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Abstract

Assessment of both grazing behavior and herbage intake are two very dif-

ficult tasks that can be concurrently accomplished by means of accurate

detection, classification and measurement of grazing events such as chews,

bites and chew-bites. It is well known that acoustic monitoring is among

the best methods to automatically quantify and classify ingestive and rumi-

nation events in grazing animals. However, most existing methods of signal

analysis appear to be computationally complex and costly, and are therefore

difficult to implement. In this work, we present and test a novel analysis

system called Chew-Bite Real-Time Algorithm (CBRTA) that works fully

automatically in real-time to detect and classify ingestive events of grazing

cattle. The system employs a directional wide-frequency microphone facing

inwards on the forehead of animals, and a coupled signal analysis and de-

Email address: jchelotti@sinc.unl.edu.ar (José O. Chelotti)

Preprint submitted to Computers and Electronics in Agriculture June 8, 2016

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

J.
 O

. C
he

lo
tti

, S
. R

. V
an

re
ll,

 D
. H

. M
ilo

ne
, S

.A
 U

ts
um

i, 
J.

 G
al

li,
 H

. L
. R

uf
in

er
 &

 L
. G

io
va

ni
ni

; "
A

 r
ea

l-
tim

e 
al

go
ri

th
m

 f
or

 a
co

us
tic

 m
on

ito
ri

ng
 o

f 
in

ge
st

iv
e 

be
ha

vi
or

 o
f 

gr
az

in
g 

ca
ttl

e"
C

om
pu

te
rs

 a
nd

 E
le

ct
ro

ni
cs

 in
 A

gr
ic

ul
tu

re
, V

ol
. 1

27
, N

o.
 6

4-
-7

5,
 2

01
6.



cision logic algorithm that measures shape, amplitude, duration and energy

of sound signals to iteratively detect and classify ingestive events. Perfor-

mance and validation of the CBRTA was determined using two databases of

grazing signals. Signals were recorded on dairy cows offered either, natural

pasture (N = 25), or experimental micro-swards in indoor controlled environ-

ment (N = 50). The CBRTA exhibited a simple linear complexity capable

to execute 50 times faster than real-time and without undermining overall

recognition rate and accuracy when signals were processed at 4 kHz sampling

frequency and 8 bits quantization. Furthermore, CBRTA was capable to de-

tect ingestive events with a 97.4% success rate, while achieving up to 84.0%

success for their classification as exclusive chews, bites or composite chew-

bites. The methodology proposed with CBRTA has promising application in

embedded microcomputer systems that necessarily depend on fast real-time

execution to minimize computational load, power source and storage mem-

ory. Such a system can readily facilitate the transmission of processed data

through wireless network or the storage in an onboard device.

Keywords: Acoustic monitoring, cattle grazing behavior, jaw movement

classification, real-time execution, signal processing.

1. Introduction1

Accurate monitoring of livestock grazing behavior is necessary to ensure2

that most basic requirements of animal health and welfare are met and con-3

sistent with practices that can assure sustainable and efficient use of grazing4

resources. Hence, different efforts have been put into finding most appro-5

priate techniques to measure and monitor diet and feeding behavior of free-6
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grazing animals (Hodgson et al., 1996; Delagarde et al., 1999). One possible7

and reliable way is through the detection of distinct jaw movements associ-8

ated with three common basic events: bites, chews and compound chew-bites9

(Milone et al., 2012). A grazing bite includes the apprehension and severance10

of herbage, while a grazing or rumination chew includes the crushing, grind-11

ing and processing of consumed herbage. The chew-bite is a third important12

grazing event that results from the overlapping of chewing and biting on a13

same jaw movement. Thus, jaw movements can serve as a reliable measure14

of distinct grazing and rumination cycles. Furthermore, the quantification of15

rumination chews could provide rich information on the ruminal fermenta-16

tion of fiber and correlated changes in rumen pH (Sauvant, 2000). Likewise,17

herbage intake rate appears to depend on trade-offs between ingestive bites,18

chews and chew-bites, and the monitoring of these events could therefore19

inform on the ability of grazing herbivores to modulate changes in intake20

rate (Laca et al., 2000). While the number and characteristics of grazing and21

rumination events vary according to several plant, animal and environmen-22

tal factors, they could be monitored as indicators of animal health, welfare23

or nutritional status (De Boever et al., 1990). To the best of our knowl-24

edge, only few studies have been focused on developing automated systems25

to monitoring changes in grazing and rumination.26

One plausible approach to measure feeding behavior is acoustic monitor-27

ing. Alkon and Cohen (1986) and Alkon et al. (1989) used acoustic bioteleme-28

try to study the feeding behavior of porcupine. Laca et al. (1992) instru-29

mented an inward-facing microphone on the forehead of steers to register30

stronger and readily distinguishable sounds of bites, chews and chew-bites.31

3

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

J.
 O

. C
he

lo
tti

, S
. R

. V
an

re
ll,

 D
. H

. M
ilo

ne
, S

.A
 U

ts
um

i, 
J.

 G
al

li,
 H

. L
. R

uf
in

er
 &

 L
. G

io
va

ni
ni

; "
A

 r
ea

l-
tim

e 
al

go
ri

th
m

 f
or

 a
co

us
tic

 m
on

ito
ri

ng
 o

f 
in

ge
st

iv
e 

be
ha

vi
or

 o
f 

gr
az

in
g 

ca
ttl

e"
C

om
pu

te
rs

 a
nd

 E
le

ct
ro

ni
cs

 in
 A

gr
ic

ul
tu

re
, V

ol
. 1

27
, N

o.
 6

4-
-7

5,
 2

01
6.



Consequently, acoustic monitoring proved to be a more effective methodology32

to discriminate sensitive differences in feeding and rumination than previous33

jaw recorders or visual observation methods (Ungar and Rutter, 2006), and34

since then it has been increasingly applied as a research tool to study different35

aspects of grazing behavior in sheep and cattle (Galli et al., 2006, 2011).36

Broad application of acoustic monitoring continues to depend on suit-37

able algorithms for automatic recognition of sound signals associated with38

chewing and biting. Milone et al. (2009) used concepts of automatic speech39

recognition and Hidden Markov Models (HMM) to develop an algorithm40

for both detection and classification of chewing and biting. The algorithm41

successfully detected 89%, 58%, and 56% of chews, bites and compound42

chew-bites in grazing sheep, respectively. Galli et al. (2011) further tested43

this algorithm to demonstrate the feasibility of using acoustic variables to44

estimate herbage dry matter intake in grazing sheep. Subsequently, Milone45

et al. (2012) developed a new algorithm that hereafter will be referred as46

CBHMM (Chew-Bite Hidden Markov Model) that extended upon previous47

HMMs. The CBHMM was developed for both detection and classification of48

chews, bites and chew-bites, in grazing cattle; obtaining up to 85% successful49

recognition rate.50

In an independent development Clapham et al. (2011) adapted the use of51

SIGNAL software (Engineering Design, Berkeley, CA) for analysis of grazing52

sounds in cattle. The software was operated on a careful calibration to detect53

bites in the band of 17 kHz to 22 kHz, and on a high-pass filter with cutoff54

frequency at 600 Hz to attenuate background noise. The software detected55

bites with a 95% confidence, but it seems to demand careful and site-specific56
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calibration before it can be used with different animals, pastures or exper-57

imental conditions. The capacity of the recording device and power source58

were among other limitations of the proposed system.59

Navon et al. (2013) implemented an algorithm that used a machine-60

learning approach to analyze time-domain features (i.e., shape, intensity,61

duration and sequence of events) of ingestive sounds in grazing cattle. The62

procedure eliminated the need of calibrations and allowed a detection of in-63

gestive events with a 94% correct and 7% false identification. More recently,64

Tani et al. (2013) applied pattern recognition techniques to iteratively mea-65

sure eating and ruminating events collected by a single-axis accelerometer.66

The recognition patterns were defined in frequency domain and used to iden-67

tify and classify likely eating and rumination events. Without previous cal-68

ibration, recognition results were similar to previous analytical procedures69

used by Clapham et al. (2011) and Navon et al. (2013) . However, likely lim-70

itations of the methodology were associated with the spectral similarities be-71

tween rumination and eating signals, presence of non-stationary background72

noise, and high computational cost associated with the analysis of signals73

sampled at high frequency.74

Although several of the previous instrumentation and analytical proce-75

dures have shown good performance for detection of signals associated with76

eating and/or rumination, few of them offered possibilities to accurately clas-77

sify exclusive bites, chews and chew-bites, which is a necessary condition for78

reliable measures of grazing behavior and even for estimation of herbage in-79

take by means of acoustic methods. Furthermore, most if not all of previous80

methodologies deal with high quality and long duration signals (hours or81
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days) that can demand collection, recording, storage, transfer and analysis82

of data by means of computationally complex and costly procedures, that can83

quickly undermine their application as fast, efficient and timely monitoring84

systems.85

The main objectives of the present work were: 1) to develop a novel86

algorithm called CBRTA (Chew-Bite Real-Time Algorithm) that can be ex-87

ecuted in real-time for automatic and efficient identification and classification88

of chews, bites and chew-bites, 2) to provide an analysis of the computational89

complexity of CBRTA, 3) to examine the operational performance of CBRTA90

as a function of modifications in algorithm parameters, and, 4) to provide a91

validation of CBRTA for both detection and classification of ingestive events92

in cattle by using two databases of acoustic monitoring of dairy cows grazing93

either outdoor temperate pasture or micro-swards in indoor controlled envi-94

ronment. Outdoor grazing environments inevitably introduce some level of95

unpredictable and variable background noise that can readily interfere with96

the acquisition and analysis of chewing and biting signals. We aimed there-97

fore to deal with commonly encountered levels of such noises by combining98

passive isolation (directional microphones with isolation material) and basic99

signal processing.100

2. The algorithm101

The design goal was the achievement of an algorithm that can combine102

high performance for detection and classification of sound events with low103

computational cost, which is a necessary condition to allow real-time execu-104

tion of the algorithm in portable embedded systems. To achieve this goal,105
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time-domain instead of transformed-domain (frequency, time-frequency) anal-106

ysis was implemented to avoid high computational load of signal analysis.107

2.1. General description108

Signals associated with an exclusive chew (Figure 1a), composite chew-109

bite (Figure 1b) or exclusive bite (Figure 1c) have readily distinguishable110

properties.111

Figure 1: Examples of typical acoustic events produced by jaw movements and their

correspondent features: (a) chew, (b) chew-bite and (c) bite. Within each row, top-down:

raw acoustic signal, computed envelope, sign of envelope slope, maximum intensity and

duration are shown.

Therefore, the shape, maximum intensity and duration of sounds were112

isolated to discriminate among the bites, chews and chew-bites. The shape113
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of a jaw movement is characterized by changes in both the intensity and sign114

of the envelope slope (Figure 1). The sign (either positive or negative) of115

the envelope slope changes one or two times for chews and bites and more116

than two times for composite chew-bites. The three jaw movements also117

produce sounds with distinguishable maximum intensity that remains low118

for chews and high for bites, and changes from low to high for composite119

chew-bites. Finally, bites, chews and composite chew-bites, have a defined120

duration, which is shorter for chews and bites and longer for composite chew-121

bites (Figure 1).122

Sound properties were then used by the algorithm to complete two suc-123

cessive tasks, event detection and event classification, respectively. For the124

detection task, the algorithm detects the region of the sound envelope that125

shows the occurrence of a possible jaw movement. This detection is carried126

out through the identification of characteristic peaks in the sound envelope127

using an adaptive threshold. For the classification task the algorithm uses a128

simple set of rules to compute and compare the shape, intensity and duration129

of a detected event to a given threshold value.130

For implementation purposes, the completion of the two tasks can be131

thought as a set of five successive stages, where the first four stages are used132

to complete the event detection task, while the event classification task is133

performed during the last stage, as follows.134

Stage 1 - Envelope computation: One basic requirement for the im-135

plementation of the algorithm is the envelope computation, which is decom-136

posed into three steps: i) signal rectification, ii) signal filtering and iii) signal137

subsampling. In the first step the absolute value of signal samples is com-138
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Figure 2: Example of a 15s sound track with correspondent signals generated by the

processing algorithm: (a) original raw signal, (b) sound envelope computation, (c) event

detection, (d) slope sign, (e) maximum amplitude, and (f) duration of detected events.

puted at the original sampling frequency. In the second step, the signal is139

filtered using a second-order low-pass Butterworth filter with a bandwidth140

of 5.5 Hz, producing the sound envelope. In the third step, a subsample of141

the original sound envelope to 100Hz is conducted (Figure 2b). The main142

objective of this task is to reduce the computational requirements (load and143

computation time) in the subsequent tasks, since this process significantly re-144

duces the amount of information to be processed but without compromising145

accuracy in the detection and classification of sounds.146

Stage 2 - Division of sound into segments: Short segments have147

lower computational resource constraints, are easier to handle, and their use148
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can facilitate the treatment of unexpected events that need special attention.149

Such events include intense external noises of short duration and background150

noises. The size of segments depends on the computational resources that151

are available to implement the algorithm. In a common desktop computer152

segments can have a typical duration of 30 s or longer. In an embedded153

system with low computational capacity segments should have a smaller size.154

Ultimately, segment size depends on the amount of memory available for155

signal analysis (minimum size of 2 s).156

Stage 3 - Event detection: The presence of peaks in the sound en-157

velope reveals possible target events. Each peak is detected as a change in158

the derivative of the envelope. However, to be considered a possible event159

it must be higher than given thresholds. The peaks are detected through160

the comparison of the sound envelope with a time-varying threshold T (k)161

(red dashed line in Figure 2c), where k is a time variable. This threshold162

is generated by an algorithm that considers both anatomical and behavioral163

characteristics of the animal according to the following two rules: i) a min-164

imum period of time between two consecutive jaw movements, and, ii) a165

maximum duration of jaw movements within a continuous activity (i.e. ru-166

minating or grazing). Then, following Christov (2004) the event detection167

algorithm uses this criteria to generate the time-varying threshold T (k) with168

the following features:169

• Unresponsive period (TU): period of time after detecting an event170

in which the algorithm is no longer searching for a new event. It is171

computed for each event as a fraction α (0 < α < 1) of the average172

duration of the last five events detected.173
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• Maximum period (TM): maximum time that an event can last within174

the same activity. It is computed for each event as β (β ≥ 1) times the175

average duration of the last five events detected.176

• Peak expectation threshold (TP ): minimum value expected for the177

next peak intensity (blue dot-dash line in Figure 2c). It is computed178

as a fraction γ (0 < γ ≤ 1) of the moving average of the last five peaks179

detected in the envelope signal180

TP (k) =
γ

5

5∑
i=1

SP (j − i)). (1)

where SP is the peak intensity of an event, and j is an event counter.181

• Threshold slew-rate (∆T ): is the decrease of threshold T (k) once182

after the unresponsive period TU expires, and serves therefore to sig-183

nificantly improve the event detection sensitivity. The threshold T (k)184

only changes during the time period between TU and TM , as follows185

T (k) = T (k − 1)−∆T , ∀ TU < k < TM . (2)

This stage of the algorithm generates a temporary file with correspondent186

timestamps to indicate the location of all detected peaks. This peak reference187

is then used in subsequent event detection and classification stages to trigger188

the analysis of signal properties.189

Stage 4 - Properties computation: This step computes the shape,190

maximum intensity and duration of the sound to classify likely candidate191

events detected in previous stages. The shape of the event is computed as192

the number of changes (NC) in the sign of the envelope slope (Figure 2d).193
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To avoid confusion with noises, the slope is computed only if the magnitude194

of the sound envelope is bigger than the background noise (NT ) detected in195

the analyzed segment. The maximum intensity of the envelope sound (EA)196

is computed directly from the absolute value of the signal over a window197

of time whose length is half of the duration of a typical chew-bite event198

(Figure 2e). The duration of the event (ED) is determined from the sound199

envelope by measuring the time period when the sound envelope is bigger200

than the background noise NT (Figure 2f).201

Stage 5 - Event classification: Using a specific set of rules, based202

on previously computed properties, each event is classified into one of five203

categories: chew (C), bite (B), chew-bite (CB), silence (S) or noise (N).204

Briefly, the algorithm explores the timestamp, NC, EA and ED to detect205

and classify the events. The algorithm applies a set of rules to find whether206

a true event has happened or not and, in a positive case, which kind of event207

has been detected. The set of rules employed by the algorithm are established208

heuristically from a training data set, under the constraints that the set of209

rules should be small. The set of decision rules is detailed in Table 1. Each210

rule specifies the conditions that NC, EA and ED must meet to be classified211

as C, B or CB, respectively. For example, ifNC is greater than 2, EA exceeds212

NT and ED is greater than 0.3 s, then the detected event is classified as CB.213

Figure 3 shows the flow diagram of the algorithm, integrating all steps214

for envelope computation, segmentation, detection and classification of jaw215

movements. The envelope signal Sp(k) is loaded and analyzed by segments216

of N samples. When a segment is fully analyzed, the results are saved before217

analyzing the next segment. In the first stage, the algorithm computes the218
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Table 1: Rules for jaw movement event classification† .

Event Rule

Chew-bite if NC > 2 and EA > NT and ED > 0.3[s] then L(j)=CB

Bite if NC <= 2 and EA >= 0.5 TP and ED < 0.3[s] then L(j)=B

Chew if NC <= 2 EA > NT and EA < 0.5TP and ED < 0.3[s] then L(j)=C

† NC is the number of changes in the sign of the slope of sound envelope, EA is the max-

imum intensity of the envelope, ED is the duration of the event, NT is the background

noise threshold and TP is the peak expectation threshold.

time-varying threshold T (k). Then, it checks if a peak has been detected.219

If no peaks have been detected, the algorithm assigns the silence label (S)220

to the event. If a peak has been detected, the algorithm classifies the event221

by applying rules based on the event properties NC, EA and ED, and by222

assigning the correspondent label C, B, CB or N.223

3. Materials and methods224

Acoustic monitoring of grazing dairy cattle was used to test the per-225

formance of the algorithm and its software implementation. Signals were226

recorded on a different duration (in some cases several hours) but for analy-227

sis and testing only maximum periods of 5 minutes were considered, given the228

practical difficulty of labeling aurally longer periods. It was also necessary229

to establish performance measures for analysis purposes.230

3.1. Experimental field conditions for collection of datasets231

Two databases were obtained under different grazing conditions, and at232

different times and locations. The first database included signals of dairy233
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Start

Envelope computation;
Envelope segmentation;

Load data buffer S
P
;

 Initialize all variables;

Yes
k >= N

k = k +1; kT = kT+1;
Read data from buffer S

P

T(k) = T(k-1) - ΔTTU < kT < TM

 j = j+1; L(j) = “S”; 

S
P
(k) > T(k),

 S
P
(k-2) > S

P
(k),

   S
P
(k) > TP(k) 

Store results

kT >TM 

Rule Bite

T(0) = T
0 
; k

T
 = 0; j = j+1; 

L(j) =“CB”; Update T
P
(k)Rule Chew-bite

Rule Chew
Yes

Yes

Yes

No

Yes

Yes

T(0) = T
0 
; k

T
 = 0; j = j+1; 

L(j) =“B”; Update T
P
(k) 

T(0) = T
0 
; k

T
 = 0; j = j+1; 

L(j) =“C”; Update T
P
(k)

Event 
Detection

T(0) = T
0 
; k

T
 = 0; j = j+1; L(j) = “N”;

Event 
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Figure 3: Flow diagram of the algorithm for event detection and classification.
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cows grazing temperate pasture and was therefore useful to test the algo-234

rithm in an outdoor noisy environment. Signals for the second database235

were collected with dairy cows grazing micro-swards in an indoor controlled236

experiment. This database was used to further analyze the effect of for-237

ages (species and height) on the detection and classification capabilities of238

the algorithm, and to compare the performance of the algorithm against the239

previous CBHMM methodology developed by Milone et al. (2012).240

The first database was obtained from an experiment performed at the241

W.K. Kellogg Biological Station dairy facility of Michigan State University,242

Hickory Corners, USA, during August of 2014. Protocols for animal handling243

and care were reviewed, approved and conducted according to the Institu-244

tional Animal Care and Use Committee of Michigan State University. In this245

experiment the daily foraging behavior of five multiparous lactating Holstein246

cows grazing perennial ryegrass/white clover and orchardgrass/white clover247

dominated pastures were monitored for six days, according to 5 x 5 Latin-248

square design to control for recording device and cow. This design therefore249

produced a total of 25 sound tracks of 24h duration. Cows were managed250

on a robotic milking system with voluntary grazing of pasture using same251

management protocols described in Watt et al. (2015). These signals were252

recorded using a SONY ICDPX312 recorder mounted on a cow halter and253

a directional microphone pressed onto the forehead of the cow. All record-254

ings were made at 44.1 kHz sampling rate and 16-bit resolution, providing a255

nominal 22 kHz recording bandwidth and 96 dB dynamic range, and stored256

in the WAV (Waveform Audio) file format. Hereafter, these recordings will257

be referred as the Michigan Database (MDb).258
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The second database was the same as used by Milone et al. (2012) for259

development and testing of the algorithm CBHMM. Briefly, the fieldwork to260

obtain this database was performed at the Campo Experimental J.F. Villar-261

ino, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla,262

Argentina during February 2004. Project protocols were previously evaluated263

and approved by the Committee on Ethical Use of Animals for Research of264

the Universidad Nacional de Rosario. Sound signals from dairy cows grazing265

either pure alfalfa or pure fescue micro-swards at two heights (tall, 24.5±3.8266

cm, or short, 11.6 ± 1.9 cm) were recorded individually in grazing sessions267

conducted over a 5-day period. Forage species were selected because they dif-268

fer in sward structure and neutral detergent fiber content (alfalfa, 360 ± 11269

g/kg and fescue, 631± 6 g/kg), which are factors that have direct influence270

on chewing sounds (Duizer, 2001). Two 4–6 year-old lactating Holstein cows271

weighing 608 ± 24.9 kg, previously tamed and trained, were used. A wire-272

less microphone (Nady 151 VR, Nady Systems, Oakland, CA, USA) was273

randomly assigned to animals each day. The microphone was placed facing274

inwards on the forehead and was protected by rubber foam (Milone et al.,275

2009). The distance between the wireless microphone and the receiver was276

2–3 m. Micro-swards were hand-constructed using plants in pots that were277

firmly attached to a baseboard placed inside a barn. Behavior was recorded278

with an analog video camcorder (Sony CCD-TR517), and then coded in MPG279

format at 25 frames per second. The sound from the wireless microphone was280

recorded on the tape soundtrack (16 bits, 44.1 kHz). A total of 50 grazing281

sessions were recorded: 15 from tall alfalfa, 11 from short alfalfa, 12 from282

tall fescue and 12 from short fescue. On average, for each pasture/height the283
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signals contained approximately 13 min of recording and around 800 events284

(13% bites, 64% chews and 23% chew-bites). Hereafter, these recordings will285

be referred as the Rosario Database (RDb).286

All signals were labeled aurally by experts in animal behavior to identify287

and classify individual events (C, B, CB, S, N) during grazing. The labeling288

process was done by one expert, and the result was checked by another289

expert. In most of the cases experts largely agreed with the labeling of290

signals, but when there was disagreement, both experts worked together291

to provide a final decision. This labeling was used as control reference for292

comparison and testing of the performance of the algorithm. In the case293

of signals belonging to MDb, two periods of 5 minutes were extracted and294

labeled from each 24h sound track. The signals were randomly selected295

within a grazing period, because during this activity the three types of events296

considered can be found. Each period contained approximately 350 events297

(25% bites, 48% chews and 27% chew-bites). One of the periods was used to298

analyze the effect of parameters while the other one was used for evaluation299

purposes. A similar data partition was made for signals belonging to RDb.300

For each grazing session, 50% of signals were used to analyze the effect of301

parameters, while the remaining 50% was used for evaluation purposes.302

3.2. Performance measures303

Valid comparisons between events recognized and classified by the algo-304

rithm and their corresponding reference of aurally labeled events depends305

on the correct synchronization of both event sequences. To solve this prob-306

lem, the HTK1performance analysis tool HResults was used, which is based307

on a dynamic programming-based string alignment procedure (Young et al.,308
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1997).309

The outputs of this tool were: i) the number of deleted events (D), which310

are false negatives, ii) the number of substituted events (S), which are mis-311

classified events, iii) the number of inserted events (I), which are false pos-312

itives, and iv) the total number of events (T ) in the reference transcription313

provided by the experts. An example of these definitions is shown in Table 2:314

the first bite of the recognized sequence is a substitution (S) because the real315

event is a chew; the second chewbite is an insertion (I) because there is no316

event in the real sequence; and the second chew in the reference sequence317

has not been recognized so it is a deletion (D).318

Table 2: Example of sequence alignment for performance measurement.

Reference seq.: chewbite chew chew bite chew bite bite

Recognized seq.: chewbite bite bite chew chewbite bite bite

Keeping these definitions in mind, the percentage of detected events is319

computed as follows2320

δ% =
T −D
T

100%, (3)

321

the percentage number of events correctly recognized is given by322

C% =
T −D − S

T
100%, (4)

323

2http://htk.eng.cam.ac.uk/
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and the accuracy is computed by324

A% =
T −D − S − I

T
100%. (5)

Performance of CBRTA for recognition of C, B, CB, S or N was assessed325

using exploratory analysis of sensitivity. This analysis computed the cor-326

respondent recognition rate C%, accuracy A% and computational time as327

a function of changes in the following key parameters: i) the sampling fre-328

quency, ii) quantization level, iii) cut-off frequency of the detector filter, and329

iv) subsampling frequency. The effectiveness of CBRTA for detection of in-330

gestive events (C, B, CB) was determined considering false negatives in the331

computation, but no substitutions3. The effectiveness of CBRTA for clas-332

sification of ingestive events (C, B, CB) was determined in two ways. For333

the MDb database, a cross-way validation was conducted in order to demon-334

strate robustness. For this comparison, the CBRTA was fitted with the best335

set of parameters for the MDb and RDb database, respectively. By best set336

of parameters we means a set of parameters that provides the highest recog-337

nition rate with the highest accuracy. Then, the classification by CBRTA338

fitted with the best set of parameters for MDb database [CBRTA (MDb)]339

was compared to the correspondent classification of CBRTA fitted with the340

best set parameters for the RDb database [CBRTA (RDb)]. For the RDb341

database, the CBRTA was compared to the CBHMM algorithm of Milone342

et al. (2012). This comparison was decided for two reasons. The CBHMM343

2While this computation does not include insertions (false positives), these were quan-

tified in the present analysis.
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is the only other available method that makes a distinct classification of C,344

B and CB, and, the CBRTA and CBHMM are both originally fitted to the345

same RDb database, thus offering a direct unbiased comparison of methods.346

On the other hand, the application of the CBHMM method on a different347

database could be wrong, because the models would need to be adapted to348

the new recording conditions. Also, it is important to note that to train and349

evaluate the CBHMM, a hold-out cross-validation method was used (Duda350

et al., 2001), while in the present CBRTA parameterization is done using a351

subset of RDb data not further used for testing purposes. The CBRTA was352

implemented using MATLAB R2010b for evaluation purposes.353

Thereafter, the analysis included the testing of i) algorithm complexity,354

ii) computational performance, and iii) validation of CBRTA for both the355

automatic detection and classification of ingestive events in grazing dairy356

cattle. The computational complexity was modeled for each computational357

task as the function of the number of samples n to be processed each sec-358

ond. For more exhaustive analysis, the computational cost of CBRTA was359

compared to the CBHMM algorithm proposed by Milone et al. (2012).360

4. Results361

4.1. Complexity analysis362

The computational cost for each step of the CBRTA algorithm evalu-363

ated as function of the number of samples n to be processed each second364

3This is because there are no substitutions in a detection problem, since we are only

interested in whether an event has occurred or not, regardless of its type. Instead, the

classification stage of events should consider substitutions.
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is shown in Table 3. This analysis considered a filtering task applied as365

second order infinite impulse response (IIR) filter. The total number of op-366

erations per second fCBRTA(n) required to execute the CBRTA algorithm367

was fCBRTA(n) = 13n+ 3700. As shown in Table 3, only the first three tasks368

(i.e., rectification, filtering and subsampling) will depend on the sampling369

frequency of the input signal. After subsampling (Stage 1), the signal pro-370

cessed by the remaining tasks has a constant sample rate (100 samples/s).371

Therefore, the remaining tasks will be independent of the audio sample rate.372

For example, the computation of the envelope slope requires the subtraction373

of two consecutive samples for computation of its sign, which involves two374

operations per sample. Similarly, the classification of events involves five375

comparisons to check whether the predefined classification conditions are376

met or not. A more detailed description of the complexity analysis for the377

CBRTA algorithm is provided in Appendix A. This analysis shows a linear378

computational complexity for CBRTA. A comparative analysis of complexity379

on the CBHMM algorithm developed by Milone et al. (2012) is summarized380

in Appendix B. This analysis shows a superlinear complexity for CBHMM.381

4.2. Effect of parameters on system performance382

Figure 4 shows the effect of sampling frequency on the performance of383

the algorithm (recognition rate and accuracy) and the corresponding com-384

putational time for the MDb database. The recognition rate and accuracy385

remained high (around 80%) over wide range of frequencies (from 2 kHz to386

11 kHz) and declined for frequencies that were outside of this range. This387

phenomenon can be explained by the fact that for sampling frequencies be-388

low 2 kHz the signal/noise ratio is degraded because important components389

21

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

J.
 O

. C
he

lo
tti

, S
. R

. V
an

re
ll,

 D
. H

. M
ilo

ne
, S

.A
 U

ts
um

i, 
J.

 G
al

li,
 H

. L
. R

uf
in

er
 &

 L
. G

io
va

ni
ni

; "
A

 r
ea

l-
tim

e 
al

go
ri

th
m

 f
or

 a
co

us
tic

 m
on

ito
ri

ng
 o

f 
in

ge
st

iv
e 

be
ha

vi
or

 o
f 

gr
az

in
g 

ca
ttl

e"
C

om
pu

te
rs

 a
nd

 E
le

ct
ro

ni
cs

 in
 A

gr
ic

ul
tu

re
, V

ol
. 1

27
, N

o.
 6

4-
-7

5,
 2

01
6.



Table 3: Number of operations per second of the CBRTA algorithm for detection and

classification of jaw movement events.

Stage Task Operations/s

1 Signal rectification 2n

1 Signal filtering 9n

1 Signal subsampling 2n

2 Samples buffering 100

3 Threshold generation 900

3 Event detection 100

4 Envelope slope computation 200

4 Maximum signal 100

4 Event duration computation 200

5 Silence rule 100

5 Chew-bite rule 500

5 Bite rule 500

5 Chew rule 500

5 Noise rule 500
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of the signal are filtered out. In a similar way, once the sampling frequency390

goes beyond 11 kHz, the amount of noise processed by the algorithm in-391

creases, further reducing and degrading the overall signal/noise relationship.392

However, in the range of frequencies from 2 kHz to 11 kHz, the information393

and noise processed by the algorithm remains unchanged, keeping the overall394

signal/noise relationship constant.395
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Figure 4: Algorithm recognition rate and accuracy and corresponding computational time

as a function of sampling frequency for frames of 5-minute duration (N=25).

The linear dependency of the computational time with sampling fre-396

quency is shown in Figure 4. At a sampling frequency of 4 kHz the algorithm397

had reasonably good compromise between performance (recognition rate and398

accuracy) and computational time. In this sense, the algorithm proved to399

be capable of processing signals 50 times faster than real-time or 300 s (5400

minutes) of sound signal in 6 s (Figure 4). This means that in a practical401
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application the algorithm is capable to analyze 50 minutes of acoustic data402

per minute in a standard desktop computer.403
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Figure 5: Algorithm recognition rate and accuracy, and corresponding computational

error as a function of quantization level (computed as world length) for frames of 5-minute

duration (N=25).

Figure 5 shows the effect of quantization level (or word length represen-404

tation) on the performance of the algorithm (recognition rate and accuracy)405

for the MDb database. The recognition rate and accuracy remained high406

(around 80%) for a quantization level of 8 bits or more. This phenomenon407

can be explained by the fact that the quantization error, measured in terms408

of the mean square error (MSE) between the signal represented by data of409

a given word length (resolution) and the signal represented by data of the410

longest word (16 bits), is almost zero for ingestive sound data codified with411
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8 bits or more.412
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Figure 6: Algorithm recognition rate and accuracy as a function of cut-off frequency in

envelope detector filter for frames of 5-minute duration (N=25).

Figure 6 shows the effect of the cut-off frequency of the envelope detector413

filter on the recognition rate and accuracy for the MDb database. Both,414

recognition rate and accuracy improved as the cut-off frequency of the fil-415

ter increased from 3 Hz to 5 Hz. A correct recognition rate over 75% and416

accuracy over 70% was observed in the frequency range between 5 Hz and417

6 Hz. Beyond 6 Hz, both recognition and accuracy declined. These phe-418

nomena can be explained by the fact that enlarging the bandwidth of the419

filter at low frequencies increases the amount of information processed by420

the algorithm, thereby augmenting the overall signal/noise relationship and421
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the performance of the algorithm. However, once the cut-off frequency goes422

beyond the 6 Hz, the information remains constant, the amount of noise pro-423

cessed by the algorithm increases, and the overall signal/noise relationship424

and performance of the algorithm decreases.425
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Figure 7: Algorithm recognition rate and accuracy as a function of subsampling frequency

for frames of 5-minute duration.

Figure 7 shows the effect of the subsampling frequency on the algorithm426

recognition rate and accuracy. Both, recognition rate and accuracy were in-427

crementally improved with increases in subsampling frequency up to 100 Hz.428

Beyond this subsampling frequency, the recognition rate remained steady429

while the accuracy showed a gradual decay. Increasing the subsampling fre-430

quency the amount information processed by the algorithm increases, im-431

proving the overall signal/noise relationship. However, once the subsampling432
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frequency goes beyond the 100 Hz, the useful information remains constant433

and the overall signal/noise relationship does not suffer further change.434

The algorithm performance analysis for the RDb database rendered a435

slightly different trend (data not shown). Best recognition rate and accu-436

racy was observed at sampling frequencies between 2 kHz and 4 kHz. With437

respect to the filter cut-off frequency, the best results were observed at 3.5438

Hz, where highest recognition with high accuracy was detected. Moreover,439

similar recognition performance was obtained at cut-off frequencies of 4 Hz440

and 5 Hz, but with lowering accuracy. Regarding the subsampling frequency,441

the best performance was observed at 100 Hz, similarly to MDb database.442

Also a sampling frequency of 2 kHz rendered lower overall computational443

cost. The differences between the parameters of the algorithm obtained for444

each database are primarily due to differences between the characteristics445

(frequency response and steady state gain, among others) of microphones446

used to record the databases.447

448

4.3. Event detection and classification449

As can be seen in Figure 3, when ingestive sounds are processed, two450

different task can be performed: i) detect the existence of an ingestive event451

within the record without identifying its type, and ii) classify the ingestive452

event by identifying the type of event detected. Clearly, the detection task is453

simpler and more accurate than the classification task, since it requires fewer454

information.455

For the algorithms considered in this paper the overall detection of in-456

gestive events was 97.4%, because of the existence 2.6% of deletions (false457
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negatives). Also it was observed 1.4% of insertions (false positives). Regard-458

ing event classification, the CBRTA algorithm clearly distinguished among459

types of jaw movements in both MDb and RDb databases. In Table 4 the460

classification of ingestive events for the MDb is presented. The CBRTA al-461

gorithm shows an average recognition rate of 84.0% of the total events for462

CBRTA (MDb) and an average recognition rate of 79% of the total events463

for CBRTA (RDb). Therefore, the results for event classification were lower464

than event detection rate by an average of 15%. For both CBRTA (MDb)465

and CBRTA (RDb) sets of parameters the algorithm achieved good event466

classification rates, demonstrating ability for scalability and generalization.467

Also, Table 4 summarizes the recognition rates for each different event deter-468

mined for the MDb database. In this table it can be observed the high ability469

of the algorithm to correctly identify the chew and bite events, regardless of470

the set of parameters used. However, some degree of confusion between bites471

and chew-bites was detected for the classification of chew-bites, which may472

be due to the close similarity of sound properties between both events. We473

believe that this confusion is less critical at a practical level since B and CB474

are both ingestive events.475

Table 5 summarizes the recognition rates for different events for the RDb476

database. The classification results of CBRTA for this database showed an477

average correct classification rate of 77% of events across all pasture types,478

while the CBHMM method reached an average of 79% over all pastures. The479

best results were seen for tall pastures reaching 79% and 78% for alfalfa and480

fescue respectively, while for short fescue a 77% was obtained. An additional481

deterioration of 5% in the recognition rate can be appreciated for short alfalfa.482
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Table 4: Percentage of correct and false classification of bites, chews and chew-bites of

dairy cows detected by a novel Chew-Bite Real-Time Algorithm (CBRTA) trained and

parameterized with a same (MDb) or different (RDb) database†. Bold numbers indicate

the best results.

Event
Bite Chew Chew-bite Average

CBRTA
(MDb)

CBRTA
(RDb)

CBRTA
(MDb)

CBRTA
(RDb)

CBRTA
(MDb)

CBRTA
(RDb)

CBRTA
(MDb)

CBRTA
(RDb)

Bite 95 94 2 3 3 3

Chew 8 8 87 91 5 1 84 79

Chew-bite 22 44 8 6 70 50

† Testing database included acoustic records of 5 dairy cows grazing temperate pasture

(N=25).

5. Discussion483

Most of previous studies of acoustic monitoring in grazing ruminants were484

focused on the detection of ingestive or rumination events and not in their485

classification. To the best of our knowledge, the only algorithm that previ-486

ously focused in both the automatic detection and classification of acoustic487

grazing events is the CBHMM method developed by Milone et al. (2012). In488

addition, none of the previous studies made an analysis of the computational489

complexity of the proposed methodologies. The computational complexity of490

the algorithm can impose severe limitations for implementation in a system491

running in real-time, and this issue becomes relevant when high quality and492

long duration (several hours) audio need to be processed. For real-time op-493

eration, the algorithm must be able to process a given signal segment before494

another segment becomes available. To accomplish this objective, the algo-495

rithm must complete at least f(n) fix-point operations per second. For the496
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Table 5: Percentage of correct and false classification of bites, chews and chew-bites of

dairy cows grazing contrasting micro-swards, detected by a former Chew-Bite Hidden

Markov Model (CBHMM) or a novel Chew-Bite Real-Time Algorithm (CBRTA)†. Bold

numbers indicate the best results.

Bite Chew Chew-bite Average

CBHMMCBRTA CBHMMCBRTA CBHMMCBRTA CBHMMCBRTA

Tall

alfalfa

C 79 67 11 18 9 15

B 3 2 88 90 9 8 84 79

CB 2 5 3 11 94 84

Short

alfalfa

C 76 62 16 30 8 8

B 5 0 90 94 5 6 65 74

CB 23 5 15 29 61 66

Tall

fescue

C 83 74 0 21 17 5

B 1 1 93 95 7 4 85 78

CB 1 10 4 33 94 57

Short

fescue

C 90 79 9 14 1 7

B 0 1 99 99 1 0 84 77

CB 2 25 7 32 91 43

† Testing database included acoustic records of 2 dairy cows grazing a factorial set of

micro-swards hand-constructed with plants in pots of 2 species (Alfalfa or Fescue) and

2 heights (short or tall), collected in 5-minute recording sessions (N = 50).
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range of sampling rates considered in the CBRTA application (from 4 KHz497

to 44 Khz), it is easy to find a low cost commercial microprocessor capable to498

perform more than the required number of operations. For example, given499

a 44 Khz sample rate it is possible to complete the execution of CBRTA500

with a Tiva C microcontroller (TivaTM C Series LaunchPad Evaluation Kit,501

Texas Instruments Inc., Dallas, TX ) using a 10 MHz clock. The processing502

speed could be increased further (augmenting the clock frequency), but at503

the expense of increasing energy consumption, which is an essential issue in504

portable embedded systems.505

In the present study we carried out a detailed analysis of computational506

complexity, performance of the CBRTA algorithm and the CBHMM algo-507

rithm to then have a comparative reference of computational complexities.508

This analysis showed a linear computational complexity for CBRTA algo-509

rithm (O(n)), while for the CBHMM method was found a greater superlin-510

ear complexity (O(n log(n))). In addition to showing a lower complexity,511

the CBRTA algorithm had proven capability of processing grazing signals 50512

times faster than real-time. Others authors such as Clapham et al. (2011)513

have reached up to 10 times faster than real-time but for algorithms cal-514

ibrated for detection of bites alone, excluding therefore two other critical515

jaw events in grazing animals, exclusive chews and compound chew-bites.516

Thus, fast processing by CBRTA is a promising result to develop embedded517

microcomputer applications that depend on real-time analysis.518

Indeed, a major drawback to process signals real-time on embedded sys-519

tems is the computational load of the algorithm, since this can determine520

the requirements of hardware to implement the system. In signal processing,521
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the computational load principally depends on two parameters: i) the sam-522

pling frequency and ii) the quantization level of the signal. The sampling523

frequency defines the information flow processed by the system per unit of524

time (Figure 4) and it plays a key role on the computational load of the algo-525

rithm (Table 3). The quantization level of the signal defines accuracy of the526

signal representation and, therefore the word length required by the system527

to process the information (Figure 5). In this way, quantization defines one528

aspect of the complexity of the system implementation. Our results showed529

that CBRTA is capable of achieving reasonable compromise between low530

computational time and high recognition rate and accuracy with a sampling531

frequency between 2 kHz and 4 kHz and a quantization of 8 bits. With this532

likely set of parameters both detection and classification of events rendered533

results that were similar to previous methodologies but at significantly lower534

computational cost and running time.535

The overall performance of CBRTA on event detection was 97.4% across536

the two databases, which is in the same order of detection rate for algorithms537

published in the specialized literature. In this sense, Clapham et al. (2011)538

reported a successful detection of bites of 95%, while Navon et al. (2013) re-539

ported detection rates for jaw movements of 94% in a low noise environment.540

Milone et al. (2012) developed an algorithm extending from HMM models to541

detect and classify ingestive sounds of cattle (i.e. C, B and CB), reaching a542

successful detection rate of 94%. In a similar way, Tani et al. (2013) detected543

ingestive and ruminating chewing with approximately a 98% detection suc-544

cess. These quantitative results (except the results of algorithm developed545

by Milone et al. (2012) that used the same RDb database) are not directly546
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comparable to the present study because the studies vary in number and type547

of events analyzed, duration of records, type and height of pastures, record-548

ing procedures and devices, and validation methods. Furthermore, the data549

employed in those studies are not available for numerical experimentation.550

On the other hand, the remarkable capacity for event detection by CBRTA551

implies that further classification of ingestive events may not compromise the552

ability of an algorithm to efficiently detect ingestive events. Regarding the553

event classification stage, to assess the robustness of CBRTA, we decided to554

evaluate the performance of CBRTA for two sets of parameters, applied on555

the first database (MDb). The recognition rate averaged 84% when CBRTA556

was used with the best set of parameters for a partition (not further used557

for testing purposes) within the same database, and a performance rate of558

79% when it was used with the best set of parameters for a partition (not559

further used for testing purposes) of a different database. This result shows560

that the algorithm seems to be robust to databases with large differences.561

For the second database (RDb), the proposed algorithm achieved a recog-562

nition rate of 77% on average, while the CBHMM method averaged 79.5%563

over all pastures. The best results achieved by CBHMM method is due564

to the use of a more complex modeling technique (hidden Markov models),565

which allows to capture more accurately the dynamics of the sounds and566

extract more information. However, this small performance improvement is567

achieved at expenses of a higher computational cost, as it can be appreciated568

in Appendixes A and B. Overall, the best results were seen for tall pastures569

reaching 79% and 78% for alfalfa and fescue respectively, while for short fes-570

cue a 77% was obtained. An additional deterioration of 5% in the recognition571
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rate was detected for short alfalfa, which is consistent with previous findings572

by Milone et al. (2012). A plausible explanation for this is that short alfalfa573

plants have higher proportion of stems over leaves than tall alfalfa and fescue,574

and cows can produce bite sounds with lower amplitude, increasing confusion575

between events. Consequently, sound recordings for short forages, particu-576

larly alfalfa, may have a lower signal-to-noise ratio that can introduce errors577

in the classification of events. In the same way as for the first database good578

results for the classification of chews were obtained, which is a good sign for579

identification of rumination activities. Moreover, some degree of confusion580

between bites and chew-bites was also observed. That could be ameliorated581

by incorporating new sound features like a measure of symmetry of the event582

or information about the sequence of events.583

Finally, as shown in the flowchart of the algorithm (Figure 3), any de-584

tected event that is not classified as chew-bite, bite or chew, is treated as585

noise event. However, potential insertions (false positive event) can occur586

when a given noise event is indeed misclassified as false chew, bite or chew-587

bite. To assess the odds for misclassified insertions, all likely insertions (false588

positive events due to noise) performed by CBRTA were further examined589

with the HTK performance tool. This analysis showed a low number of inser-590

tions, which has two plausible explanations. First, acoustic monitoring was591

conducted with directional microphones (sensing only in one direction) fac-592

ing inward onto the forehead of cows and covered by a rubber foam (Milone593

et al., 2009). Furthermore, this instrumentation was made to minimize envi-594

ronmental noise (i.e. wind) to avoid the use of stronger high-pass filters, that595

otherwise will remove important information of sound signals. Second, the596
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use of a low-pass filter with cutoff frequency of 5.5 Hz (or 3.5 Hz depending597

of database) for computing envelope was preferred over other filtering op-598

tions. Noise is generally characterized as a non-stationary signal with high599

energy at high frequencies, and it would be expected that any noise energy600

that matches the frequency band of interest will have minimal influence or601

interference on both, detection and classification tasks.602

6. Conclusions603

It has been demonstrated the importance of acoustic monitoring for both604

detection and classification of ingestive events in grazing ruminants. Al-605

though this technique is very appropriate, it presents difficulties to automat-606

ically analyze large volume of high-quality audio signals by means of fast607

methods. These difficulties are usually related to computation load, power608

supply, data transfer and storage capacity. In this regard, the proposal was609

to develop an alternative algorithm that can get high accuracy for detection610

and classification, but with minimal computational cost.611

The novel CBRTA algorithm was capable to combine very low computa-612

tional cost with high accuracy for detection (up to 97.4%) and classification613

(up to 84.0%) of chews, bites and chew-bites in grazing dairy cattle. Fur-614

thermore, the linear computational complexity of CBRTA combined with615

the use of low sampling frequency and quantization level further minimized616

computational costs, which is a remarkable achievement in acoustics because617

it can lend to the application of very fast real-time execution for timely and618

accurate monitoring devices of grazing behavior. To the best of our knowl-619

edge, there are no other acoustic platforms that can be used for real-time620
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analysis of sound signals in low cost embedded systems mounted on individ-621

ual animals. The testing of CBRTA shows that with a sampling frequency of622

4 kHz, good overall performance rate can be obtained at low computational623

cost. This suggests that the main energy for classification of ingestive events624

would be below to 2 kHz in a target signal, consistent with previous results625

obtained by Milone et al. (2012).626

Given the demonstrated applicability of acoustic signals to assess herbage627

intake (Laca et al., 2000; Galli et al., 2011), future research steps must be628

focused on the automation of herbage intake measurements, as well as, on629

the application of acoustic monitoring as novel precision grazing manage-630

ment tool. Future equipment development must also focus on both integral631

applications that allow temporary storage or easy transfer of processed re-632

sults via wireless network, and on intelligent power supply systems, that can633

assure long-time operation of acoustic devices and embedded microproces-634

sors in field applications. The CBRTA algorithm has promising capability to635

facilitate these requirements.636
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Appendix A. CBRTA complexity analysis649

This appendix evaluates the computational cost of each step of the CBRTA650

algorithm, which depends on the number of samples n to be processed per651

second (fCBRTA(n)). For this algorithm, the number of samples n to be pro-652

cessed per second depends on the sampling frequency. Hence, the number of653

operations required by each stage of the algorithm will depend on the task654

being performed:655

1. Signal rectification: A simple pre-processing task that guarantee a656

positive sign for all samples. This task requires only a comparison and657

a multiplication (2n operations/s).658

2. Signal filtering: A second-order low pass filter is applied to the result-659

ing signal to obtain the sound envelope. This filter can be implemented660

in two different ways: i) A second order infinite impulse response (IIR)661

filter that involves five multiplications and four additions (9n opera-662

tions/s) or ii) a finite impulse response (FIR) filter that involves P663

multiplications and P additions (2Pn operations/s), where P is the664

number of taps employed by the filter. The use of one particular way665

of implementing the filter will depend on the main constraint of the im-666

plementation, such as computational efficiency for the FIR or numerical667

stability for the IIR.668
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3. Signal subsampling: To reduce the computational requirements (load669

and time) in the subsequent tasks, without losing accuracy, the sound670

envelope is subsampled from its original sampling frequency of 100 Hz.671

This task requires an addition and a comparison (2n operations/s).672

4. Samples buffering: The data stream generated in previous tasks is673

divided into short segments. From a computational point of view this674

task only involves counting of samples, which requires an addition (100675

operations/s).676

5. Threshold generation: The time-varying threshold T (k) is computed677

through two steps: the computation of the peak expectation threshold678

(TP ), which requires five additions and one multiplication (600 oper-679

ations/s), and the computation of the threshold T (k), which requires680

one addition and two comparisons (300 operations/s). Therefore, the681

overall computational complexity of this task is 900 operations/s.682

6. Event detection: This task only involves the comparison of the thresh-683

old T (k) with the sound envelope, which implies a computational com-684

plexity of 100 operations/s.685

7. Properties computation: This task computes the properties of the686

sound envelope for classification of events. The shape of a given event687

is quantified through computation of the number of changes in the688

sign of the envelope slope when its magnitude is bigger than the back-689

ground noise. It requires one comparison and one subtraction (200690

operations/s). The duration of the event is computed from the sound691

envelope by counting the number of samples when the envelope is big-692

ger than the background noise. It requires one comparison and one693
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addition (200 operations/s). Finally, the maximum amplitude of the694

event is computed directly from the absolute value of sound over a win-695

dow of time whose length is half of the duration of a typical chew-bite696

event. It only requires one comparison (100 operations/s).697

8. Event classification: Using a set of five rules, based on the proper-698

ties computed in the previous stage, the events are classified into chew,699

bite, chew-bite, silence and noise. The evaluation of a rule to clas-700

sify a silence only requires the comparison of the sample counter kT ,701

which involve 100 operations/s. To evaluate the remaining rules, the702

algorithm checks the conditions that define each type of event. There-703

fore, the overall computational complexity for each of these rules is 500704

operations/s. Since all rules are evaluated at every event, the overall705

complexity for this task is 2100 operations/s.706

A linear complexity for CBRTA is given by the total number of opera-707

tions per second that are required to be executed for an IIR low-pass filter708

implementation, as follows:709

fCBRTA(n) = 13n+ 3700. (A.1)

Appendix B. CBHMM complexity analysis710

The cost of each step of the CBHMM algorithm presented by Milone et al.711

(2012) is evaluated as a function of the number of samples n to be analyzed712

per second (fCBHMM(n))), where n depends on the sampling frequency. The713

corresponding system was implemented by the authors using the HTK toolkit714

(Young et al., 1997).715
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The signal will be analyzed using overlapped windows. Window duration716

wL and window step wS were defined as 60 ms and 40 ms, respectively.717

Regardless of the sampling frequency of input audio the number of windows718

nw to be processed per second is719

nw =

⌊
sL − wL

wS

⌋
+ 1 =

⌊
1000 ms− 60 ms

40 ms

⌋
+ 1 = 24 windows (B.1)

720

where sL is the duration of the segment of signal to analyze. The number of721

samples nS to be processed per window depends on the number of samples722

to be analyzed as723

nS =
wL

sL
n. (B.2)

Recognition processes can be separated into two main stages: i) feature724

extraction and ii) classification. During the feature extraction stage, each725

window is analyzed with the same exact processes. The following complexity726

analysis will be done for a single window of nS samples:727

1. Pre-emphasis filter: a simple pre-processing operation emphasizes728

the signal by applying a first order difference equation, that involves729

an addition and a multiplication (2nS operations).730

2. Windowing: a Hamming window function is applied to pre-processed731

signal. This operation requires a multiplication for each sample of the732

window (nS operations).733

3. Window energy: is a numeric value obtained from windowed signal734

that will be part of the feature vector. It requires 2nS operations.735
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4. Fourier transform: the windowed signal is transformed using a fast736

Fourier transform, and magnitude is then taken. Complexity of these737

computations are nS log(nS) and nS operations, respectively.738

5. Filterbank analysis: is a simple transform based on a bank of tri-739

angular filters designed to give approximately equal resolution on a740

mel-scale. Each Fourier magnitude coefficient is multiplied by the cor-741

responding filter gain and the results are then accumulated. Thus,742

each bin holds a weighted sum representing the spectral magnitude in743

that filterbank channel. Ten filters that spread between 0 and 500 Hz744

were selected by Milone et al. (2012). The complexity is a function745

of the maximum length of the filter FML, it is at most 20FML opera-746

tions. Because it is clear that FML � nS, then this operation should747

not be the most computationally expensive. It could be established a748

computational complexity of 20nS operations as upper bound.749

6. Logarithm: is applied to each channel parameter of the filterbank.750

This requires 10 operations (10 operations).751

7. Deltas: a feature vector is composed by 22 elements is arranged by752

10 log-filterbank parameters, window energy, deltas of log-filterbank753

parameters, and delta of energy. Deltas computation requires 11 addi-754

tional operations.755

The total number of operations required to extract features ffe(nS) from756

a single window is757

ffe(nS) = 21 + 26 nS + nS log(nS). (B.3)

This number must be multiplied by nw to obtain the complete number of758
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operations in the feature extraction stage for one second of audio. The cost759

of classification stage is revised below under the same assumption that one760

second of audio must be processed.761

Given the small number of models in this application (only 3: chew, bite762

and chewbite, without taking into account the silence model for simplicity)763

it is reasonable to suppose a similar complexity than in an isolated word764

recognition task. Also, one second of audio could contain only one event,765

due to the typical duration of masticatory events. Thus, to do isolated word766

recognition, the following steps must be performed: (i) generate a sequence of767

feature vectors corresponding to the audio, (ii) calculate the model likelihoods768

for all possible models, and, (iii) select the word whose model likelihood is769

highest.770

Step (i) was already addressed in feature extraction stage. To perform771

step (ii) the Viterbi algorithm is used. This algorithm requires on the order772

of V Q2T computations, where V is the number of words, Q is the number of773

states in each model, and T is the length of the feature vectors sequence (Ra-774

biner and Juang, 1993). Since V = 3 (chew, bite and chewbite), Q = 4 and775

T = 24.5 (number of windows per second), the viterbi computations needed776

are V Q2T = 1, 176. Each Viterbi computation requires one multiplication,777

one addition, and a likelihood calculation (at least M(d + d2) operations778

(Duda, Hart, pp. 111), where d = 22 is the number of features, and the779

number of mixed gaussians is M = 90). Then, the operations needed in step780

(ii) are V Q2T (2 + M(d + d2)) = 53, 557, 392. Operations performed in step781

(iii) are just 3 comparisons to obtain the highest likelihood. Therefore, the782

number of operations performed in classification stage is determined by step783
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(ii).784

The algorithm CBHMM shows a superlinear complexity where the total785

number of operations per second of signal required to execute this algorithm786

is the sum of feature extraction and classification stage costs, as follows:787

fCBHMM(n) = 24

{
21 + 26

wL

sL
n+

wL

sL
n log

(
wL

sL
n

)}
+ 53, 557, 392.

(B.4)
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