiding an

excessive increase of computation time. The best results were found for using

one lateral bin at each side of the central bin, and using a subsampling factor

of 2. Although this method was proposed and evaluated as a modification of

a specific FD-ICA algorithm, this methodology can be applied in the same
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way to other FD-ICA algorithms that use different ICA methodologies and/or

different methods for the solution of the ambiguities.
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Figure 1: Flow diagram of the standard FD-ICA method
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Figure 2: Beampatterns generated by the first row of separation matrices. (a) Standard
FD-ICA method, before (left) and after (right) permutation correction. (b) Proposed
MB-ICA, before (left) and after (right) permutation correction.
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Figure 3: Recording setup for the experiments. (a) Room 1: sound proof room with
reflection boards, RT = 195 ms. (b) Room 2: real bedroom, RT = 349 ms. All measures
are in cm.
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Table 1: Comparison of standard FD-ICA against MB-ICA with different number of lateral
bins. R1 is the room of Fig. 3a, R2 the room of Fig. 3b.

FD-ICA MB-ICA
L=1 L=2 L=3 L=4 L=5

R1

PESQ 2,80 2,90 2,81 2,76 2,71 2,69
SDR 9,67 10,93 9,56 8,57 7,70 7,24
ISR 14,98 15,04 13,18 12,02 11,09 10,60
SIR 15,53 15,27 13,28 12,03 11,05 10,56
SAR 12,89 16,47 16,95 16,97 16,56 16,38
Time 3,16 4,22 4,21 4,60 4,92 5,31

R2

PESQ 2,60 2,64 2,57 2,52 2,52 2,50
SDR 6,02 6,35 5,04 4,30 4,18 4,12
ISR 10,79 10,12 8,50 7,68 7,50 7,41
SIR 11,09 10,26 8,59 7,59 7,44 7,28
SAR 9,88 12,50 12,36 12,29 12,49 12,88
Time 3,47 3,87 4,26 4,91 5,49 6,09
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Table 2: Selection of optimal subsampling factor F for the subMB-ICA method. R1 is
the room of Fig. 3a, R2 the room of Fig. 3b. In boldface the best value for each measure
over subMB-ICA cases.

FD-ICA MB-ICA Sub MB-ICA, L=1
L=1 F=2 F=4 F=6 F=8 F=10

R1

PESQ 2,80 2,90 2,88 2,84 2,83 2,83 2,81
SDR 9,67 10,93 10,49 10,10 9,85 10,16 9,98
ISR 14,98 15,04 15,02 15,04 14,84 15,27 15,23
SIR 15,53 15,27 15,37 15,49 15,40 15,72 15,72
SAR 12,89 16,47 14,97 13,87 13,51 13,68 13,30
Time 3,16 4,22 3,20 2,98 2,94 2,82 2,72

R2

PESQ 2,60 2,64 2,61 2,62 2,62 2,61 2,61
SDR 6,02 6,35 6,18 6,25 6,33 6,22 6,01
ISR 10,79 10,12 10,38 10,77 10,81 10,87 10,68
SIR 11,09 10,26 10,51 10,92 11,18 11,13 10,83
SAR 9,88 12,50 11,39 10,77 10,66 10,39 10,24
Time 3,47 3,87 3,61 3,29 3,16 3,14 3,21
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Table 3: Performance of the methods on SiSEC 2010 data.

FD-ICA MB-ICA Sub MB-ICA

PESQ 2,69 2,80 2,77
SDR 2,90 3,45 3,41
ISR 7,70 7,95 8,02

SIR 8,65 9,21 9,13
SAR 8,69 10,76 10,14
Time 3,59 4,29 3,96
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